Modeling Large-Scale Warfighter Cognitive Reasoning and Decision
Making Using Machine Learning (ML), Artificial Intelligence(Al), and PtS Naval

Theory (GT) YoSETwmy? Postgraduate

Ying Zhao, Ph.D., Naval Postgraduate School, Monterey, CA, USA, yzhao@nps.edu \/ School
10/2019

Big Picture, Challenges, and Goals Research Methods

» Cognitive architecture, algorithms, and software systems are important to * Leverage Al to Learn, Optimize, and Win for a complex enterprise
model complex reasoning, cognitive functions, and decision-making in

. . LAILOW process: Leverage Al to learn, optimize, and win for a complex enterprise
warfighting environments.

Lfarn th& 'I"Ia.lueu ﬂ[EaCh aclion Irﬂm hlilﬂ‘rlcaj, E?ch'f't“:_. or SIH‘IUHtEd da.a ':'D'.il'niﬂ.‘ the MoEs ||:D‘!|t thab\-tlh' of Win, Reward Pﬂ'ﬁ}ﬁ Fitness, and Cownterfactual Fh:ir{'t. l:'!':.:l

* Apply the ML/AI/GT techniques such as modeling, simulation, and readiness : actions -

A

calculation to military applications to achieve decision-making superiority in

=

A, \\"‘-« Path/Course of Action 1

the vast, complex, and uncertain areas of Cybersecurity and Information -

Warfare, including such applications as combat identification, Battlespace o
Awareness, C-C4ISR, Assured C2, modeling/simulation, and mission M — Opponen //\

Aatien 1

Opponent’s move of Opponent’s mov o other PathfCourse of Action |
1 = Envirenment other observable data chuervable data
planning and war games. * What the opponent does t
states
Multi-segment War Game Leveraging Machine Intelligence _ _ o
Figure 2. LAILOW learns the value of each Figure 3. The “Optimize” Step

action/state combination.
Verb (V) Categories for Blue, Events (E) Happen at Each segment

Actions: Self-player can control and decide.
States: Data that are not control and choose by the self-player but can affect the end result such as

SEEIT'IEFII' 1 SEEI’I"‘IEi"It 2 SEETTIEITE 3 SEEmEHt 4 Segment 5 UﬂCIESSiﬁEd opponent’s move, environment, etc. (States can be imperfect/hidden — need to learn/approximate/predict)
£ . E
v — Research Results
N\, o Another player with the . . .
E -V F same target and EVEs Showed Soar-RL learning, adaptation, and convergence for the big data set
(I'LllES of Engagements} Soar-RL Preferences Changes
. E o Red asymmetrical forces S i
* MOE: win with the minimum 18| *
cost 18
E = 1.4
Collections of large number of EVEs in each segment 0.8 |
0.4 -
0.2 - * - Iterations

