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Abstract

This paper discusses algorithms and software for the enumeration of all lattice
points inside a rational convex polytope: we describe LattE, a computer package for
lattice point enumeration which contains the first implementation of A. Barvinok’s
algorithm (Barvinok, 1994).

We report on computational experiments with multiway contingency tables, knap-
sack type problems, rational polygons, and flow polytopes. We prove that these kinds
of symbolic-algebraic ideas surpass the traditional branch-and-bound enumeration
and in some instances LattE is the only software capable of counting. Using LattE,
we have also computed new formulas of Ehrhart (quasi)polynomials for interesting
families of polytopes (hypersimplices, truncated cubes, etc).

We end with a survey of other “algebraic-analytic” algorithms, including a “ho-
mogeneous” variation of Barvinok’s algorithm which is very fast when the number
of facet-defining inequalities is much smaller compared to the number of vertices.
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1 Introduction

Counting lattice points inside convex polyhedra is a truly fundamental and useful
step in many mathematical investigations. It appears, for instance, in the context of
Combinatorics (MacMahon, 1960; Stanley, 1997), Representation Theory (Kirillov,
2001; Schmidt and Bincer, 1984), Statistics (Diaconis and Gangolli, 1995; Fienberg
et al., 2001), and Number Theory (Beck, 2000; Nijehuis and Wilf, 1972). Lattices
and polytopes are at the foundation of Discrete Optimization (Grotschel et al.,
1993; Schrijver, 1986). This justifies the development of computer software that
could count or list all lattice points in an arbitrary rational convex polyhedron.

In the 1980’s H. Lenstra created an algorithm to detect integer points in polyhedra,
based on the LLL-algorithm and the idea of short vectors (Grétschel et al., 1993;
Lenstra, 1983). As a consequence, solving integer programming problems with a fixed
number of variables can be done in time polynomial in the size of the input. We
are not aware of any implementation of Lenstra’s original algorithm, but there have
been already efforts to investigate the practical value of these ideas. For example,
Cook et al. (Cook et al., 1993) have implemented the integer programming algo-
rithm by Lovéasz and Scarf (Lovasz and Scarf, 1992), which is similar in structure to
Lenstra’s algorithm. In addition, Aardal and collaborators (Aardal et al., 2002a,b,
1998) have written fairly effective modifications of the LLL procedure for testing
integer feasibility. In the 1990’s, based on work by the geometers Brion, Khovanski,
Lawrence, and Pukhlikov, Barvinok created an algorithm to count integer points
inside polyhedra that runs in polynomial time for fixed dimension (see (Barvinok,
1994; Barvinok and Pommersheim, 1999) and the references within). Shortly after
Barvinok’s breakthrough, Dyer and Kannan (Dyer and Kannan, 1993) modified the
original algorithm of Barvinok, which originally relied on Lenstra’s result, giving
a new proof that integer programming problems with a fixed number of variables
can be solved in polynomial time. In Section 2, extending the work initiated in (De
Loera and Sturmfels, 2001), we describe the first ever implementation of Barvinok’s
algorithm valid for arbitrary rational polytopes; the program LattE.

In Section 3 we present some computational experience with our current imple-
mentation of LattE. We report on experiments with families of well-known ratio-
nal polytopes: multiway contingency tables, knapsack type problems, and rational
polygons. We demonstrate that LattE competes with commercial branch-and-bound
software and solves very hard instances, enumerating some examples that had never
been done before. We also tested the performance in the case of two-way contin-
gency tables and Kostant’s partition function where special purpose software has
been written already (Baldoni-Silva and Vergne, 2002; Beck, 2003; De Loera and
Sturmfels, 2001; Mount, 2000). In Section 4 we present formulas for the Ehrhart
quasi-polynomials of several hypersimplices and truncations of cubes (e.g. the 24
cell). We show solid evidence that Barvinok’s ideas are practical and can be used to
solve non-trivial problems, both in integer programming and symbolic computing.



In the last section of the paper we survey some other algorithms for lattice point
enumeration. In particular, we sketch the homogenized Barvinok algorithm. Like the
original Barvinok’s algorithm it runs in polynomial time when the dimension is fixed
but it is in practice faster when the number of facet-defining inequalities is much
smaller than the number of vertices.

2 LattE’s implementation of Barvinok’s algorithm

in 1993 Barvinok (Barvinok, 1994) gave an algorithm that counts lattice points in
convex rational polyhedra in polynomial time when the dimension of the polytope
is fixed. In this section, we go through the steps of Barvinok’s algorithm, showing
how we implemented them in LattE. Barvinok’s algorithm relies on two important
new ideas: the use of rational functions as efficient data structures and the signed
decompositions of cones into unimodular cones.

The input data are an m X d integral matrix M, an m-vector b, and an integer s.
These data define a polyhedron P = {z € R¥|M;x = b;, for i = 1,2,...s, Mz <
bi, fori=s+1,...,m, M € Z™¢ and b € Z™}, where M; represents the ith row
vector of M and b; represents the ith entry of b. The goal is to output a short formula
for the multivariate generating function f(P) = ¥ ,cpnza 2®. Here and throughout
the paper, 2% = z{'25 ... z;. At the end, f(P) will be written as a sum of “short”
rational functions from which we can solve feasibility, counting, or even optimization
questions, about the lattice points in P.

Note that when P is a polytope (i.e. a bounded polyhedron), the monomials of f(P)
are in bijection with the lattice points and thus f(P) is a (Laurent) polynomial.
Counting the lattice points in P is equivalent to evaluating the expression at the
vector with all entries 1. Let v be a vertex of P. Then, the supporting cone K(P,v)
of Patvis K(P,v) =v+ {u € R : v+ du € P for all sufficiently small § > 0}. Let
V(P) be the vertex set of P. One crucial component of Barvinok’s algorithm is the
ability to distribute the computation on the vertices of the polytope. This follows
from the seminal theorem of Brion (Brion, 1988):

Theorem 1 (Brion, 1988) Let P be a rational polyhedra and let V (P) be the vertex
set of P. Then,

f(Py= > fK(Pv)).

veEV(P)

Example 2 Consider the integral quadrilateral shown in Figure 1. The vertex Vi is
(0,0), Vo = (5,0), V3 = (4,2), and V, = (0,2).

We obtain four rational generation functions whose formulas are
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Fig. 1. A quadrilateral in Example 2.
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Indeed, the result of adding the rational functions is equal to the polynomial

Z15 + 21422 + 214 + 2142!22 + 22213 + 2513 + 213222 + 22212 + 212 + 25122522 + 2129 + 21 +
21202 + 292 + 20+ 1. O

In order to use Brion’s theorem for counting lattice points in convex polyhedra, we
need to know how to compute the rational generating function of convex rational
pointed cones. For polyhedral cones this generating function is a rational function
whose numerator and denominator have a well-understood geometric meaning (see
in Stanley (1997, Chapter 4) and in Stanley (1980, Corollary 4.6.8) for a clear
explanation). We already have a “simple” formula when the cone is simplicial: Let
{u1,us, ..., u;} be a set of linearly independent integral vectors of R?, where k < d.
Let K be a cone which is generated by {uy, us, ..., ux}, in other words, K = {A\ju; +
Aotig + ...+ Agug, for some \; >0 and i =1,2,...,k}. Consider the parallelepiped
S={A1u1+)\2u2+...+)\kuk, 0< <1, i:1,2,...,/€}.

It is well-known (Stanley, 1997) that the generating function for the lattice points

in K equals

1
1— zu
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Thus, to derive a formula for arbitrary pointed cones one could decompose them
into simplicial cones, via a triangulation, and then apply the formula above and
the inclusion-exclusion principle in Stanley (1980, Proposition 1.2). Instead, Barvi-
nok’s idea is that it is more efficient to further decompose each simplicial cone into
simplicial unimodular cones. A unimodular cone is a simplicial cone with generators
{uy,...,u;} that form an integral basis for the lattice R{us,...,u;}NZ% Note that



in this case the numerator of the formula has a single monomial, in other words, the
parallelepiped has only one lattice point.

