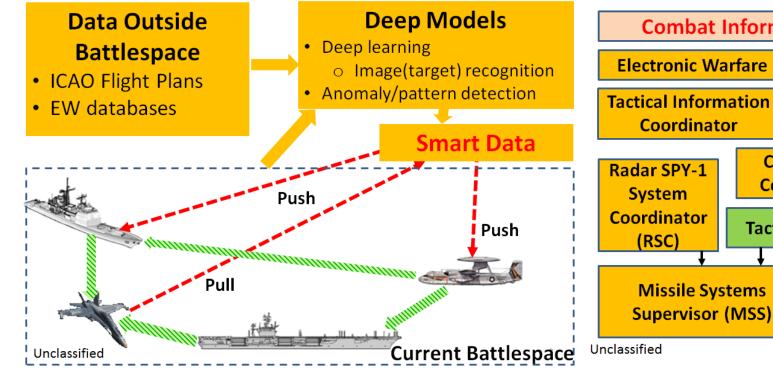
Demonstrating a Tactical Server Concept Leveraging Big Data, Deep Analytics, Machine Learning (ML), and Artificial Intelligence (AI) Algorithms

Ying Zhao, Naval Postgraduate School, Monterey, CA, USA, yzhao@nps.edu 10/2019

Naval Postgraduate School

Big Picture and Challenges

ML/AI Algorithm: Combine Soar Reinforcement Learning (Soar-RL) with Lexical Link Analysis (LLA)

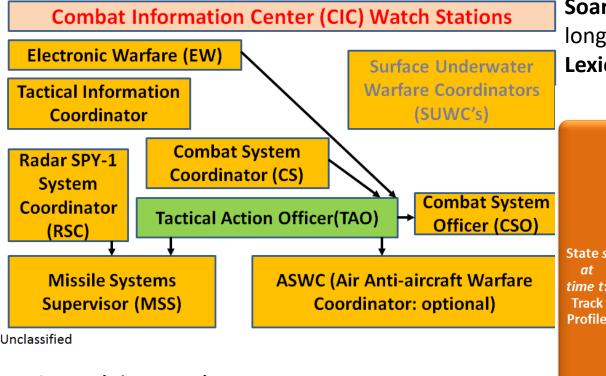


Common Tactical Air Picture (CTAP)

- Collects, processes, and analyzes data from a vast network of sensors, platforms, and decision-makers
- Provides situational awareness to air warfare decision-makers

Combat Identification (CID)

• Locates and identifies critical airborne objects as friendly, hostile, or neutral with high precision

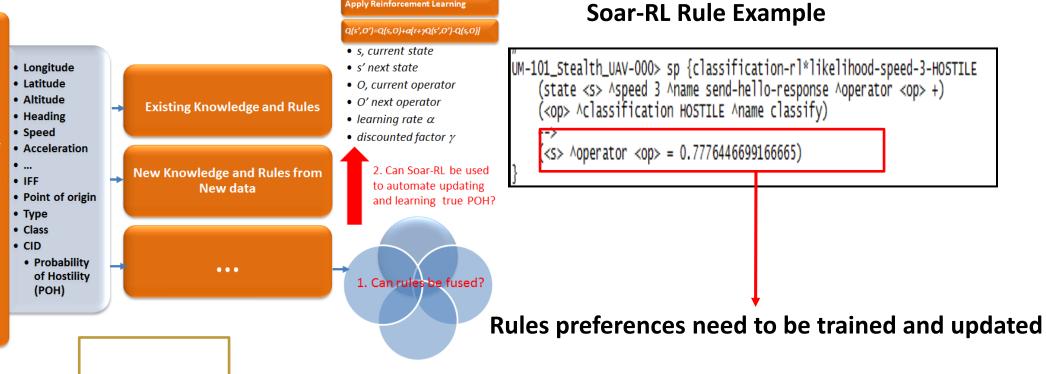


- CID goals in general are to
 - Increase fidelity
 - Reduce cognitive burden
 - Reduce latency

The demo shows the feasibility of applying ML/AI methods to accurately classify military aircraft or not. The data can be extended to include

- UAS patrol patterns
- Adversarial air tracks
- Surface tracks

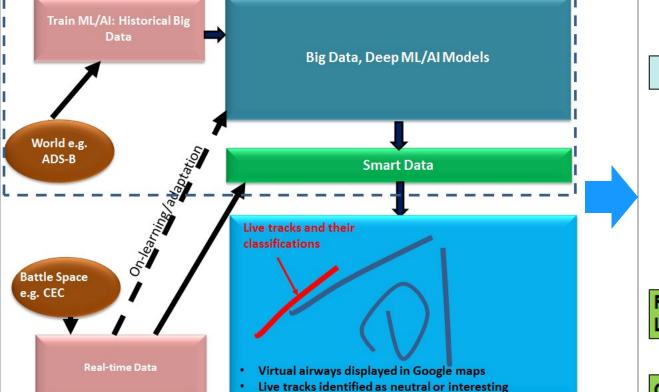
Tactical Server Concept



As shown in Equation (1), Soar-RL is implemented in a typical RL implementation involving a recursive formula that is widely accepted in the RL research and literature. Since we only consider an on-policy setting or SARSA, $Q(s_{t+1}, a) = 0$ in Equation (1). Therefore, $Q(s_{t+1}, a_{t+1})$ is updated continuously for each time point and immediate reward r.

