Ruriko Yoshida

Short Rational Functions for
Toric Algebra and Applications

Ruriko Yoshida
Dept. of Mathematics Duke University

Joint work with De Loera, Haws, Hemmecke, Huggins and Sturmfels

www.math.duke.edu/ "ruriko

September 8th, 2004

Symbolic Computation



Ruriko Yoshida

Getting started...
HOW MANY WAYS are there?

? ? ? ? ? | 338106

? ? 7?0 0? ? | 574203

? 2 2 2 2 | 6/7/8876

2 2 2 2 2 | 121300¢

Symbolic Computation



Ruriko Yoshida

Let P = {x € R Ax = b, x > 0}, where A € Z™*% and b € Z™.

Problem: Find the multivariate generating function

a Q1,92 *d
where z% = 2z, 25° ... 2,

This is an infinite formal power series if P is not bounded, but if P is a
polytope it is a polynomial.
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Why we care

We can apply f(P, z) to the followings:

(A) Counting Problem,

(C

)

(B) Integer Programming,
) Integer Feasibility Problem,
)

(D) Computing the reduced Grobner basis of a given integral matrix A.
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Example for f(P,z2)

Let V4 = (0,0), Vo = (5,0), V3 = (4,2), and Vi = (0, 2).

<
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Each vertex is represented by the following monomials:

For V1 = (0,0), 21 =2929 =1
For V5 = (5,0), 22 = 2728 = 27.
For V3 = (4,2), 2"3 = 2122

For V; = (0,2), 2¥4 = 2922 = 22.

In this manner, we have f(P, z) as the following:

f(P,z) = 212+ 21420 + 21t + 210202 + 20213 F 213+ 218290 + 20212 + 210 +
212222 + 2129 + 21 + 21222 + 222 + 29 + 1.

If we send z; — 1 and 2z — 1, then we have f(P,(1,1)) = the number of
lattice points in P.
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However...

The multivariate generating function f(P,z) has exponentially many
monomials even though we fixed the dimension.

Question: How can we encode f(P,z) in polynomial size if we fix the
dimension??

Answer: We can encode f(P, z) as a short sum of rational functions.
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Theorem: [Barvinok (1993)]

Assume that we fix the dimension d and suppose we have a rational convex
polyhedron P = {u € R? : A-u=bandu >0}, where A € Z™*% and
b € Z™. Then there exists a polynomial time algorithm to compute f(P, z)
in the form of:

Uj

x
P — +
f(P:2) ; (1 —xLi)(1 — x2i) ... (1 — xCm—di)
where u;, c1 4, ... Cm—qa € 7% for all i € 1.
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From the previous example

<

f(P,z) = 210+ 1tz ot 12202 F 20zt F 23 F 20202 F 2022+ 22+
212222 + zZ129 + 21 + Z1222 + 2’22 + Zo + 1

5 2 5
p— 1 —|_ =2 _|_ Zl + 1 Zl
(1—2z1)(1—=22) (1—2171)(1—22) (1—z1)(1—zy ' (1—2z, 2)(1—2;"
214222 Zilz%

A2 D21 (12 21—z 1)
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Answer of puzzle

? ? ? ? ? | 338106

? ? 7?0 0? ? | 574203

? 2 2 2 2 | 6/8876

o | 2| o 121300¢€

2 7
4

2O
2
0

2 | 2
b %,
77 7]_

7
55 3 4

2

316052820930116909459822049052149787748004963058022997262397.
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Computing Grobner bases
VIa

Barvinok's Rational Functions
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Some Definitions

Definition Let < be a total order on Zi. We call < a term order if it
satisfies the following:

e Foranya, 3,0€Z%, a<3—a+6<3+6.

e For any a € Z4\{0}, 0 < «.

Definition Fix a subset A = {ai,a2,...,a4} of Z™. Each vector a;
is identified with a monomial in the Laurent polynomial ring K|+t] :=
K[t t2,...,t4t71,+72 ... ,t79]. Consider the homomorphism induced by
the monomial map

7 Klx]| —» K[£t], z; — t*.
Then the kernel of the homomorphism 7 is called the toric ideal I 4 of A.
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Example
1 1 1
Let A = ( 0 1 2 )
Then the toric ideal of A is:

Iy={2%: 2 € ker(A)NZ"*},

1

where ker(A) ={zeR>: 2=\ -2 |, A eR}.

1
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What is a Grobner basis??

Let K be any field and let K[x| = K|x1,x2,...,24] be the polynomial ring
in d indeterminates. Given a term order <, let in<(f) f € Klx] be an
intial monomial of f. If I is an ideal in K|z], then its initial ideal is the

monomial ideal

A finite subset G C I is called a Grobner basis for I with respect to < if
in<(I) is generated by {in~(g) : g € G}.