2.1 Simplicial signed decompositions

We now focus our attention on how the cone decomposition is done. To decompose
a cone into simplicial cones the first step is to do a triangulation (¢riangulation of a
cone C'in dimension d is a collection of d-dimensional simplicial cones such that their
union is C, their interiors are disjoint, and any pair of them intersect in a (possibly
empty) common face). There are efficient algorithms, when the dimension is fixed, to
carry a triangulation (see Aurenhammer and Klein (2000); Lee (1997) for details). In
LattE we use the well-known Delaunay triangulation which we compute via a convex
hull calculation. The idea is to “lift” the rays of the cone into a higher dimensional
paraboloid by adding a new coordinate which is the sum of the squares of the other
coordinates, take the lower convex hull of the lifted points, and then “project” back
those simplicial facets. We use Fukuda’s implementation in CDD (Fukuda, 2001) of
this lift-and-project algorithm. This is not the only choice of triangulation, and
definitely not the smallest one. In Section 5 we discuss some situations when the
choice of triangulation in fact gives a better rational function.

In principle, one could at this point list the points of the fundamental parallelepiped,
for example, using a fast Hilbert bases code such as 4ti2 (Hemmecke, 2002) or
NORMALIZ (Bruns and Kock, 2001), and then use formula () for a general simplicial
cone. Theoretically this is bad because the number of lattice points in the paral-
lelepiped is exponentially large already for fixed dimension. In practice, this can
often be done and in some situations is useful. Barvinok instead decomposes each
simplicial cone as a (signed) sum of simplicial unimodular cones. To be more formal,
for a set A C R?, the indicator function [A] : R¢ — R of A is defined as

lifz € A,
0if x & A.

We want to express the indicator function of a simplicial cone as an integer linear
combination of the indicator functions of unimodular simplicial cones. There is a nice
valuation from the algebra of indicator functions of polyhedra to the field of rational
functions (Barvinok and Pommersheim, 1999), and many of its properties can be
used in the calculation. For example, the valuation is zero when the polyhedron
contains a line.

Theorem 3 (Barvinok and Pommersheim, 1999, Theorem 3.1) There is a valuation
f from the algebra of indicator functions of rational polyhedra into the field of mul-
tivariate rational functions such that for any polyhedron P, f([P]) = Y acpazd x*.



Therefore once we have a unimodular cone decomposition, the rational generating
function of the original cone is a signed sum of “simplicial” rational functions. Next
we focus on how to decompose a simplicial cone into unimodular cones.

Let uy, ug, ..., uq be linearly independent integral vectors which generate a simpli-
cial cone K. We denote the index of K by ind(K') which tells how far K is from
being unimodular. That is, ind(K) = | det(uy|us| . . .|ug)| which is the volume of the
parallelepiped spanned by uq,us,...,uq. It is also equal to the number of lattice
points inside the half-open parallelepiped. K is unimodular if and only if the index
of K is 1. Now we discuss how we implemented the following key result of Barvinok:

Theorem 4 (Barvinok and Pommersheim, 1999, Theorem 4.2) Fiz the dimension
d. Then, there exists a polynomial time algorithm with a given rational polyhedral
cone K C R%, which computes unimodular cones K;, i € I = {1,2,...,1}, and
numbers €; € {—1,1} such that

[K] =) e[Ki].

el

Let K be a rational pointed simplicial cone. Consider the closed parallelepiped
I'={oqus + oo + ... + aquq @ |oy] < (ind(K))’é, j=1,2,...,d}.

Note that this parallelepiped I' is centrally symmetric and one can show that the
volume of T is 2¢. Minkowski’s First Theorem (Schrijver, 1986) guarantees that
because I' C R? is a centrally symmetric convex body with volume > 29, there exists
a non-zero lattice point w inside of I'. We will use w to build the decomposition.

We need to find w explicitly. We take essentially the approach suggested by Dyer
and Kannan (1993). We require a subroutine that computes the shortest vector in a
lattice. For fixed dimension this can be done in polynomial time using lattice basis
reduction (this follows trivially from Schrijver (Corollary 6.4b 1986, page 72)). It
is worth observing that when the dimension is not fixed the problem becomes NP-
hard (Ajtai, 1996). We use the basis reduction algorithm of Lenstra, Lenstra, and
Lovéasz (Grotschel et al., 1993; Schrijver, 1986) to find a short vector. Given A, an
integral d x d matrix whose columns generate a lattice, LLL’s algorithm outputs A’,
a new d X d matrix, spanning the same lattice generated by A. The column vectors
of A, ul,u), ..., ul;, are short and nearly orthogonal to each other, and each u} is an
approximation of the shortest vector in the lattice, in terms of Euclidean length. It

is well-known (Schrijver, 1986) that there exists a unique unimodular matrix U such
that AU = A'.

The method proposed in Dyer and Kannan (1993) to find w is the following: Let A =
(u1|ug| .. .|ug), where the u; are the rays of the simplicial cone we wish to decompose.
Compute the reduced basis of A™! using the LLL algorithm. Let A’ be the reduced
basis of A~!. Dyer and Kannan observed that we can find the smallest vector with



respect to the [* norm by searching over all linear integral combinations of the
column vectors of A’ with small coefficients. We call this search the enumeration step.
Let A be the smallest vector in the lattice spanned by A’ with respect to the [°° norm.
We know that there exists a unique unimodular matrix U such that A’ = A~'U.
Minkowski’s theorem for the [* norm implies that for the non-singular matrix A’
there exists a non-zero integral vector z such that A = ||A'z]|, < |det(A4")[Y4,
where ||.|| is the infinity norm of the vector space R?. See statement 23 in page 81
in Schrijver (1986). We can set

Moo < |det(A)[V¢ = |det(AU)|M4 = | det(A ) det(U)|V¢

= | det(A )|V = | det(A)| V4 = |imd(K)| /.

Since A~! and A’ span the same lattice, there exists an integral vector w € R? such
that A\ = A 'w. Then, we have
w= AM.

Note that w is a non-zero integral vector which is a linear integer combination of the
generators u; of the cone K with possibly negative coefficients, and with coefficients
at most [ind(K)|~'/¢. Therefore, we have found a non-zero integral vector w € I'. In
LattE, we try to avoid the enumeration step because it is very costly. Instead, we
choose )\ to be the shortest of the columns in A’. This may not be the smallest vector,
but for practical purposes, it often decreases the |[ind(K)| just like for the shortest
vector. Experimentally we have observed that we rarely use the enumeration step.

In the next step of the algorithm, for ¢ =1,2,...,d, we set
K; = cone{uy,ug, ..., Ui 1, W, Ujt1,...,Ug}-

Now, we have to show that for each ¢, ind(K;) is smaller than ind(K). Let w =
>¢ | oyu;. Then, we have

lIld(KZ) = | det((u1|u2| - ‘Ui_1|’LU|’U,Z'+1‘ Ce |ud))|

= |eil| det((ur|ug| - . |uis|uiluiga] . - |ua))|
d—1

= |oylind(K) < (ind(K))T .

There is one more technical condition that w needs to satisfy. This is that w and
U1, .- -, Ug belong to an open half-space (Barvinok, 1994, Lemma 5.2). This is easy to
achieve as either the w we found or —w satisty this condition. We can now decompose
the original cone K into cones K; fori = 1,2,...,d, of smaller index, [K] = Y +[Kj;].
This sum of indicator functions carries signs which depend on the position of w with



respect to the interior or exterior of K. We iterate this process until K; becomes
a unimodular cone for 7 = 1,2,...,d. For implementing Barvinok’s decomposition
of cones, we use the package NTL by Shoup (2003) to compute the reduced basis of
a cone and to compute with matrices and determinants. All our calculations were
done in exact long integer arithmetic using the routines integrated in NTL. Here is
the pseudo-code of the algorithm and an example.

