Three Kinds of Integer Programming Algorithms
based on Barvinok’s Rational Functions *

J.A. De Loera, D. Haws, R. Hemmecke, P. Huggins, R. Yoshida

November 13, 2003

1 Introduction

This paper presents three algebraic-analytic algorithms for solving integer and
mixed integer programming problems. We report both theoretical and exper-
imental results. We use the generating function techniques of A. Barvinok [3]
and the recent advances by Barvinok and Woods [5].

In 1993 A. Barvinok gave an algorithm that counts lattice points in convex
rational polyhedra in polynomial time when the dimension of the polytope is
fixed (see [3, 4] and the references within). Originally, Barvinok’s counting algo-
rithm relied on H. Lenstra’s polynomial time algorithm for integer programming
in a fixed number of variables [13], but shortly after Barvinok’s breakthrough,
Dyer and Kannan [10] showed that this step can be replaced by a short-vector
computation using the LLL algorithm. Therefore, using binary search, one can
turn Barvinok’s counting oracle into an algorithm that solves integer program-
ming problems with a fixed number of variables in polynomial time (i.e. by
counting the number of lattice points in P that satisfy c- z > «, we can narrow
the range for the maximum value of c- z, then we iteratively look for the largest
a where the count is non-zero). This idea was proposed by Barvinok in [4]. We
call this IP algorithm the BBS algorithm.

More recently, J.B. Lasserre outlined a very easy asymptotic heuristic method
for solving integer programs [12], or at least providing an upper bound on the
optimal value, which is also based on Barvinok’s rational functions (it comes
without complexity guarantees). Unfortunately, Lasserre’s criteria, needed to
find an optimum value, often fail in practice. Within this topic we make three
contributions:

1. In Section 2 we present yet another way to use Barvinok’s rational func-
tions to solve integer programs, the (A, b, c)-test set algorithm. This time

*Research supported by NSF Grant DMS-0309694 and by NSF VIGRE Grant No. DMS-
0135345.

the rational functions encode a test set. A test set for a family of integer
programs is a finite collection of integral vectors with the property that
every feasible non-optimal solution of any integer program in the family
can be improved by adding a vector in the test set. There has been con-
siderable activity in the area of test sets and augmentation methods (e.g.
Graver and Grobner bases, integral basis method, etc.) [2, 15]. Here we
promote a new way of looking at test sets, as explained in [8, 11]: First,
encode the whole test set in a “short” sum of rational functions. Second,
instead of improving one step at a time, many times, the optimum can
be obtained via a single Hadamard product of two rational functions. We
obtain the following complexity results:

Theorem 1 Let A € Z™*%, b€ Z™, c € Z%, and assume that number of
variables d is fized. Given the mized-integer programming problem

maximize c-z subject to z € {z|Az < b,z >0, z; € Zfor i€ JCA{1,...,d}},

(A) We can use rational functions to encode the set of vectors (the (A,b,c)-
test set):

{u — v|u is a c — optimal solution, v feasible solution,u,v € 7},
and then solve the MIP problem in time polynomial in the size of the input.

(B) More strongly, the (A,b,c) test set can be replaced by smaller test
sets, such as Graver bases or reduced Grobner bases.

2. We improve Lasserre’s heuristic and give a third deterministic IP algo-
rithm based on Barvinok’s rational function algorithms, the digging algo-
rithm. In this case the algorithm can have an exponential number of steps
even for fixed dimension, but performs well in practice. See Section 3 for
details.

3. We implemented the BBS algorithm and the digging algorithm in the
second release of the computer software LattE (see [7, 8, 9]). We solved
several challenging knapsack problems and compared the performance of
LattE with the mixed-integer programming solver CPLEX version 6.6.
See Section 4 for details.

