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Big Picture and Challenges ML/AI Algorithm: Combine Soar Reinforcement Learning
(Soar-RL) with Lexical Link Analysis (LLA)
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Common Tactical Air Picture (CTAP) * Increase fidelity v _

e Collects, processes, and analyzes data from a vast * Reduce cognitive burden Rules preferences need to be trained and updated
network of sensors, platforms, and decision-makers * Reduce latency

* Provides situational awareness to air warfare The demo shows the feasibility of applying ML/AI As shown in Equation (I).Soar-RL is implemented in a typical RL implementation involving a

‘o methods to accurately classify military aircraft or not. e .= : : : :
decision-makers y y y recursive formula that is widely accepted in the RL research and literature. Since we only consider an

Combat Identification (CID) on-policy setting or SARSA, Q(s¢+1,a) = 0 in Equation (1). Therefore, Q(s¢11, a¢+1) is updated
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* Adversarial air tracks

The data can be extended to include

friendly, hostile, or neutral with high precision
* Surface tracks
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Tactical Server Concept

(https://soar.eecs.umich.edu/downloads/Documentation/SoarManual.pdf: page 145)
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’ * Big data, deep analytics, and ML/AI algorithms are important for implementing a Tactical

Server for CTAP and CID for classifying and predicting intent of airborne objects
* The Soar-RL/LLA methodology produces predictive results similar to other ML/Al methods
but possesses the following advantages:
o It uses rule-based reinforcement learning and so more easily incorporates new knowledge
discovered from big data into its existing knowledge
o Itis an online training method, so the learning can be adapted in a new environment
* Future work
i anain, S hae S o Class and type recognition need more data sources such as ICAO, FAA, ELINT (e.g., RF)
_ ’? o Pattern of life needs unsupervised learning and planning algorithms
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