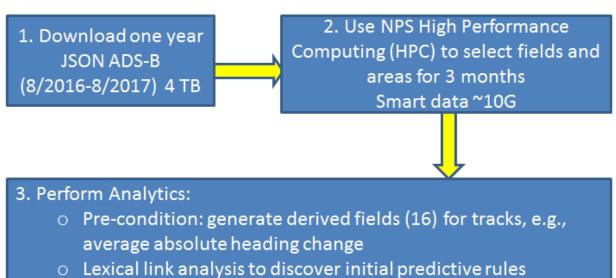
$$Q(s_{t+1}, a_{t+1}) = Q(s_t, a_t) + \alpha [r + \gamma \max_{a \in A} Q(s_{t+1}, a) - Q(s_t, a_t)]$$
(1)

(https://soar.eecs.umich.edu/downloads/Documentation/SoarManual.pdf: page 145)



Open Source ADS-B Data

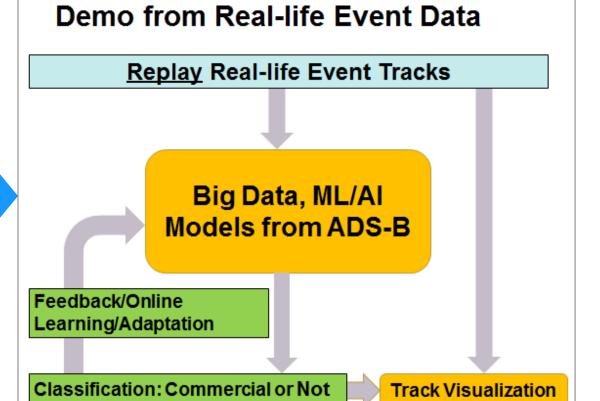
- ADS-B supports separation assurance and traffic flow management (FAA Order 8200.45); broadcasts and selfreports ID and location
- ICAO uses ADS-B-enabled Mode-S devices



- Soar reinforcement learning to predict commercial or not
- Compare with other ML/AI algorithms
- $\circ \ \ \, {\rm Track\,visualization}$

Table 1: 3-month ADS-B Data Divided into 7 Data Sets

Name	Month of Data
Data set 7_1	July, 2016, Train
Data set 7_0	July, 2016, Test
Data set 7_2	July, 2016, Test
Data set 8_0	August, 2016, Test
Data set 8_1	August, 2016, Test
Data set 6_0	June, 2016, Test
Data set 6_1	June, 2016,Test



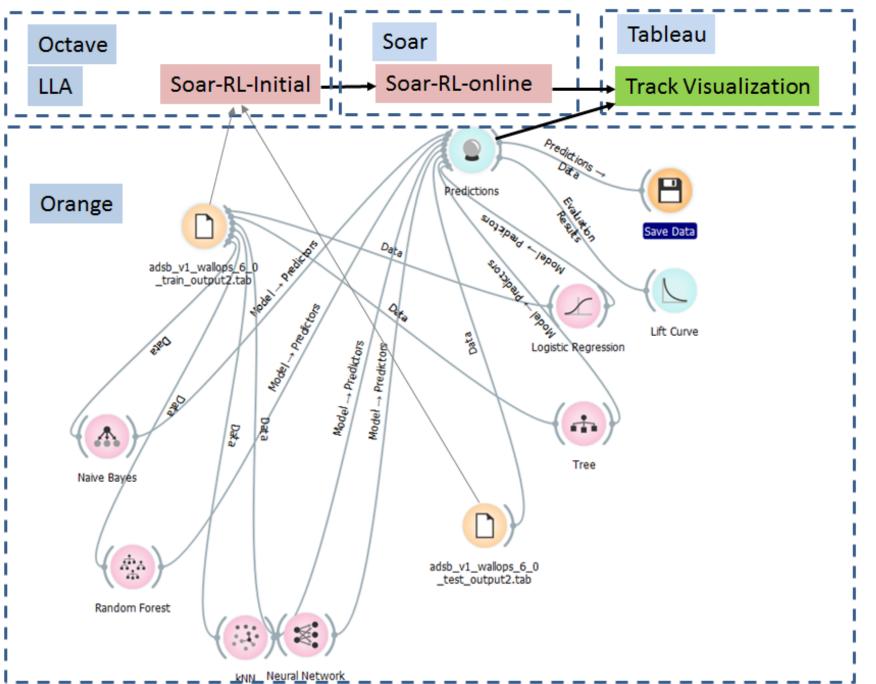
Goal: Identify Commercial Flights Usin W Kinematic Attributes