2 The (A,b,c) Test Set Algorithm

In all our discussions below, the input data are an m x d integral matrix A and
an integral m-vector b. For simplicity we assume it describes a polytope P =
{z € RY|Az < b,z > 0}. Our point of view is that lattice points will be encoded
as the exponent vectors of monomials. For example, (2,—11) is represented by
2225 1 The set of all lattice points in a polyhedron P will be represented by
the multivariate generating function f(P;z) = > cpnza 21" 23> - - - 23* with one

monomial in the sum per lattice point inside P. The crucial fact from Barvinok’s
theory is that the exponentially large sum f(P;z) can be written as a short sum
of rational functions of the form

T I) e — (1)
il 11— 2m)

i=1

where T is a finite indexing set, and where E; € {1,—1} and u;,v;; € Z% for
all ¢ and j. More recently Barvinok and Woods (2003) further showed how to
carry out Boolean operations with sets of lattice points when they are encoded
as rational functions:

Lemma 2 (Theorem 3.6 in [5]) Let Sy, So be finite subsets of Z¢, for d fized.
Let f(S1;2) and f(Sa;x) be their generating functions, given as short rational
functions with at most k binomials in each denominator. Then there exists a
polynomial time algorithm, which, given f(S;,), computes

b
(I—gvir)...(1—av)

f(Si1NSyz) = > -

iel

with s < 2k, where the y; are rational numbers and u;,v;; are nonzero integral
vectors.

We will use this Intersection Lemma to extract special monomials present
in the expansion of a generating function. The essential step in the intersection
algorithm is the use of the Hadamard product [5, Definition 3.2] and a special
monomial substitution. The Hadamard product is a bilinear operation on ra-
tional functions (we denote it by *). The computation is carried out for pairs
of summands as in [5]. Note that the Hadamard product m; * ma of two mono-
mials my, ms is zero unless m; = mg. Another key subroutine introduced by
Barvinok and Woods is the following Projection Theorem.

Lemma 3 (Theorem 1.7 in [5]) Assume the dimension d is a fized constant.
Consider a rational polytope P C R¢ and a linear map T : 7Z¢ — ZF. There
is a polynomial time algorithm which computes a short representation of the
generating function f(T(PNZ%);z).

To extract an explicit optimal solution we need the following lemma.

Lemma 4 (Lemma 7 in [8]) Assume the dimension d is fized. Let S C Z%
be finite. Suppose the polynomial f(S;z) = Zﬁe s 2P is represented as a short
rational function and let ¢ be a cost vector. We can extract the (unique) lez-
icographic largest leading monomial of f(S;z) with respect to ¢, in polynomial
time.

Proof of Theorem 1: For lack of space, we only show the proof of part (A). For
the details of part (B) see [8]. We first explain how to solve integer programs
(all variables are integral). This part of the proof is essentially the proof of
Lemma 3.1 given in [11] for the case Az = b, = > 0, instead of Az < b, but we
emphasize the fact that b is fixed here. We will see how the techniques can be
extended to mixed integer programs later.

Using Barvinok’s algorithm in [4], compute the following generating function
in 2d variables:

flz,y) = Z{x“y” : Au<b, Av<b, u,v>0,andc-u—c-v>1}.

This is possible because we are clearly dealing with the lattice points of a ra-
tional polyhedron. The monomial expansion of f(z,y) has a clear order on the
variables: x"y" where c-u > ¢-v. Hence v is not an optimal solution. In fact,
optimal solutions will never appear as exponents in the y variables.

Let now g(y) be the projection of f(z,y) onto the y-variables variables. Thus
g(y) is encoding all non-optimal feasible integral vectors (because the exponent
vectors of the z’s are better feasible solutions, by construction), and it can be
computed from f(z,y) in polynomial time by Lemma 3. Let f(z,y) and g(z)
be as above and compute the Hadamard product

d 1 d 1
H(.’E,y) = f(x,y)*l<nl_$i_g($)) <H1_yi)‘|‘

This is the sum over all monomials x"y” where u is an optimal solution. The
reader should note that the vectors u — v form a test set (an enormous one),
since they can be used to improve from any feasible non-optimal solution v.
This set is what we called the (A4, b, c)-test set. It should be noted that one may
replace H(z,y) by a similar encoding of other test sets, like the Graver test set
or a Grébner basis (see [8] for details).

