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Big Picture and Challenges Method: Soar Reinforcement Learning and XAl
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CID goals in general are to
Increase fidelity
Reduce cognitive burden

Common Tactical Air Picture (CTAP)
e Collects, processes, and analyzes data from a vast network

of sensors, platforms, and decision-makers «  Reduce latency
> IPRERES SiivEiene)) EREnEEs 1 Eilr wenEe dasklen- Ulits € B0 BETE €0 S Ell i) @ El i As shown in Equation (I),Soar-RL is implemented in a typical RL implementation involving a

makers m,li./élr;n :ﬁ':faﬁ':f f,? ?,f,ctl_"ately classify recursive formula that is widely accepted in the RL research and literature. Since we only consider an
Combat Identification (CID) The data can be extended to include on-policy setting or SARSA, Q(s¢+1.a) = 0 in Equation ([I). Therefore, QQ(s¢+1.a¢+1) is updated
* Locates and identifies critical airborne objects as friendly, * UAS patrol patterns continuously for each time point and immediate reward 7-.

hostile, or neutral with high precision o Adversarial air tracks

Surface tracks _
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(https://soar.eecs.umich.edu/downloads/Documentation/SoarManual.pdf: page 145)

Tactical Server and Results

Kinematic Al Model ermo from Real-lite Event Data 1. Applied an uncla.ssmed prototype to the SIPR
level RIMPAC data in a few weeks

Concept Replay Real-life Event Tracks

Demonstrating a Tactical Al for Combat ID

Step 1-4: Generate the ML/AI models from a training data set
1. Pre-process a training track

data set from RIMPAC 2020

Step 1: Compute track features Edit
Step 2: Pre-condition data Edit
Step 3: Soar-RL Training Edit
2. Perform machine learning — -
using (Soar-RL) Step 4: Apply Soar prediction Edit
Step 9: Fuse all predicted scores Edit
3. Perform track assessment 4. XAl/Visualization Step 6: Display an original new test track i (live feed or re-replay from an event, for example)
For each track, compute kinematics features Step 7: Apply the ML/AI Models to the test track i | Edit|
. deVEIOpEd from the ADS-B model (ZhaO, etc. Step 8: Display augmented fields, ML/AT decisions, and scores for the test track 1 using Google Earth
o -
At-Sea RIMPAC 2020 Exercise 2019, NAML) e o
. . . . ep 9: Soar- ap i
Aegis ship tracks col.lected ?nd * Average alt!tude up to time t | Stop 10 Google Earth Visualization for Adaptation | Edi
tested on the NPS kinematic Al * Average altitude change up to time t
. . Step 11: A ly Detecti d Lexical Link Analysis
Model * Average absolute altitude change up to time t oo e e e e
. Multination Exercise in 8/2020 e Average speed up to time t Step 12: Show Raytheon-MITLL TDF  Edit|
(Source: * Average speed change up to time t

https://news.usni.org/2020/08/17/s ° Average absolute speed change up to time t
caled-back-at-sea-rimpac-2020- * Average heading change up totimet

exercise-kicks-offnear-Hawaii * Average absolute heading change up to time t

e Goal: A irb biect * Total altitude change up to time t
Oal: A55655 alrborne ObJEcts * Total altitude absolute change up to time ¢

using kinematic attributes * Total heading change up totime t

Total absolute heading change up to time t
Total speed change toup to time t

Total absolute speed change up to time t
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2. Demonstrated Soar-RL and XAl using real data in a

- Total track duration up to time t tactical environment, performed a few shot machine
3. Integrated with the Tactical Display Framework and learning and anomaly detection
showed alerts and reasons for anomalies Conclusions, Acknowledgements, and Disclaimer
- R 19:53:35;“@2 e Conclusion

o Demonstrated an integrated tactical server of kinematics Al model for real

CTTH: 106104

exercise data
o Showed the potential of the Kinematic Al Model with the Soar-RL and XAl for
improving the current CID and CTAP to help warfighters and reduce their
cognitive load
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(A view of an unclassified ADS-D data sample, not RIMPAC data)
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