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Big Picture, Challenges, and Goals Research Methods

» Cognitive architecture, algorithms, and software systems are important to * Leverage Al to Learn, Optimize, and Win for a complex enterprise
model complex reasoning, cognitive functions, and decision-making in

. . LAILOW process: Leverage Al to learn, optimize, and win for a complex enterprise
warfighting environments.
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* Apply the ML/AI/GT techniques such as modeling, simulation, and readiness : actions -
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calculation to military applications to achieve decision-making superiority in
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the vast, complex, and uncertain areas of Cybersecurity and Information -

Warfare, including such applications as combat identification, Battlespace o
Awareness, C-C4ISR, Assured C2, modeling/simulation, and mission M — Opponen //\
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Figure 2. LAILOW learns the value of each Figure 3. The “Optimize” Step

action/state combination.
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Actions: Self-player can control and decide.
States: Data that are not control and choose by the self-player but can affect the end result such as
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Table 1: Sequential or Parallel Asymmetric Action Combinations

Self-player Opponent Machine Intelligence with EVE Structures.” Paper accepted to the AAAI
(.5, environment o 2019 Fall Symposium.
adversaries)
Action/state combination d; ) R tati B |
Action/state combination d, 9; epresentation: boolean ] ]
Iattice includi * Advanced Soar-RL successfully to the CEC Combat ID; will be tested in the
Action combination gy o aHHEe NETEng Trident Warrior 2020 exercise
able 2 Action Combination t counterfactuals
dable £ AChIOnN Lomplination Lomponents . . . .
Action/state combination e 1o | | | Endreward * Integrated Soar-RL with the coevolution framework in a war game in the
component —T5 T context of over-the-horizon targeting
1 1 [0 |1 not win
)
| Self-play with a fixed opponent
states or actions population size: 186
max_length: 18
Soar-RL large-scale test data: 1.3M training combinations,/400K test S
L 2 = Por 2 2 B tournament_size: 2
combinations and 50 attributes, ~25 attributes are state variables, and ~25 are seed: 1]
. . crnss?ver_pr‘c:.bal?i]l.ity: 8.8
action variables -t
i integer_input_element_max: 1008
A bnf_sra;maf: :‘:es‘:a,-"g:aﬂ"ra’s iterated_prisoners_dilemma_attacker.bnf”
fltn:::;fun';t?’::xdl*_ sonersDilemma”™ Coevolution Configuratiun {M}
opponent: “lambda h, i: "NO'"
n_iterations: 28 26
% - opnsaurercalss| || Attacker and Defender Dynamics and populations:
f ‘ C=T) | rkestore Coevolution Framework/Algorithm adversary: defender ) | | )
Envirmment + Developed by bnf_grammar: “tests/grammars/iterated prisoners_dilemma_attacker.bnf
University of fitness_‘lF_L..chFi?n:u”: o
<) Rearg : e | . Gty MIT CSAIL: adversarial _dynamics_position.pdf opponent: None B
In terpr'etn < ’ Ern:?r:gtemem defe:ai:fratlnnsz 28
&—' - Long+ R s ’ i?‘iﬁ:emmimons Coevolutionary Component  Attack controller  Engagement Component adversary: attacker B . B . .
e \_é_} E-N'ﬂtewﬁﬂdﬂli;‘lﬂlbﬂ of Defenss controller Strategy evalisator 22I;E::n’$:;;ti;i?:: grammars/iterated _prisoners_dilemma_defender.bnf
LRE name:_' _!‘F“'H‘.'-?I;j"'. sonersDilemma™
Agent Dﬂ':ns-& Engagement measures . opponent: None
Generic Reinforcement Learning Soar-RL UﬂClESSIfIEd n_iterations: 28
Q (value): expected value to win the final game Figure 1: Component overview of our coevolutionary
adversarial Al framework. The coevolutionary com-
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Conclusion and Future Wor
codon_size: 127
integer_input_element _max: 1888
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* Leveraged and previous research results into different applications opponent “Lanbida b, i: "0
* Explored new ML/AI algorithms in complex systems
P / 5 . P Y _ _ _ 3. Payoff lookup (m&s data): game_theory_game.py 4. Fitness
* Future work: test Soar-RL, Coevolution, and LAILOW in real-life exercises, war e ot -
games, and warfighter Al assistant implementations e o L def get fitness(sentencess List[Tuple[float, Float]]) -> Flosts
FUET: str = “Bog """ Fitness is the negated sum of the sentences
s str < fitness: fleat = -sum([_[@] for _ in sentences])
PAYDFF: Dict[Tuple[str, str], Tuple[float, float]] = { return Titness
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