We now use H(z,y) as one would use a traditional test set for finding an
optimal solution: Find a feasible solution a inside the polyhedron P = {z|Az <
b, > 0} using Lemma 4 and Barvinok’s Equation (1) for the polyhedron
P. Improve or augment to an optimal solution by computing the Hadamard

product
< 1
H @ .
(z,y) * <y I1; _-'Ei>

i=1

The result is the set of monomials of the form z"y® where u is an optimal
solution. One monomial of the set, say the lexicographic largest, can be obtained
by applying Lemma 4. This concludes the proof of the case when all variables
are integral.

Now we look at the mixed integer programming case, where only z; with
i€ J CA{1,...,d} arerequired to be integral. Without loss of generality, we may
assume that J = {r,...,d} for some 7, 1 <7 < d. Thus, splitting A into (B|C),

we may write the polyhedron P as {(z,z')|Bz + Cz’ <b, z,2’ > 0} where the
variables corresponding to B are not demanded to be integral. Consider a vertex
optimal solution Z to the mixed integer problem. The first key observation is
that its fractional part can be written as Z; = B~!(b — C%') where b — CZ’'
is an integer vector. Here B! denotes the inverse of a submatrix of B. This
follows from the theory of linear programming, when we solve the mixed integer
program for fixed z' = Z'.

The denominators appearing are then contributed by B~1. Then every ap-
pearing denominator is a factor of M, the least common multiple of all determi-
nants of a square submatrix of A. It is clear M can be computed in polynomial
time in the size of the input. This complexity bound holds, since the number
of such square submatrices is bounded by a polynomial in m, the number of
rows of A, of degree d, the number of columns of A. Moreover, each of these
determinants can be computed in time polynomial in the size of the input, and
therefore, M itself can be computed in time polynomial in the size of the input
in fixed dimension d. Thanks to this information, we know that if we dilate the
original polyhedron P by M, the optimal solutions of the mixed integer program
become, in the dilation M P, optimal integral solutions of the problem

maximize c-x subject to € MP, x € Vi

with the additional condition that the coordinates with index in J are multi-
ples of M. Ignoring this condition involving multiples of M for a moment, we
see that, as we did before, we can obtain an encoding of all optimal improve-
ments as a generating function H(z,y). To extract those vectors whose coor-
dinates indexed by J are multiples of M, we only need to intersect (Hadamard
product again) our generating function H(z,y) with the generating function

1—2z; 3
igr) \ieg %

by J are multiples of M remain. This completes the proof of the theorem. [

(H L (H 1_1 +) Then only those vectors whose coordinates indexed

3 The Digging Algorithm

In what follows we present a strengthening of Lasserre’s heuristic and discuss
how to use Barvinok’s short rational functions to solve integer programs using
digging. We consider the integer programming problem maximize{c - z|Az <
bx > 0,z € 7}, where ¢ € Z¢ is arbitrary, and A € Z™*, b € Z™ are
fixed. We assume that the input system of inequalities Az < b,z > 0 defines
a bounded polytope P C R?, such that P N Z? is nonempty. As before, all
integer points are encoded as a short rational function f(P;z) in Equation (1)
for P, where the rational function is given in Barvinok’s form. Remember that
if we were to expand Equation (1) into monomials (generally a very bad ideal!)
we would get f(P;2) =), pnza 2%, where 2% denotes 21 22%% ... z4%¢. For a
given ¢ € Z¢, we make the substitution z; = t%, Equation (1) yields a univariate
rational function in ¢:

teui

E—. 2
V= L) @

The key observation is that if we make that substitution directly into the
monomial expansion of f(P;z), we have that z* — ¢t**. Moreover we would
obtain the relation

f(P;t) = Z t°® = kt™ 4 (lower degree terms), (3)
aePNZ?

where M is the optimal value of our integer program and where k£ counts the
number of optimal integer solutions. Unfortunately, in practice, M and the
number of lattice points in P may be huge and we need to avoid the monomial
expansion step altogether. All computations have to be done by manipulating
short rational functions.

