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Introduction

•The Neighbor-Joining algorithm is a recursive procedure to reconstruct a phyloge-
netic tree using a transformation of pairwise distances between leaves for identifying
cherries in the tree.

•Pachter and Speyer showed that we can recover an n-leaf tree from the weights of
m-leaf subtrees if n ≥ 2m− 1 [PS04].

•We generalized the cherry picking criterion with estimates of the weights of m-leaf
subtrees.

•We showed that a reconstructed tree from such weights is more accurate than one
using pairwise distances.

•This leads to an improved neighbor-joining algorithm whose total running time is
still polynomial in the number of taxa.

Neighbor Joining with Pairwise Distances

Theorem. (the cherry picking criterion) [SN87, SK88]
Suppose D(ij) is a pairwise distance between taxa i and j. Then, {i, j} is a cherry

if Aij = D(ij)− (ri + rj)/(n− 2), where ri :=
∑n

k=1 D(ik), is minimal.

Idea. Initialize a star-like tree and find a cherry. Then we compute branch length
from the interior node to each leaf. Repeat this process recursively until we find all

cherries.
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Figure 1: The traditional Neighbor Joining with pairwise distances.

Neighbor Joining with Subtree Weights

Notation. Let [n] denote the set {1, 2, ..., n} and
(

[n]
m

)

denote the set of all

m-element subsets of [n].

Definition. A m-dissimilarity map is a function D :
(

[n]
m

)

→ R≥0. In terms of
phylogeny, this corresponds to the weights of m-subtree weights of a tree T .

Theorem. Let Dm be be an m-dissimilarity map on n leaves, Dm :
(

[n]
m

)

→ R≥0

correspond to the weights of m-subtree weights of a tree T and we define

S(ij) :=
∑

X∈([n]\{i, j}
m−2 )

Dm(ijX).

Then S(ij) is a tree metric.
Furthermore, if T ′ is the additive tree corresponding to this tree metric then T ′ and
T have the same tree topology and there is an invertible linear map between their

edge weights.
Algorithm. (Neighbor Joining with Subtree Weights)

• Input: n many DNA sequences.

•Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the maximum likelihood.

2. Compute S(ij) for each pair of leaves i and j.

3. Apply Neighbor Joining method with a tree metric S(ij) and obtain additive tree
T ′.

4. Using a linear mapping, obtain a weight of each internal edge and each leaf edge
of T .

Cherry Picking Theorem

Theorem. Let T be a tree with n leaves and no nodes of degree 2 and let m be an
integer satisfying 2 ≤ m ≤ n− 2. Let D :

(

[n]
m

)

→ R≥0 be the m-dissimilarity map

corresponding to the weights of the subtrees of size m in T . If QD(ab) is a minimal
element of the matrix

QD(ab) =
(

n− 2

m− 1

)

∑

X∈([n]\{i, j}
m−2 )

D(ijX)−
∑

X∈([n]\{i}
m−1 )

D(iX)−
∑

X∈([n]\{j}
m−1 )

D(jX)

then {a, b} is a cherry in the tree T .
Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from Cherry

Picking Theorem.

Time Complexity

If m ≥ 3, the time complexity of this algorithm is O(nm), where n is the number of
leaves of T and if m = 2, then the time complexity of this algorithm is O(n3).

Note: The running time complexity of the algorithm is O(n3) for both m = 2 and
m = 3.

Computational Results

We generate 500 replications with the Jukes-Cantor model via a software evolver
from PAML package.
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Figure 2: Modeled from Strimmer and von Haeseler.

The number represents a percentage which we got the same tree topology. l is the
length of sequences.

l a/b m=2 m=3 m=4 fastDNAml

500 0.01/0.07 68.2 76.8 80.4 74.8

0.02/0.19 54.2 61.2 73.6 55.6

0.03/0.42 10.4 12.6 23.8 12.6

1000 0.01/0.07 94.2 96 97.4 96.6

0.02/0.19 87.6 88.6 96.2 88

0.03/0.42 33.4 35 52.4 33.6

The table above represents success rates for the model T1. We compared our method
with fastDNAml [HO94].

l a/b m=2 m=3 m=4 fastDNAml

500 0.01/0.07 84.4 86 85.6 88.4

0.02/0.19 68.2 72 73.2 88.4

0.03/0.42 18.2 29.2 36.2 87.4

1000 0.01/0.07 95.6 97.8 97.4 99.4

0.02/0.19 88.4 89.6 93.4 99.8

0.03/0.42 40 48.2 57.6 96.6

The table above represents success rates for the model T2. We compared our method
with fastDNAml [HO94].
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