- Demo Data : Data set 6_0 (adsb_v1_wallops_6_0)
 train on (1.3M tracks)
 - 2016-06-10
 - 2010 00 102016-06-11
 - 2016-06-11
 2016-06-12
 - 2010-00-122016-06-13
 - test on (340,000 tracks)
 - 2016-06-14

For each track, compute kinematics features:

- Average altitude up to time *t*
- Average altitude change up to time t
- Average absolute altitude change up to time t
- Average speed up to time t
- Average speed change up to time *t*
- Average absolute speed change up to time *t*
- Average heading change up to time t
- Average absolute heading change up to time t
- Total altitude change up to time t
- Total altitude absolute change up to time t
- Total heading change up to time t
- Total absolute heading change up to time *t*

Comparing Soar-RL with Other Methods: All ML/AI Methods/Tools Used



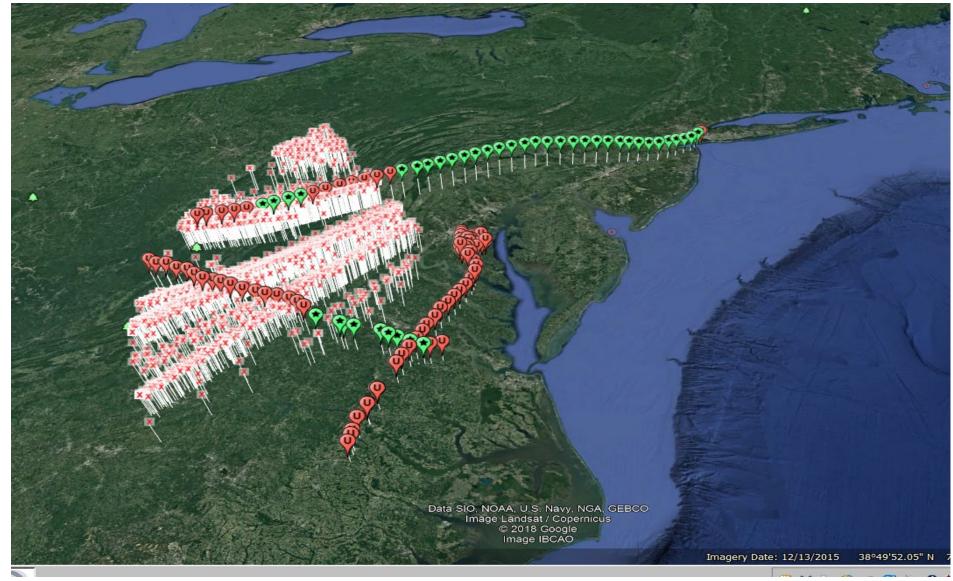
Results: % of Commercial Flights Ranked by

Predicted Scores

		Bottom 50% of Test Tracks	Tracks as whole (Average)
Tree	99.32%	96.71%	
Naïve Bayes	99.03%	97.02%	
Random Forest	99.27%	96.77%	
kNN	99.32%	96.71%	
Neural Network	99.44%	96.59%	
Soar-RL	99.23%	96.81%	
			98%

- Total speed change to up to time *t*
- Total absolute speed change up to time t
- Total track duration up to time *t*

Visualizing Tracks with Predicted Scores



Conclusion and Future Work

- Big data, deep analytics, and ML/AI algorithms are important for implementing a Tactical Server for CTAP and CID for classifying and predicting intent of airborne objects
- The Soar-RL/LLA methodology produces predictive results similar to other ML/AI methods but possesses the following advantages:
 - It uses rule-based reinforcement learning and so more easily incorporates new knowledge discovered from big data into its existing knowledge
 - \circ It is an online training method, so the learning can be adapted in a new environment
- Future work
 - Class and type recognition need more data sources such as ICAO, FAA, ELINT (e.g., RF)
 - Pattern of life needs unsupervised learning and planning algorithms

Researchers: Dr. Ying Zhao (PI), <u>yzhao@nps.edu</u>

Sponsor: Naval Postgraduate School Research Program (NPS-19-N163-A)

Topic Sponsor: OPNAV N2/N6 Integrated Fires, Mr. Bill Treadway

Distribution A: Approved for public release; Distribution Unlimited; Other requests for this document shall be referred to Naval Postgraduate School Public Affairs.