Lasserre [12] suggested the following approach: For i € I, define sets n; by
ni = {j € {1,...,d}c-vi; > 0} , and define vectors w; by w; = u; — 3 ;. vij-
Let n; denote the cardinality of 7;. Now define M = max{c - w;|i € }, 'S =
{i € Ilc-w; = M} and set 0 =) ;g E;(—1)". Note that M simply denotes
the highest exponent of ¢ appearing in the expansions of the rational functions
defined for each 7 € I in (2). The number o is in fact the sum of the coefficients
of t in these expressions, that is, o is the coefficient of t™ in f(P;t). Now
with these definitions and notation we can state the following result proved by
Lasserre [12].

Theorem 5 (Theorem 3.1 in [12]) Ifc-v;; #0 foralli e 1,j €{1,...,d},
and if o # 0, then M is the optimal value 7 of the integer program maximize{c-
z|Az < b,z > 0,z € Z}.

When the hypotheses of Theorem 5 are met, from an easy inspection, we
could recover the optimal value of an integer program. If we assume that c
is random, the first condition is not difficult to obtain. Unfortunately, our
computational experiments (see Section 4) indicate that the condition o # 0 is
satisfied only occasionally. Thus an improvement on the approach that Lasserre
proposed is needed to make the heuristic terminate in all instances. Here we
explain the details of an algorithm that digs for the coefficient of the next
highest appearing exponent of {. For simplicity our explanation assumes the
easy-to-achieve condition c - v;; # 0.

As before, take Equation (1) computed via Barvinok’s algorithm. Now, for
the given ¢ € Z%, we make the substitutions z; = yxt°*, for k = 1,...,d. Then
substitution into (1) yields, for the right-hand side of Equation (1), a sum of
multivariate rational functions in the vector variable y and scalar variable ¢:

u1 e

g(Psy,t)=>_ E X i (4)

— yvid gevij
i€l it J)

On the other hand, the substitution on the left-side of Equation (1) gives a
sum of monomials, also shown grouped in terms of ¢.

9(P5y,) =Dyt = D aany®t™. (5)

a€P a€ZneZ

Both equations, (5) and (4), represent the same function g(P;y,t), so the
corresponding coefficients of the Laurent series expansion of both expressions
must be equal. What Barvinok’s algorithm provides us is the right-hand side of
Equation (4) and we need to manipulate it to obtain the coefficient of highest
degree in ¢ from Equation (5) (because P is a polytope, there will be a highest
degree monomial, from which we recover the optimal value). The process is the
following. Apply the identity

1 _y—vij t—C-’Uij
1 _ y’U,‘th-’U,'j - 1 _ y—’l)ijt—c-’vij

(6)

to Equation (4), so that any v;; such that c¢-v;; > 0 can be changed in “sign”
to be sure that, for all v;; in (4), ¢-v;; < 0 is satisfied (we may have to change
some of the E;, u; and v;; using our identity, but we abuse notation and still
refer to the new signs as E; and the new numerator vectors as u; and the new
denominator vectors as v;;). Then, for each of the rational functions in the sum
of Equation (4) compute a Laurent expansion of the form

d
Byytates [T +yrotevs 4 (yroeeva)® 4. (7)
j=1

Add terms of the same degree in t from the different resultant series. We
obtain the coefficients a,,, appearing in the terms of the series (5). Thus, we
have an algorithm to solve integer programs:

Algorithm: (Digging Algorithm):
Input: A,b,c.

Output: optimal value and optimal solution of maximize{c - z|Az < b,z >
0,z € Z4}.

1. Use the identity (6) as necessary to enforce that all v;; in (4) satisfy
c-v;5 <O0.

2. Via the expansion formulas (7), find (5) by calculating the terms’ coeffi-
cients. Proceed in decreasing order with respect to the degree of t. This
can be done because, for each series appearing in the expansion formulas
(7), the terms of the series are given in decreasing order with respect to
the degree of ¢.

3. Continue calculating the terms of the expansion (5), in decreasing order
with respect to the degree of ¢, until a degree n of t is found such that for
some a € Z?4, the coefficient of y*¢" is non-zero in the expansion (5).