Algorithm 5 (Barvinok’s Decomposition of a Simplicial Cone)
Input: A simplicial cone K = cone{us, uo, ..., uq} given by its generators.
Output: A list of unimodular cones and numbers €; as in Theorem 4.

Set two queues Uni and NonUni.
if K is unmimodular
then Uni = Uni U{K}.
else NonUni = NonUni U {K}.
while NonUni is not empty do
Take a cone K € NonUni and set A = (uy,us, - .., Uq)
to be a matriz whose columns are the rays of K.
Compute the smallest vector X\ in the lattice,
with respect to 1%, which is spanned by the column vectors of A1,
Find a non-zero integral vector z such that A = A™'z.

if vectors z,uy, us, ..., uq are in an open half plane
then set z := 2.

else set z := —z.

for:=1,2,...,d do
set K; = cone{uy, ... Ui 1,2, Ujr1,---,Uq}
and set Ay = (Uny oy i1, 2, Uity -5 Ug)-

fori=1,2,....d do
if det(A;) and det(A) have the same sign
then assign ek, = ex.
else e, = —ex.
for i1 =1,2,...,d do
if K; is unimodular
then Uni = Uni U{K,}.
else NonUni = NonUni U{K,}.
return all elements in Uni.

It is very important to remark that, in principle, one also needs to keep track of
lower dimensional cones present in the decomposition for the purpose of writing the
inclusion-exclusion formula of the generating function f(K). For example in Figure
2 we have counted a ray twice, and thus it needs to be removed.

But this is actually not necessary thanks to a Brion’s polarization trick (Barvinok
and Pommersheim, 1999, Remark 4.3): Let K* be the dual cone to K. Apply the
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Fig. 2. Contribution of lower dimensional cones

iterative procedure above to K* instead of K, ignoring the lower dimensional cones.
This can be done because once we polarize the result back, the contribution of the
lower dimensional cones is zero with respect to the valuation that assigns to an
indicator function its generating function counting the lattice points (Barvinok and
Pommersheim, 1999, Corollary 2.8). In the current implementation of LattE we do
the following:

) Find the vertices of the polytope and their defining supporting cones.
2) Compute the polar cone to each of the cones.

) Apply the Barvinok decomposition to each of the polars.

) Polarize back the cones to obtain a decomposition, into full-dimensional uni-
modular cones, of the original supporting cones.
(5) Recover the generating function of each cone and, by Brion’s theorem, of the
whole polytope.

Here is an example of how we carry out the decomposition.

Example 6 Let K be a cone generated by (2,7)" and (1,0)". Let

21
A=
70
Then, we have det(A) = —7 and
1
Afl — 0 7
1=

The reduced basis A" of A~! and the unimodular matriz U for the transformation

01
,and U = . By enumerating the column
7

13
vectors, we can verify that (_72, 7)T 1s the smallest vector with respect to [*° in the
lattice generated by the column vectors of A~!. So, we have z = (1,0)T. Then, we
have two cones:

1
from A7t to A" are: A" = 72

= = Nl

20 01
and

71 10



The second cone is unimodular of index —1 which is the same sign as the determinant
01

of A. Thus, Uni = Uni U/{ }, and assign to it € = 1. The first cone has
10

determinant 2. So, we assign € = —1. Since the first cone is not unimodular, we

20
have NonUni = NonUni U{ )} Set
71

20
A=
71
Then, we have det(A) = 2 and
1 11
= 0 = 5 11
A7l = 27 , A= 21 ? and U =
5 1 5 5 34
Since \ = (%, %)T is the smallest vector with respect to [, we have z = (1,3). So,
we get two cones:
21 10
and
73 31
The first matriz has negative determinant which is not the same sign as the deter-
minant of its parent matriz A. Since e4 = —1, we assign to the first cone e =1 and

the second one has positive determinant, so we assign to it € = 1. Since both of them
are unimodular, we take them into Uni and since NonUni is empty, we end while
loop and print all elements in Uni.

This gives a full decomposition:

cone{ , }

1 0 0 1 2
= Scone{ , } & conef , } & conef , }.
3 1 1 0 7 3
O

From the previous example, we notice that the determinant of each cone gets much
smaller in each step. This is not an accident as Theorem 4 guarantees that the
cardinality of the index set I of cones in the decomposition is bounded polynomially
in terms of the determinant of the input matrix. We have looked experimentally
at how many levels of iteration are necessary to carry out the decomposition. We

10
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Fig. 3. Example of Barvinok’s decomposition

Dimension | Height of tree | # of cones | | determinant| | Time (seconds)
2 1.33 2.53 11.53 0
2.87 12.47 55.73 0.005
4 3.87 65.67 274.667 0.153
) 5.87 859.4 3875.87 0.25
6 7.47 10308 19310.4 3.67
7 8.53 91029.4 72986.3 41.61
8 10.67 2482647.533 | 1133094.733 2554.478
Table 1

Averages of 15 random matrices for computational experiences

observed experimentally that it often grows linearly with the dimension. We tested
two kinds of instances. We used random square matrices whose entries are between
0 and 9, thinking of their columns as the generators of a cone centered at the origin.
We tested from 2 x 2 matrices all the way to 8 x 8 matrices, and we tested fifteen
random square matrices for each dimension. We show the results in Table 1. For
computation, we used a 1 GHz Pentium PC machine running Red Hat Linux.

The second set of examples comes from the Birkhoff polytope B, of doubly stochas-
tic matrices (Schrijver, 1986). Each vertex of the polytope is a permutation matrix
which is a 0/1 matrix whose column sums and row sums are all 1 (Schrijver, 1986).
We decompose the cone with vertex at the origin and whose rays are the n! permu-
tation matrices. The results are reported in Table 2.

11



Dimension | # of vertices | # of unimodular cones at a vertex cone | Time (seconds)
B3 =14 6 3 0.05
By=9 24 16 0.15
Bs =16 120 125 0.5
Bg =25 720 1296 7.8

Table 2

The numbers of unimodular cones for the Birkhoff polytopes

2.2 From cones to rational functions and counting

Once we decompose all cones into simplicial unimodular cones, it is easy to find
the generating function attached to the ith cone K;. In the denominator there is a
product of binomials of the form (1 — 2Pi4) where B;; is the jth ray of the cone K.
Thus the denominator is the polynomial [J(1 — 2%4). How about the numerator?
The cone K; is unimodular, thus it must have a single monomial z4¢, corresponding
to the unique lattice point inside the fundamental parallelepiped of K;. Remember
that the vertex of K; is one of the vertices of our input polytope. If that vertex
v has all integer coordinates then A; = v, or else v can be written as a linear
combination 7 A;B;; where all the A; are rational numbers and can be found by
solving a system of equations (remember the B;; form a vector space basis for R%).
The unique lattice point inside the parallelepiped of the cone Kj is simply > [A;]|B;;
(Barvinok and Pommersheim, 1999, Lemma 4.1).

Brion’s theorem says the sum of the rational functions coming from the unimodular
cones at the vertices is a polynomial with one monomial per lattice point inside
the input polytope. One might think that to compute the number of lattice points
inside of a given convex polyhedron, one could directly substitute the value of 1 at
each of the variables. Unfortunately, (1,1,...,1) is a singularity of all the rational
functions. Instead we discuss the method used in LattE to compute this value, which
is different from that presented by Barvinok (Barvinok and Pommersheim, 1999).
The typical generating function of lattice points inside a unimodular cone forms:

2Ai

A=y

where 2z is monomial in d variables, each A; (cone vertex) and B;; (a generator of
cone 1) are integer vectors of length d,¢ ranges over all cones given, j ranges over
the generators of cone i, and FE[i] is 1 or -1. Adding these rational functions and
simplifying would yield the polynomial function of the lattice point of the polytope.
Now this is practically impossible as the number of monomials is too large. But
calculating the number of monomials in this polynomial is equivalent to evaluating
the limit as z; goes to 1 for all 7. We begin by finding an integer vector A and

12



making the substitution z; — #*. This is with the intention of obtaining a univariate
polynomial. To do this, A must be picked such that there is no zero denominator
in any cone expression, i.e. no dot product of A with a B;; can be zero. Barvinok
showed that such a A\ can be picked in polynomial time by choosing points on the
moment curve. Unfortunately, this method yields large values in the entries of \.
Instead we try random vectors with small integer entries, allowing small increments
if necessary, until we find A. Since we are essentially trying to avoid a measure zero
set, this process terminates very quickly in practice.

