Leveraging Artificial Intelligence (AI) to Optimize Global Material Distribution

Ying Zhao, Naval Postgraduate School, Monterey, CA, USA, yzhao@nps.edu

Naval School

Postgraduate

10/2019

Big Picture and Challenges

Research Methods

- Naval logisticians often have to manually coordinate material movement across global material distribution processes, often culminating in replenishments at sea (RAS), to achieve optimized delivery of assets to maximize operational availability
- Automation and optimization AI are needed to reduce cognitive burden of logisticians

Research Data Sets

Focus on Specific Areas

- **Push** logistics
- Food service
- Cascade effects
- Part-maintenance use cases

Selected Algorithms

- Exploratory analysis and visualization
- Pattern discovery
- Anomaly detection
- Lexical link analysis
- Causal learning

Research Results

(Classic) Battle Load Tool in a Denied Comm Environment

- BLT is used by a CLO representing a ship to place orders, so it should estimate how much to push based on previous RAS info and general statistics from the consumption data.
- BLT can generate a MILSTRIP to place an order to either a SPV or CLF.

					14	14	14	14	14	14	14	
			SUMMER PATROL 18-1							1		
Master Consum							10	n	JUN 18	JUL 18	10L 18	18-1 TOTAL
				,	16-29	30-13	14-27	28-10	11-24	25-8	09-22	
890501E198297 Chicken, Boned, 6/48 oz cn		CN	44	26	88	82	123	146	122	631		
890501E099941 Fish, Tuna Light, 6/43 oz p		pg	PG	118	86	114	162	278	130	150	1038	
891001E297682 Eggs, Scrambled (Dehy)			СО	0	0	0	0	0	0	0	0	
891001E093332 Soft Serve, Choc, 6/6 lb co		0	СО	0	0	1	6	60	100	43	210	
891001E093333 Soft Serve. Van. 6/6 lb co			со	0	0	1	6	76	94	92	269	
•	CARGO & SUSTAINMENT FLEET F		FLEET FRIEGH	T EN	DUR	ANCE	N	IS	(+)		•	

Customer Order Trackers (COTs, from the 7th fleet CLOs)

Current

BLT

- 9M order received
- Time sent to vendor;
- Goods load date (due date)
- RAS event date
- Completed Canceled

Research Results: Use Cases and Student Theses

Use Case 1:

Jones, J. P. (2018). MV-22 supply chain agility: A static supply chain supporting a dynamic deployment (Master's thesis). Naval Postgraduate School, Monterey, CA.

- Identified uncertainty factors for BLT •
- Designed the item association/graph and cascade computation models for BLT
- Currently in the process of testing these models
- Developed two use cases related to the project \bullet

(Master's thesis). Naval Postgraduate School, Monterey, CA.

Coanda Valve AMSSAA Mode Analysis Anomaly detection, lexical link analysis, and predictive models

Zhao, Y., MacKinnon, D., & Jones, J. (2019). Causal learning using pair-wise association to discover supply chain vulnerability. Proceedings of the 11th International Conference on Knowledge Discovery and Information Retrieval (KDIR 2019), Vienna, Austria.

MV-22 Supply Chain Data

- Part criticality and availability status
- Response time and routing locations
- **Result: Causal Learning Model**

Multi-stage maintenance data from operational level (O-level), intermediate level (I-level), and depot-level (D-level) maintenance data fused together:

- Step 1: O-level, organizational level as well, e.g., the squadron level, to identify what are thrown away or repairable at the I and D-levels.
- Step 2: I-level, to quality and timely material support at the nearest location with the lowest practical resource expenditure. Step 3: D-level, to conduct at industrial establishments and original equipment manufacturers (OEMs)

Conclusions and Future Work

- There are huge potential opportunities to leverage AI for learning, optimizing, and winning (LAILOW) in the complex global material distribution enterprise.
- Future work:
 - Test the designed item association/graph and cascade computation models for **BLT**; improve BLT for push logistics
 - Generate the models for Marine parts maintenance, supply, and logistics

Researchers: Dr. Ying Zhao (PI), yzhao@nps.edu

Sponsor: Naval Postgraduate School Research Program (NPS-19-N068-B)

Topic Sponsor: N4 - Fleet Readiness & Logistics

Distribution A: Approved for public release; Distribution Unlimited; Other requests for this document shall refer to Naval Postgraduate School Public Affairs.