4. Return “n” as the optimal value of the integer program and return « as
an optimal solution.

We close this section mentioning that we can recover not only the optimal
value, but also an explicit optimal solution. There is also a variation of the
digging algorithm where instead of using Barvinok’s rational function for the
whole polytope, one uses the Barvinok rational function of the tangent cone at
a chosen vertex (typically the vertex is LP relaxation optimal solution). This
provides in practice speed ups in some of the cases (this is not reported here).

4 Computational Experiments

In this section we report our experience solving hard knapsack problems from [1,

6]. See Table 1 for the data used here. Their form is maximize c-z subject to az =
bz > 0,z € Z%, where b € Z and where a € Z? with ged(aq,...,aq) =

1. For the cost vector ¢, we choose the first d components of the vector

(213, -1928, —11111, —2345,9123, —12834, —123, 122331, 0, 0). We compared the
digging algorithm and the BBS algorithm, both implemented in LattE (avail-

able at www.math.ucdavis.edu/~1latte), with CPLEX version 6.6. The compu-

tations were done on a 1 GHz Pentium PC running Red Hat Linux. Table 2

provides the optimal values and an optimal solution for each problem. As it

turns out, there is exactly one optimal solution for each problem.

Problem a b
cuwwl 12223 12224 36674 61119 85569 89643482
cuww?2 12228 36679 36682 48908 61139 73365 89716839
cuww3 12137 24269 36405 36407 48545 60683 58925135
cuww4 13211 13212 39638 52844 66060 79268 92482 104723596
cuwwb 13429 26850 26855 40280 40281 53711 53714 67141 45094584
probl 25067 49300 49717 62124 87608 88025 113673 119169 33367336
prob2 11948 23330 30635 44197 92754 123389 136951 140745 14215207
prob3 39559 61679 79625 99658 133404 137071 159757 173977 58424800
prob4 48709 55893 62177 65919 86271 87692 102881 109765 60575666
prob5 28637 48198 80330 91980 102221 135518 165564 176049 62442885
probé 20601 40429 40429 45415 53725 61919 64470 69340 78539 95043 22382775
prob7 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267752
prob8 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733991
prob9 3719 20289 29067 60517 64354 65633 76969 102024 106036 119930 13385100
probl0 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 |106925262

Table 1: knapsack problems.

With one exception, CPLEX 6.6. could not solve the given problems. Note
that whenever the digging algorithm found the optimal value, it did so much
faster than the BBS algorithm. This is interesting, as the worst-case complex-
ity for the digging algorithm is exponential even for fixed dimension, while BBS
has polynomial complexity in fixed dimension. The digging algorithm fails to
find a solution for problems prob2, prob3, and prob5. What happens is that

Problem Value | Solution Digging BBS |CPLEX 6.6
cuwwl 1562142 |[7334 0 0 0 0] 0.4 sec. 414 sec. > 1.5h
cuww?2 -4713321 |[324450000 > 3.5h | 6,600 sec. > 0.75h
cuww3 1034115 |[485500000 1.4 sec. | 6,126 sec. > 0.75h
cuwwd [-29355262 [[0 0 2642 0 0 0 0] > 1.5h |38,511 sec. > 0.75h
cuwwb -3246082 |[11678 100000 > 1.5h > 80h > 0.75h
probl 9257735 [[966 500100 74 51.4 sec. > 3h > 1h
prob2 3471390 (8563204000 27 24.8 sec. > 10h > 0.75h
prob3 21291722 [[708 020001 173 48.2 sec. > 12h > 1.5h
prob4 6765166 |[1113070000 54 34.2 sec. > 5h > 1.5h
prob5 12903963 |[154012 00 0 0 103] 34.5 sec. > 5h > 1.5h
prob6 2645069 ([10121010102000 143.2 sec. > 4h > 2h
prob7 22915859 [[78210100018600 142.3 sec. > 4h > 1h
prob8 3546296 [[1385011003500] 469.9 sec. > 3.5h > 2.5h
prob9 15507976 |([311111000 127 0 0] |1,408.2 sec. > 11h 4.7 sec.
probl0 47946931 [[07050110040300 250.6 sec. > 11h > 1h