After substitution, we have expressions of the form +¢":/[](1 — t"%), where N; and
D;; are integers. Notice that this substitution followed by summing these expressions
yields the same polynomial as would result from first summing and then substituting.
This follows from the fact that we can take Laurent series expansions, and the sum
of Laurent series is equal to the Laurent series of the sum of the original expressions.

Also, note that we have the following identity:

# of cones ZAi
2= i) E—
QE;Zd ; H(l - zB”)

After substitution we have the following univariate (Laurent) polynomial such that:

# of cones

T T = Z Eli]——— ( tD”)

aEPNZ4

With the purpose of avoiding large exponents in the numerators, we factor out a
power of £, say t¢. Now we need to evaluate the sum of these expressions at t = 1,
but we cannot evaluate these expressions directly at ¢ = 1 because each has a pole
there. Consider the Laurent expansion of the sum of these expressions about ¢ = 1.
The expansion must evaluate at ¢ = 1 to the finite number > ,cpn7a4 1. It is a Taylor
expansion and its value at t = 1 is simply the constant coefficient. If we expand each
expression about t = 1 individually and add them up, it will yield the same result as
adding the expressions and then expanding (again the sum of Laurent expansions is
the Laurent expansion of the sum of the expressions). Thus, to obtain the constant
coefficient of the sum, we add up the constant coefficients of the expansions about
t = 1 of each summand. Computationally, this is accomplished by substituting
t = s+ 1 and expanding about s = 0 via a polynomial division. Summing up the
constant coefficients with proper accounting for E[i] and proper decimal accuracy
yields the desired result: the number of lattice points in the polytope. Before the
substitution ¢ = s + 1 we rewrite each rational function in the sum (recall ¢ was
factored to keep exponents small);

tNl —c tN{

ZE[Z] Dij) :ZEIMW,

13



involves in such a way that Déj > 0 for all 7, 7. This requires that the powers of ¢ at
each numerator to be modified, and the sign E[i] is also adjusted to E’'[i]. Then the
substitution t = s + 1 yields

14 s)N

> e
IT((1 4 s)7% — 1)

where it is evident that, in each summand, the pole s = 0 has an order equal to the

number of factors in the denominator. This is the same as the number of rays in the
corresponding cone and we denote this number by d.

Thus the summand for cone i can be rewritten as E'[i]s~¢P;(s)/Q;(s) where P;(s) =
(1 + )V and Q;(s) = [T%(1 + s)%% — 1)/s). P,(s)/Qi(s) is a Taylor polynomial
whose s? coefficient is the contribution we are looking for (after accounting for the
sign E'[i] of course). The coefficients of the quotient P;(s)/Q;(s) can be obtained
recursively as follows: Let Q;(s) = bo+bys+bes®+. .. and Py(s) = ag+a;s+as’+. ..
and let Si((?) = ¢y + ¢15 + 28 + . ... Therefore, we want to obtain ¢4 which is the
coefficient of the constant term of P;/Q;. So, how do we obtain ¢, from Q;(s) and
P;(s)? We obtain this by the following recurrence relation:

Qg
o= —,
"= %
1
Cp = b—(ak - blck_l — bgck_g — ... bkco) for k = 1, 2, e
0
In order to obtain ¢4, only the coefficients ag, a1, ..., aq and by, b1, . . ., by are required.

Example 7 (A triangle). Let us consider three points in 2 dimensions such that
Vi =1(0,1), Vo = (1,0), and V5 = (0,0). Then, the convex hull of V1, V,, and V3 is a
triangle in 2 dimensions. We want to compute the number of lattice points by using
the residue theorem. Let K; be the verter cone at V; for i = 1,2,3. Then, we have
the rational functions:

x 1
G-y 5= gy

F0) = gy ) =

We choose a vector \ such that the inner products of A and the generators of K; are
not equal to zero. We choose A = (1, —1) in this ezample. Then, reduce multivariate
to univariate with X\, so that we have:

f(Kl) =



We want to have all the denominators to have positive exponents. We simplify them
in order to eliminate negative exponents in the denominators with simple algebra.
Then, we have:

! t* —t
1-1)(1 —t2)’f(K2) T a-9- t2)’f(K3) DTN

We factor out t' from each rational function, so that we obtain:

f(Kl) =

1 t° —¢?
K,) = Ky) = Ky))= —————.
f( 1) (1—t)(1—t2)’f( 2) (l_t)(l_tQ)af( 3) (1_t)(1_t)
We substitute t = s + 1 and simplify them to the form ngl) :
1 1+ 5s+ 10s? 4+ 10s® + 5s* + 5° —(1+ 25+ s%)
f( 1) 82(2+8),f( 2) 82(2+S) :f( 3) 82

Now we use the recurrence relation to obtain the coefficient of the constant terms.
Then, for f(K1), we have c; = 5. For f(K,), we have c; = 3. For f(K3), we have
co = —1. Thus, if we sum up all these coefficients, we have 3, which is the number
of lattice points in this triangle. O

LattE produces the sum of rational functions which converges to the generating
function of the lattice points of an input polytope. This generating function is a
multivariate polynomial of finite degree. As we saw in Subsection 2.2 it is possible
to count the number of lattice points without expanding the rational functions into
the sum of monomials. Suppose that instead of wanting to know the number of
lattice points we simply wish to decide whether there is one lattice point inside
the polytope or not. The integer feasibility problem is an important and difficult
problem (Aardal et al., 1998; Schrijver, 1986). Obviously, one can simply compute
the residues and then if the number of lattice points is non-zero, clearly, the polytope
has lattice points. But something faster and more elementary can be done if we just
test for the existence of lattice points. We are simply testing whether the polynomial
has any monomials at all, or whether the polynomial is the zero polynomial.

Remember that all the coefficients of the polynomial are positive, and in fact equal
to one. If we find a specific vector a of positive values whose substitution gives us
a nonzero answer, then we are sure the polynomial has monomials. On the other
hand if the answer is zero, the polynomial must be the zero polynomial since there
is no cancellation of monomial values. Hence a single test on a non-zero vector,
that avoids poles, evaluated at the rational functions decides integer feasibility. To
implement this, one has to take care of how to deal with large integers. Another
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alternative is to substitute not just any vector, but a vector whose entries are roots
of unity, thus it reduces the complexity.

Before we end our description of LattE, we must comment on how we deal with
polytopes that are not full-dimensional (e.g. transportation polytopes). Given the
lower-dimensional polytope P = {z € R" : Az = a,Bx < b} with the d x n
matrix A of full row-rank, we will use the equations to transform P into a polytope
Q = {r € R % : Cx < ¢} in fewer variables, whose integer points are in one-to-
one correspondence to the integer points of P. This second polytope will be the
input to the main part of LattE. The main idea of this transformation is to find the
general integer solution z = xy + Z?;ld Aig; to Ax = a and to substitute it into the
inequalities Bx < b, giving a new system Cx < ¢ in n — d variables Ay, ..., A\p_qg-

It is known that the general integer solution Az = @ can be found via the Hermite
normal form H = (R|0) of A (Schrijver, 1986). Here, R is a lower-triangular matrix
and H = AU for some unimodular matrix U. Moreover, as A is supposed to have full
row-rank, R is a non-singular d x d matrix. Let U; be the matrix consist of the first
d columns of U and Us consisting of the remaining n — d columns of U. Now we have
AU; = R and AU, = 0 and the columns of U, give the generators {gi, ..., gn—a} of
the integer null-space of A. Thus, it remains to determine a special integer solution
o to Ax = a.