Research Data Set and Tools T T T S e el

“Causal Learning in Modeling Multi-segment War Game Leveraging

Table 1: Sequential or Parallel Asymmetric Action Combinations

Self-player Opponent Machine Intelligence with EVE Structures.” Paper accepted to the AAAI
(.5, environment o 2019 Fall Symposium.
adversaries)
Action/state combination d;) R tati B |
Action/state combination d, 9; epresentation: boolean]]
Iattice includi * Advanced Soar-RL successfully to the CEC Combat ID; will be tested in the
Action combination gy o aHHEe NETEng Trident Warrior 2020 exercise
able 2 Action Combination t counterfactuals
dable £ AChIOnN Lomplination Lomponents
Action/state combination e 1o | | | Endreward * Integrated Soar-RL with the coevolution framework in a war game in the
component —T5 T context of over-the-horizon targeting
1 1 [0 |1 not win
)
| Self-play with a fixed opponent
states or actions population size: 186
max_length: 18
Soar-RL large-scale test data: 1.3M training combinations,/400K test S
L 2 = Por 2 2 B tournament_size: 2
combinations and 50 attributes, ~25 attributes are state variables, and ~25 are seed: 1]
. . crnss?ver_pr‘c:.bal?i]l.ity: 8.8
action variables -t
i integer_input_element_max: 1008
A bnf_sra;maf: :‘:es‘:a,-"g:aﬂ"ra’s iterated_prisoners_dilemma_attacker.bnf”
fltn:::;fun';t?’::xdl*_ sonersDilemma”™ Coevolution Configuratiun {M}
opponent: “lambda h, i: "NO'"
n_iterations: 28 26
% - opnsaurercalss| || Attacker and Defender Dynamics and populations:
f ‘ C=T) | rkestore Coevolution Framework/Algorithm adversary: defender) | |)
Envirmment + Developed by bnf_grammar: “tests/grammars/iterated prisoners_dilemma_attacker.bnf
University of fitness_‘lF_L..chFi?n:u”: o
<) Rearg : e | . Gty MIT CSAIL: adversarial _dynamics_position.pdf opponent: None B
In terpr'etn < ’ Ern:?r:gtemem defe:ai:fratlnnsz 28
&—' - Long+ R s ’ i?‘iﬁ:emmimons Coevolutionary Component Attack controller Engagement Component adversary: attacker B . B . .
e _é_} E-N'ﬂtewﬁﬂdﬂli;‘lﬂlbﬂ of Defenss controller Strategy evalisator 22I;E::n’$:;;ti;i?:: grammars/iterated _prisoners_dilemma_defender.bnf
LRE name:_' _!‘F“'H‘.'-?I;j"'. sonersDilemma™
Agent Dﬂ':ns-& Engagement measures . opponent: None
Generic Reinforcement Learning Soar-RL UﬂClESSIfIEd n_iterations: 28
Q (value): expected value to win the final game Figure 1: Component overview of our coevolutionary
adversarial Al framework. The coevolutionary com-
* AlphaZero Q=f[state(t),action(t)]: state is an image, action is a valid move. ponent performs search over the adversary controllers. 2 \
* Soar Q(s,0’)=Q(s,0)+a[r+yQ(s,0’)-Q(s,0)]: r is the reward for a combination of The engagement component evaluates the strategies of 1. configurations\iterated_prisoners_dilemma.yvml - rammars
state and actions the adversaries and returns the measurements of the iterated _prisoners_dilemma_attacker.bnf
. engagement. ﬁziuiZE;ETsiEE: 1oe
' PR <5Trate » 1:= lambhda ¥ i: <ewves>»
;l;:f_;i::sl?_ <c:es:— EF: "<attrigﬂtc2><attribute2Hattributch"
tournament size: 2 <attributel> ::= 1[0
seed: 1 - <attribute2s> ::= 1|@
I crossover_probability: .8 cattribute3> ::= 1|@
Conclusion and Future Wor
codon_size: 127
integer_input_element _max: 1888
bnf_grammar: “tests/grammars/iterated_prisoners_dilemma_attacker.bnf"
fitness_function:
. name : "I'.E:?-l'.-?ﬂ?"i?'?"l'?"il:?ii-?l:l.""&"
* Leveraged and previous research results into different applications opponent “Lanbida b, i: "0
* Explored new ML/AI algorithms in complex systems
P / 5 . P Y _ _ _ 3. Payoff lookup (m&s data): game_theory_game.py 4. Fitness
* Future work: test Soar-RL, Coevolution, and LAILOW in real-life exercises, war e ot -
games, and warfighter Al assistant implementations e o L def get fitness(sentencess List[Tuple[float, Float]]) -> Flosts
FUET: str = “Bog """ Fitness is the negated sum of the sentences
s str < fitness: fleat = -sum([_[@] for _ in sentences])
PAYDFF: Dict[Tuple[str, str], Tuple[float, float]] = { return Titness
(EVEL, MO): (1.7, @),
(EVEZ, Wd): (1.5, @),
(EVE3, WD): (0.8, @),
(EVE4, WO); (2.4, &),
(EVES, WO): (8.9, @),

Researchers: Dr. Ying Zhao (Pl), yzhao@nps.edu

Sponsor: Naval Postgraduate School Research Program (NPS-19-N091-A)

Topic Sponsor: N8110, Information Warfare Branch

Distribution A: Approved for public release; Distribution Unlimited; Other requests for this document
shall refer to Naval Postgraduate School Public Affairs.

mailto:yzhao@nps.edu

	Slide Number 1