Table 2: Optimal values, optimal solutions, and running times for each problem.

the expansion step becomes costly when more coefficients have to be computed.
In these three examples, we computed coefficients for more than 2,500,000,
400,000, and 100,000 powers of ¢; all turning out to be 0. The Digging algo-
rithm is slower than CPLEX in problem prob9 because during the execution of
Barvinok’s unimodular cone decomposition (see pages 15 and 16 of [4]) more
than 160,000 cones are generated, leading to an enormous rational function for
f(P;t). Moreover, for prob9 more than 3,500 coefficients turned out to be 0,
before a non-zero leading coefficient was detected. Finally, in problems cuwwl,
cuww3, prob2, prob3, prob4, prob6, and prob8, no digging was necessary at all,
that is, Lasserre’s condition did not fail here. For all other problems, Lasserre’s
condition did fail and digging steps were necessary to find the first non-vanishing
coefficient in the expansion of f(P;t).

References

[1] Aardal, K., Lenstra, A.K., and Lenstra, H-W. Jr. Hard equality constrained
integer knapsacks, preliminary version in W.J. Cook and A.S. Schulz (eds.),
Integer Programming and Combinatorial Optimization: 9th International
IPCO Conference, Lecture Notes in Computer Science vol. 2337, Springer-
Verlag, 2002, pp 350-366.

[2] Aardal, K., Weismantel, R., and Wolsey, L. Non-Standard Approaches to
Integer Programming Discrete Applied Mathematics 123, 2002, 5-74

3]

[10]

[11]

[12]

[13]

[14]

[15]

Barvinok, A.I. Polynomial time algorithm for counting integral points in
polyhedra when the dimension is fired, Math of Operations Research 19
(1994) 769-779.

Barvinok, A.I. and Pommersheim, J. An algorithmic theory of lattice points
in polyhedra, in: New Perspectives in Algebraic Combinatorics (Berkeley,
CA, 1996-1997), 91-147, Math. Sci. Res. Inst. Publ. 38, Cambridge Univ.
Press, Cambridge, 1999.

Barvinok, A.I. and Woods, K. Short rational generating functions for lattice
point problems, available at arXiv.math.C0.0211146. J. Amer. Math. Soc.
16 (2003), 957-979.

Cornuéjols, G., Urbaniak, R., Weismantel, R., and Wolsey, L.A. Decom-
position of integer programs and of generating sets. R. E. Burkard, G. J.
Woeginger, eds., Algorithms-ESA 97. Lecture Notes in Computer Science
1284, Springer-Verlag, 92-103, 1997.

De Loera, J.A, Hemmecke, R., Tauzer, J., and Yoshida, R. Effective lat-
tice point counting in rational convex polytopes. To appear in Journal of
Symbolic Computation.

De Loera, J.A, Haws, D., Hemmecke, R., Huggins, P., Sturmfels, B., and
Yoshida, R. Short rational functions for toric algebra and applications,
available at math arXiv math.CO/0307350, 2003.

De Loera, J.A., Haws, D., Hemmecke, R., Huggins, P., Tauzer, J., Yoshida,
R. A User’s Guide for LattE v1.1, 2003, software package LattE is available
at http://www.math.ucdavis.edu/~latte/

Dyer, M. and Kannan, R. On Barvinok’s algorithm for counting lattice
points in fired dimension, Math of Operations Research 22 (1997) 545—
549.

Hosten, S. and Sturmfels, B. Computing the integer programming gap, avail-
able at math arXiv math.0C/0301266, 2003.

Lasserre, J.B. Integer programming, Barvinok’s counting algorithm and Go-
mory relaxations, to appear in Operations Research Letters.

Lenstra, HW. Integer Programming with a fired number of variables Math-
ematics of Operations Research, 8, 1983, 538-548.

Schrijver, A. Theory of Linear and Integer Programming. Wiley-
Interscience, 1986.

Thomas, R. Algebraic methods in integer programming, Encyclopedia of
Optimization (eds: C. Floudas and P. Pardalos), Kluwer Academic Pub-
lishers, Dordrecht, 2001.

10