To do this, first find an integer solution yy to Hy = (R|0)y = a, which is easy due
to the triangular structure of R. With xy = Uy, we get Axg = AUyy = Hyy = a
and have found all pieces of the general integer solution r = zy + Z?;ld Aigi to
{z € Z™ : Ax = a}.

3 Computational experience and performance

LattE provides an interactive web page www.math.ucdavis.edu/"latte where any
user can freely submit a problem to be tested. You can also find there the files of
all the experiments presented in this section. If the reader is interested in a copy
of the code, please write to the first author. At the moment we have been able
to handle polytopes of dimension 30 and several thousands vertices. It is known
that the theoretical upper bound of the number of unimodular cones is 2", where
h = |8 I‘Egl(‘g:i‘%ogD | and where D is the volume of the fundamental parallelepiped
of the input cone (Barvinok, 1994). If we fix the dimension this upper bound becomes
polynomial time. Unfortunately, if we do not fix the dimension, this upper bound
becomes exponential. In practice this might be costly and some families of polytopes
have large numbers of unimodular cones. The cross polytope family, for instance, has
many unimodular cones and behaves badly. For example, for the cross polytope in
6 dimensions, with cross6.ine input file (Fukuda, 2001), LattE took 147.63 seconds
to finish computing. The number of lattice points of this polytope is obviously 13.
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Also, for the cross polytope in 8 dimensions, with cross8.ine input file (Fukuda,
2001), LattE took 85311.3 seconds to finish computing, even though this polytope
has only 16 vertices and the number of lattice points of this polytope is 17. For all
computations, we used a 1 GHz Pentium PC machine running Red Hat Linux.

Here is a short description of how to use LattE. Suppose we want to count the
number of lattice points inside of a polytope P C R? such that P = {r € R?|Az <
b, A€ Z™ be 7™},

LattE admits to the following formats of the input. First, the user can provide CDD
input (ine format, see explanation in the manual presented at (Fukuda, 2001)) or
simply write as:

m d+1

b — A

For example, if we want to count the number of the lattice points inside of the unit
standard cube in 3 dimension, the input format is the following:

6 4

1-1 0 O
1 0-1 O
1 0 0-1
01 0 0
0 0 1 0
0 0 0 1

There are 6 inequalities in 3 variables +1 entry corresponding to the right hand
side (which is 4 entries) in this example. Now suppose we want to solve problems
that are not full-dimensional. We want to count the number of lattice points inside
of a polytope P C R? such that P = {z € R¥A;z = b;, fori = 1,2,...s, Az <
bi, fori =s+1,...,m, A € Z™ and b € Z™}, where A; represents the ith row
vector of A and b; represents the ith element of b.

The input format for LattE when we wish to have equalites is the following:

m d+1
b — A
s 1 2 s
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For example, if we want to count the number of the lattice points inside of the
polytope of the small knapsack problem {x+2y+3z =6, x > 0,y > 0, and z > 0},
the input format must be the following:

4 4
6 —-1-2-3
01 0 0
0 0 1 0
0 0 0 1
1 1

There are 4 inequalities in 3 variables +1 entry (which is 4 entries) in this example.

We now report on computations with convex rational polytopes. We used a 1 GHz
Pentium PC machine running Red Hat Linux. We begin with the class of multiway
contingency tables. A d-table of size (ny,...,ny) is an array of non-negative integers
v = (Vig,iy), 1 < 4; < nj. For 0 < m < d, an m-marginal of v is any of the

d

m
instance, if (v;;x) is a 3-table then its O-marginal is vy 4 = 312 302, 302 vy ik,
its 1-marginals are (v; 1 1) = (372, 202 vijx) and likewise (v j 1), (v4 4.%), and
its 2-marginals are (v; ;1) = (X2, vi k) and likewise (v; 1 k), (V4jk)-

( ) possible m-tables obtained by summing the entries over all but m indices. For

Such tables appear naturally in statistics and operations research under various
names such as multi-way contingency tables, or tabular data. We consider the table
counting problem: given a prescribed collection of marginals, how many d-tables are
there that share these marginals? Table counting has several applications in sta-
tistical analysis, in particular for independence testing, and has been the focus of
much research (see (Diaconis and Gangolli, 1995) and the extensive list of references
therein). Given a specified collection of marginals for d-tables of size (nq,...,ng)
(possibly together with specified lower and upper bounds on some of the table en-
tries) the associated multi-index transportation polytope is the set of all non-negative
real valued arrays satisfying these marginals and entry bounds. The counting prob-
lem can be formulated as that of counting the number of integer points in the
associated multi-index transportation polytope. We begin with a small example of a
three-dimensional table of format 2 x 3 x 3 given below. The data displayed in Table
3 have been extracted from the 1990 decennial census and is used in (Fienberg et
al., 2001). For the 2-marginals implied by these data we get the answer of 441 in
less than a second.
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Gender = Male

Income Level

Race | <$10,000 | > $10000 and < $25000 | > $25000 || Total
White 96 72 161 329
Black 10 7 6 23
Chinese 1 1 2 4
Total 107 80 169 356

Gender = Female
Income Level

Race | <$10,000 | > $10000 and < $25000 | > $25000 || Total
White 186 127 51 364
Black 11 7 3 21
Chinese 0 1 0 1
Total 197 135 54 386

Table 3
Three-way cross-classification of gender, race, and income for a selected U.S. census tract.
Source: 1990 Census Public Use Microdata Files.

We present now an example of a 3 X 3 x 3 table with fairly large 2-marginals. They
are displayed in Table 4. LattE took only 19.67 seconds of CPU time. The number
of lattice points inside of this polytope is

2249847900174017152559270967589010977293.

Next we present an example of a 3 x 3 x 4 table with large 2-marginals. The 2-
marginals are displayed in Table 5. The CPU time for this example was 44 minutes
42.22 seconds. The number of lattice points inside of this polytope is

4091700129572445106288079361219676736812805058988286839062994.

The next family of examples are some hard knapsack-type problems. Suppose we
have a set of positive relatively prime integers {a, as, ..., aq}. Denote by a the vec-
tor (a, ag, . ..,aq). Consider the following problem: does there exist a non-negative
integral vector x satisfying ax = a( for some positive integer ay,? We take several
examples from (Aardal et al., 2002a) which have been found to be extremely hard
to solve by commercial quality branch-and-bound software. This is very surprising
since the number of variables is at most 10. It is not very difficult to see that if the
right-hand-side value qq is large enough, the equation will surely have a non-negative
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164424 | 324745 | 127239
262784 | 601074 | 9369116
149654 | 7618489 | 1736281

163445 49395 403568
1151824 | 767866 | 8313284
1609500 | 6331023 | 1563901

184032 | 123585 | 269245
886393 | 6722333 | 935582
1854344 | 302366 | 9075926

Table 4
2-Marginals for the 3 x 3 x 3 example.

273510 | 273510 | 273510 | 191457
273510 | 273510 | 547020 | 191457
273510 | 547020 | 273510 | 191457

464967 | 273510 | 273510
547020 | 273510 | 464967
410265 | 601722 | 273510

273510 | 273510 | 273510
410265 | 547020 | 136755
547020 | 136755 | 410265
191457 | 191457 | 191457

Table 5
2-Marginals for the 3 x 3 x 4 example.

integer solution. The Frobenius number for a knapsack problem is the largest value
ap such that the knapsack problem is infeasible. Aardal and Lenstra (Aardal et al.,
2002a) solved them using the reformulation in (Aardal et al., 1998). Their method
works significantly better than branch-and-bound using CPLEX 6.5. Here we demon-
strate that our implementation of Barvinok’s algorithm is fairly fast and, on the
order of seconds, we resolved the first 15 problems in Table 1 of (Aardal et al.,
2002a) and verified all are infeasible except prob9, where there is a mistake. The
vector (3480,1,4,4,1,0,0,0,0,0) is a solution to the right-hand-side 13385099. In
fact, using LattE we know that the exact number of solutions is 838908602000. For
comparison we named the problems exactly as in Table 1 of (Aardal et al., 2002a).
We present our results in Table 6. It is very interesting to know the number of lattice
points if we add 1 to the Frobenius number for each problem. In Table 7, we find the
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number of solutions if we add 1 to the Frobenius number on each of the (infeasible)
problems. The speed is practically the same as in the previous case. In fact the speed
is the same regardless of the right-hand-side value ay.

Already counting the lattice points of large width convex polygons is a non-trivial
task if one uses brute-force enumeration (e.g. list one by one the points in a bounding
box of the polygon and see whether it is inside the polygon). Here we experiment
with very large convex almost regular n-gons. Regular n-gons cannot have rational
coordinates, but we can approximate them to any desired accuracy by rational poly-
gons. In the following experiment we take regular n-gons, from n = 5 to n = 12
centered at the origin (these have only a handful of lattice points). We take a trun-
cation of the coordinates up to 3, 9, and 15 decimal digits, then we multiply by a
large enough power of 10 to make those vertex coordinates integral and we count
the number of lattice points in the dilation. All experiments take less than a second.

The next two sets of examples are families that have been studied quite extensively
in the literature and provide us with a test for speed. In the first case we deal with
two-way contingency tables. The polytope defined by a two-way contingency table
is called the transportation polytope. We present the results in Table 9. The second
family consists of flow polytopes for the complete 4-vertex and the complete 5-vertex
tournaments (directed complete graphs). Consider the directed complete graph K;
for I € N and [ > 3. We assign a number to each node of the graph. Then, we
orient the arcs from the node of smaller index to the node of bigger index. Let N
be the node set of the complete graph K, let w; be a weight assigned to node % for
1=1,2,...,1,and let A be the arc set of K;. Then, we have the following constraints,
with as many variables as arcs:

Z Tji — Z Tij = Wy,

(ji)arc entersi (i,j)arc has taili

These equalities and inequalities define a polytope and this polytope is the special
case of a flow polytope. The results for the complete graphs K, and Kj, with different
weight vectors, are shown in Tables 10 and 11 respectively.

These two families of polytopes have been studied by several authors
(Baldoni-Silva et al., 2003; Beck, 2003; De Loera and Sturmfels, 2001; Mount, 2000)
and thus are good for testing the performance of LattE. We used several examples of
transportation polytopes, as presented in the table below. In general, LattE runs at
comparable performance to the software of (Baldoni-Silva et al., 2003; Beck, 2003)
for generic vectors (a, b) but is slower for degenerate inputs (those that do not give
a simple polytope). The reason seems to be that at each non-simplex vertex LattE
needs to triangulate each cone which takes considerable time in problems of high
dimension.
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GG

Frobenius #

Time (m, s)

cuwwl | 12223 12224 36674 61119 85569 89643481 0.55s
cuww2 | 12228 36679 36682 48908 61139 73365 89716838 1.78s
cuww3d | 12137 24269 36405 36407 48545 60683 58925134 1.27s
cuww4 | 13211 13212 39638 52844 66060 79268 92482 104723595 2.042s
cuwwd | 13429 26850 26855 40280 40281 53711 53714 67141 45094583 16.05s
prol | 25067 49300 49717 62124 87608 88025 113673 119169 33367335 47.07s
prob2 | 11948 23330 30635 44197 92754 123389 136951 140745 14215206 1m0.58s
prob3 | 39559 61679 79625 99658 133404 137071 159757 173977 58424799 1m28.3s
prob4 | 48709 55893 62177 65919 86271 87692 102881 109765 60575665 59.04s
probd | 28637 48198 80330 91980 102221 135518 165564 176049 62442884 1m41.78s
prob6 | 20601 40429 40429 45415 53725 61919 64470 69340 78539 95043 22382774 3m45.86s
prob7 | 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 | 27267751 2mb7.64s
prob8 | 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 | 21733990 8m29.78s
probl0 | 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 | 106925261 4m?24.67s

Table 6. Infeasible knapsack problems.




Table 7

problem RHS # of lattice points.
cuwwl | 89643482 1

cuww2 | 89716839 1

cuwwd | 58925135 2

cuww4 | 104723596 1

cuwwd | 45094584 1

probl 33367336 859202692
prob2 14215207 2047107
prob3 58424800 35534465752
pro4 60575666 63192351
prod 62442885 21789552314
pro6 | 22382775 218842
pro7 27267752 4198350819898
pro8 21733991 6743959
prol0 | 106925262 | 102401413506276371

The number of lattice points if we add 1 to the Frobenius number.

10% (seconds)

10° (seconds)

10 (seconds)

Sgon

2371673(0.136

2377641287748905186(0.191

2377641290737895844565559026875(0.289)

6gon

2596011(0.153

2598076216000000011(0.193

2598076211353321000000000000081(0.267)

Tgon

2737110(0.175

2736410188781217941(0.318

2736410188638105174143840143912(0.584s)

8gon

2828427124746200000000000000201(0.761

9gon

2892544245156317460(0.461

2892544243589428566861745742966(0.813

10gon

2931453(0.221

2938926257659276211(0.380

11gon

2974213(0.236

2973524496796366173(0.745

12gon

)
(0.153)
(0.175)
2820021(0.202)
2892811(0.212)
(0.221)
(0.236)
(0.255)

2997201(0.255

(0.191)
(0.193)
(0.318)
2828427120000000081(0.331)
(0.461)
(0-380)
(0.745)
(0.466)

3000000004942878881(0.466

)

(0.813)
2938926261462380264188126524437(0.702)
2973524496005786351949189500315(1.858)
3000000000000005419798779796241(0.696)

Table 8

The numbers of the approximated regular polygons. We show the number of lattice points
in different dilation factors (powers of ten) and time of computation.

4 New Ehrhart (quasi-)polynomials

Given a rational polytope P C R¢, the function

ip(t) == # (tPNZ),
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Ve

Margins # of lattice points | Time (seconds)
220, 215, 93, 64], 1225914276768514 1.048
108, 286, 71, 127]

[109,127,69,109L 993810896945891 1.785
119, 86, 108, 101]

[72,67,47,96L 25387360604030 1.648
[70, 70, 51, 91]

[179909,258827,224919,61909L 13571026063401838164668296635065899923152079 1.954
[190019,90636,276208,16870H

[229623,259723,132135,310952L 646911395459296645200004000804003243371154862 1.765
[279858,170568,297181,184826

[249961,232006,150459,200438L 319720249690111437887229255487847845310463475 1.854
[222515,130701,278288,201360

[140648,296472,130724,309173L 322773560821008856417270275950599107061263625 1.903
[240223,223149,218763,194882

[65205,189726,233525,170004L 6977523720740024241056075121611021139576919 1.541
[137007,87762,274082,159609

[251746,282451,184389,194442L 861316343280649049593236132155039190682027614 1.880
[146933,239421,267665,259009

[138498,166344,187928,186942L 63313191414342827754566531364533378588986467 1.973
[228834,138788,189477,122613

[20812723, 17301709, 21133745, | 665711555567792389878908993624629379187969880179721169068827951 2917
27679151],

[28343568, 18410455, 19751834,

20421471]

[15663004, 19519372, 14722354, 63292704423941655080293971395348848807454253204720526472462015 3.161
22325971],

[17617837, 25267522, 20146447,

9198895]

[13070380, 18156451, 13365203, | 43075357146173570492117291685601604830544643769252831337342557 2.990

20567424),

[12268303, 20733257, 17743591,

14414307

Table 9. Testing for 4 x 4 transportation polytopes.




Weights on nodes # of lattice points | Time (seconds)
-6, -8, 5, 9] 223 0.288
[9, -11, 12, 8] 330 0.286
[-1000, -1, 1000, 1] 3002 0.287
[-4383, 886, 2777, 720] 785528058 0.287
[-4907, -2218, 3812, 3313] 20673947895 0.288
[-2569, -3820, 1108, 5281] 14100406254 0.282
[-3842, -3945, 6744, 1043] 1906669380 0.281
[-47896, -30744, 46242, 32398] 19470466783680 0.282
[-54915, -97874, 64165, 88624] 106036300535520 0.281
[-69295, -62008, 28678, 102625] 179777378508547 0.282
[-3125352, -6257694, 926385, 8456661] | 34441480172695101274 0.509
[-2738090, -6701290, 190120, 9249260] | 28493245103068590026 0.463
[-6860556, -1727289, 934435, 7653410] | 91608082255943644656 0.503
Table 10

Testing for the complete graph Kjy.

Weights on nodes

# of lattice points

secs

[12, -8, 9, 7, 4] 14805 | 0.319
[-125, -50, 75, 33, 67] 6950747024 | 0.325
[-763, -41, 227, 89, 488] 222850218035543 | 0.325
[-11675, -88765, 25610, 64072, 10758] 563408416219655157542748 | 0.319
[-78301, -24083, 22274, 19326, 60784] 1108629405144880240444547243 | 0.336
[-52541, -88985, 1112, 55665, 84749 3997121684242603301444265332 | 0.331
[-71799, -80011, 86060, 39543, 26207] 160949617742851302259767600 | 0.316
[-45617, -46855, 24133, 54922, 13417 15711217216898158096466094 | 0.285
[-54915, -97874, 64165, 86807, 1817] 102815492358112722152328 | 0.277
[-69295, -62008, 28678, 88725, 13900] 65348330279808617817420057 | 0.288
[-8959393, -2901013, 85873, 533630, 11240903] | 6817997013081449330251623043931489475270 | 0.555
[-2738090, -6701290, 190120, 347397, 8901863] | 277145720781272784955528774814729345461 | 0.599
[-6860556, -1727289, 934435, 818368, 6835042] | 710305971948234346520365668331191134724 | 0.478

Table 11
Testing for the complete graph K5. Time is given in seconds

25




for a positive integer ¢, was first studied by E. Ehrhart (Ehrhart, 1977) and has
received a lot of attention in combinatorics. It is known to be a polynomial when all
vertices of P are integral and it is a quasi-polynomial for arbitrary rational polytopes.
It is called the Ehrhart quasi-polynomial in honor of its discoverer (Stanley, 1997,
Chapter 4). A function f : N — C is a quasi-polynomial if there is an integer N > 0
and polynomials fy,..., fxy_1 such that f(s) = fi(s) if s = ¢ mod N. The integer
N is called a quasi-period of f. Therefore, by counting the number of lattice points
for sufficiently many dilations of a rational polytope, we can interpolate its Ehrhart
quasi-polynomial.

Using LattE, Maple, and interpolation, we have calculated the Ehrhart polynomials
and quasi-polynomials for polytopes that are slices or nice truncations of the unit d-
cube. To the best of our knowledge these values were not known before. For example,
the 24-cell polytope centered at the origin with smallest integer coordinates has
Ehrhart polynomial ios_cen(s) = 8s* + % + 8s% + 18 4+ 1. In Table 12, we see
the Ehrhart polynomials for the hypersimplices A(n, k). They are defined as the
slice of the n-cube by the hyperplane of equation > z; = k£ with £ < n. Note
that A(n,k) = A(n,n — k) because of the symmetries of the regular cube. The
hypersimplices form one of the most famous families of 0/1-polytopes. It is known
that hypersimplices are compressed polytopes (Ohsugi and Hibi, 2001). This means
that their Ehrhart polynomials can be recovered from the f-vectors of any of their
reverse lexicographic triangulations. Instead, we recovered them explicitly for the
first time using LattE and interpolation.

We also have the Ehrhart quasi-polynomials of some truncated unit cubes.

Proposition 8 The Ehrhart quasi-polynomial for the truncated unit cube in Figure
4, where its vertices are at 1/3 and 2/3 of the way along edges of the cube, is given
by:

77s® | 23s* | 19 if s =
T 4 28 L 1% 41 if s =0 mod 3,

; - 3 152 239 ;f o —
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Fig. 4. The truncated cube.

26



LC

1187 | 4987 zs:)s dbs
ot Tt + +1

17 15 137
o4 U8 1887 18T 4 g

13s +3s +47s +5 +1015+1

1155 1154 2353 255 375
Lo le | 2 4 2 4 34

W N =N

3554 4953 203s2 495
720+240+144+48+ 90 + +1

1958 63s° 49s* 287s 76352 565
240+80+16+ +120+ +1

15158 161s° 2565 21s3 319952 259s
360+60+36+ +360+ +1

7 6
s 8> 2355 967s3 46952 363s
5040 180 + 360 + + 720 + 180 + 140 +1

%+2gs +5 _|_9 +493 +343s _|_283s+1

397s7 35956 28155 24554 127353 205152 2027s
1680+ 180 + 40 + 18 + 80 + 180 + 420 +1

=l W [N =W N

15157 15158 463s° 161s% 862s° 57452 533s
315+ 45 + 45 + 9 + 45 + 45 +105+1

—_

s8 s? 1355 106954 267s3 2953152 761s
40320 + 1120 + 960 + 1920 + 160 + 10080 + 280 +1

24758 121s7 76358 253s° 142035 166753 8872152 1207s
40320"' 1120 + 960 + 80 + 1920 + 160 + 10080 + 280 +1

47758 1311s7 173158 1107s5 138995 347753 1541952 1473s
4480 + 1120 + 320 + 80 + 640 + 160 + 1120 + 280 +1

O | © | © | O |0 |00 |00 |00 | N || | O |o | o | o

=W N

1561958 3607s” 1131158 199155 63991s* 466953 16633752 15995
40320 + 1120 + 960 + 80 + 1920 + 160 + 10080 + 280 +1

—_
=}

—_

52 s8 2957 3013s° 9554 452353 651552 7129s
362880 + 8064 + 12096 + 192 17280 + 128 + 2268 + 2016 + 2520 +1

—_
=}

251s° 31s8 1765s" 3758 42863s° 48154 11520553 4993s> 5729s
181440+1008+ 6048 + 24 + 8640 + 48 + 9072 + 504 + 1260 +1

—_
e

913s? 113558 5071s” 17958 3128s° 299954 6304153 806952 3553s
22680+ 2016 + 1512 + 16 + 135 + 96 + 2268 + 504 + 630 +1

—_
)

44117s° 248958 665477 683s° 40936155 254354 36394753 1012752 7883s
181440 + 1008 + 6048 + 24 + 8640 + 48 + 9072 + 504 + 1260 +1

—_
=}

15619s? 1561958 9493957 360758 101311s° 11911s* 2539453 2168952 1627s
36288 + 4032 + 6048 + 96 + 1728 + 192 + 567 + 1008 + 252 +1

—_
—

510 1152 1158 12157 751358 859155 341693s* 8409553 17713352 7381s
3628800 + 725760 + 30240 + 24192 + 172800 + 34560 + 362880 + 36288 + 50400 + 2520 +1

—_
—t

1013510 5533s° 2189s8 1479557 44768958 24669755 1459754 54376353 9194952 1199s
3628800+725760+ 24192 + 24192 + 172800 + 34560 + 1134 + 36288 + 8400 + 252 +1

—_
—

299510 16621s° 4159158 8869357 17013758 60410955 304399754 30847353 6092952 15059s
22680 + 72576 + 24192 + 12096 + 8640 + 17280 + 72576 + 9072 + 3360 + 2520 +1

—_
—

56899510 565631s° 20573358 32649157 24006295 134878755 553569554 468655s° 118570152 16973s
453600 + 362880 + 24192 + 12096 + 43200 + 17280 + 72576 + 9072 + 50400 + 2520 +1

—_
[a—

655177510 336083s° 207879158 28763957 752577158 95557s° 3591408754 112557553 443179s> 17897s
1814400 + 90720 + 120960 + 6048 + 86400 + 864 + 362880 + 18144 + 16800 + 2520 +1

—_
[\

11 10 9 8 7 6 5 4 3 2
s s s 11s 10831s 1903s 242537s 139381s 341747s 190553s 83711s
39916800 + 604800 + 20736 + 13440 + 1209600 + 28800 + 725760 + 120960 + 129600 + 50400 + 27720 + 1

—_
DO

509511 169510 551s° 205758 33224957 1899758 8769595 80179s* 24468153 15029352 685915
9979200+100800+22680+ 10080 + 302400 + 4800 + 90720 + 5040 + 14175 + 12600 + 13860 +1

—_
N

W | N | Ot W N O W N

50879s!! 6979510 60271s° 3215358 5483809s” 89725955 11875111s° 18533954 451173s° 33850352 58007s
13305600+ 86400 + 80640 + 8064 + 403200 + 28800 + 241920 + 3456 + 11200 + 16800 + 9240 +1




Proposition 9 The Ehrhart quasi-polynomial for the cuboctahedron (Figure 5) is:
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Fig. 5. The cuboctahedron.

Proposition 10 The Ehrhart quasi-polynomial for the truncated regular simplex,
where the vertices are at 1/3 and 2/3 of the way along the simplex edges (see Figure
6), is given by:

2353+%+%+1¢f350m0d3,

81

. 3 2 .

Ztru_simplem(s) = 2§i + lg; + g—; - g—i’ ’LfS =1 mod 3,
2353 1752 23s 41 r . —
81+27 +y+ﬁzfs_2mod3.

(1,0,1)

(1,1,0
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Fig. 6. The truncated simplex.

5 Other enumeration algorithms and future work

We have demonstrated the practical relevance of Barvinok’s cone decomposition ap-
proach for counting lattice points and deriving formulas. Several other algorithms
are available to carry out the same kind of enumeration. It is important to imple-
ment them all in the same computer system for comparison of performance and to
corroborate that the answers are correct. Some problems are solvable by some meth-
ods but not by others. To close this article we quickly review some of the algorithms
available to date that will appear in the future versions of LattE.
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We have established that the major practical bottleneck of Barvinok’s algorithm is
the fact that a polytope may have too many vertices. Since we visit all vertices to
compute the rational function the result can be costly. For example, in the case of
multiway transportation polytopes, the number of vertices is much larger than the
number of facet-defining inequalities. For example, the well-known polytope of magic
cubes in the 4 X 4 x 4 case has over two million vertices, but only 64 inequalities
describe the polytope. This is the same with other classical challenges such as the
5 x 5 magic square matrices (see (Ahmed et al., 2003) for details on these examples).
In such cases we propose the following simple variation of Barvinok’s algorithm. In
a forthcoming paper (De Loera et al., 2003) we will use it to solve several very large
problems of combinatorial interest. See (De Loera et al., 2003) for details.

Algorithm 11 (Dealing with polytopes with few facets)

(1) Position the d-dimensional polytope P inside R¥! by embedding the polytope
at level xg11 = 1.

(2) Consider the (d + 1)-dimensional cone over P; call this cone K. Compute the
polar K* of this cone. Since the number of facets of P is small compared to its
vertices the number of rays of the cone K* is small.

(8) Apply Barvinok’s decomposition of K* into unimodular cones. Polarize back
each of these cones. It is known, (e.g. Barvinok and Pommersheim, 1999, Corol-
lary 2.8), that by dualizing back we get a unimodular cone decomposition of K.
From it we can retrieve a signed sum of rational functions that has all the lattice
points of K as monomials.

(4) Now the issue is how to extract just the lattice points of P. This can be done by
a suttable monomial substitution that gives a coarser generating function graded
into levels for the cone K. In other words, the polytope P 1is by construction at
level x411 = 1, and thus the monomials associated with the lattice points in P
are of the form z* 237 ..., z3%t. We want to group together all such monomials.
The problem is that the substitution may be a pole of one or more of the rational
functions. We need to know the coefficient of t when the variables z; tend to 1.
This can be done by the Laurent series calculations described before (Barvinok
and Woods, 2003, Theorem 2.6).

We have discovered that there is a strong dependence of the poles of the rational
function on the way we apply the decomposition. Roughly speaking, this depends
on choosing a good initial triangulation of the cone.

Another successful counting algorithm (and one that can be merged into the polar
Barvinok algorithm) is based on Grébner and Hilbert bases. Let A be a m x d integral
matrix. Consider a convex pointed polyhedral cone C' = {z|Az = 0, x > 0}. We wish
to study C N Z% With any rational pointed polyhedral cone C' = {Az = 0,z > 0}
and a field k we associate a semigroup ring, Rc = k[z® : a € C N Z%. A Hilbert
basis of the cone C' is a finite set of vectors in S¢ such that every other element
of S¢ is a non-negative integer combination of these elements. The main theorem
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states that Rc equals k[xq, 2o, ..., zn]/Ic where I¢ is the toric ideal generated by
binomial relationships holding among the N Hilbert basis elements (see (Cox et al.,
1997; Sturmfels, 1996)). It turns out that Rc is a graded k-algebra. A graded k-
algebra has a decomposition Rc = @ R¢(i), where each R¢(i) collects all elements
of degree i and it is a k-vector space (with Rc(0) = k). The function H(R¢,i) =
dimy (R (7)) is the Hilbert function of Rc. The Hilbert-Poincaré series of Re is
Hp,(t) = X220 H(Re, )t

The Hilbert-Poincaré series can be computed from the knowledge of the Grobner
bases of I-. Here is the reason why we want this series:

Lemma 12 Let Rc be the semigroup ring obtained from the minimal Hilbert basis
of a cone C. The number of distinct lattice points of degree s equals the Hilbert
function H(Rg¢, s).

Several “analytic” algorithms have been proposed by many authors (Baldoni-Silva
and Vergne, 2002; Beck, 2003; Lasserre and Zeron , 2002; MacMahon, 1960; Pemantle
and Wilson, 2003). A couple of these methods have been implemented and appear
as the fastest for unimodular polyhedra. None of them has been implemented for
arbitrary rational polytopes. Consider, for example, Beck’s method: Let M; denote
the columns of the matrix M. We can interpret P(M, b)NZ? as the Taylor coefficient
of 2% for the function H?:l(l_iiMj)- One approach to obtain the particular coefficient
is to use the residue theorems. For example, it was seen in (Beck, 2000) that if M;
denotes the i-th column of the defining matrix M, then

4 1 20l el
P(M,p)NZ¢ = — / / m d
(M, 5) (2mi)m (1— M) (1 — 2Ma) 7
|z1]=€1 |2m|=€m
Here 0 < €1,...,€¢, < 1 are different numbers such that we can expand all the

1% into the power series about 0. It is possible to do a partial fraction decom-
—z

position of the integrand into a sum of simple fractions. This was done very success-
fully to carry out very hard computations regarding the Birkhoff polytopes (Beck,
2003). Vergne and collaborators have recently developed a powerful general theory

about the multivariate rational functions H?Zlﬁ (Baldoni-Silva and Vergne,

2002; Szenes and Vergne, 2002). Experimental results show it is a very fast method
for unimodular polytopes (Baldoni-Silva et al., 2003). Pemantle and Wilson (Peman-
tle and Wilson, 2003) have pursued an even more general computational theory of
rational generating functions where the denominators are not necessarily products
of linear forms.

Acknowledgments: We thank A. Barvinok, D. Bertsimas, D. Pasechnik, B. Sturm-
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