A Grobner basis is called reduced if for any two distinct elements g, g € G,
no terms of g is divisible by in4(g).
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Example

1 1 1 1
Let A = ( 01 2 3 )
The reduced Grobner basis accosiated to the matrix A is:

G e {x91’ xg27xg3}’

where g1 = (—1,2,—1,0), go = (1,—1,—1,1), and g5 = (0,—1,2, —1).
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Let G :={g1,92,--.,9k} be a Grobner basis for an ideal I C K|z] and let
f € Klzx]. Then there exists a unique r € K|z] such that:

e No term of r is divisible by any of leading term of g;, forallt =1,2,... k.

e Thereis g € I suchthat f=g+r.

r is the remainder on division of f by G and The remainder r for f € K|z]
is called the normal form of f.
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Want. We want to compute the reduced Grobner basis associated to the
matrix A efficiently.

Problem. There are exponencially many elements in the reduced Grobner
basis even though we fix the dimension.

Solution. Use a short sum of rational functions!
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Theorem [De Loera, Haws, Hemmecke, Huggins, Sturmfels, Y]

Let A e Z™%e b eczZ™ W € Z%%% where d and m are fixed.

Suppose the term order <y, is given. Then there is a polynomial time
algorithm to compute the multivariate generating function G(z) for the
reduced Grobner basis of the toric ideal associated to A with the term order
<w as a short sum of rational functions.
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Why we care?

There are many useful applications.

e Integer Programming

e Counting the number of tables via the Grobner basis (different from the
method | have shown)

e Estimating the number of tables.
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Integer Programming

Suppose A € Z™*4 ¢ e Z% and b € Z™. We assume that the rank of A
is n. Given a polyhedron P = {z € R%: Az = b, x > 0}, we want to solve
the following problem:

(IP) minimize ¢ - = subject to = € P, = € Z
These problems are called integer programming problems and we know that

this problem is NP-hard by Karp. However, Lenstra showed that if we fixed
the dimension, we can solve (IP) in polynomial time.
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IP via Grobner bases

Algorithm [Sturmfels]

Input: A cost vector ¢ € Z%, a matrix A € Z™*9, a vector b € Z™ and a
feasible solution vg € P NZ%, where P := {x € R%: Az = b, x > 0}.

Output: An optimal solution and the optimal value of minimize c-x subject
tox € PNZY

Step 1: Compute the Grobner basis with the term order <..

Step 2: Compute the normal form x* of £¥° and return u and cu, which
are an optimal solution and the optimal value, respectively.
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Main Theorem

Let A € Z™*9. Assuming that m, d are fixed, there is a polynomial time
algorithm to compute a short rational function G(z) which represents the
reduced Grobner basis of the toric ideal 14 w.r.t. any given term order <.
Given G and any monomial z¢, the following tasks can be performed in
polynomial time:

1. Decide whether 2% is in normal form with respect to G(z).
2. Compute the normal form of % modulo the Grobner basis G(z).

3. Let b € Z™ and ¢ € Z%. Given a polyhedron P = {z|Az = b, x > 0},
compute the integer programming problem:

minimize cx subject tox € P, xz; € Z for i € [d].
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Projection Theorem

Theorem [Barvinok and Woods|

Assume the dimension d is a fixed constant. Consider a rational polytope
P Cc R? and a linear map T : Z¢ — Z*. There is a polynomial time
algorithm which computes the generating function f(T(P N Zd),z) as a
short sum of rational functions.
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Example
V, M
v,
i
2 5
o 1 z1 1 “1
I(P:2) = oy Y oo e T =) T a0 s
4 2 4 2
Z1 29 172

(1-22"D(1-21)  (1—z71202)(1—27Y)
Let T be a projection from T : R? — R such that T'(z,y) = =.

Then we have:
5

f(T(PmZ2),z):ﬁ+ﬁ:1+zl+zf+z§+zf+z{’.
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Theorem [Barvinok and Woods|

Let S; and S, be finite subsets of Z¢. Suppose that f(S1,2) and f(Ss, 2)
are given as short rational functions. If we fix the dimension then there
exists a polynomial time algorithm to compute f(.S1 N Sy, 2).

Corollary [Barvinok and Woods]

Suppose that f(S1,2) and f(S2, z) are given as short rational functions. If
we fix the dimension then there exist polynomial time algorithms to compute

f(Sl U 527’2) and f(51\527z)
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Definition: Let g; and g5 be Laurent power series in z € C% such that
91(2) = > eza@az® and ga(2) = >, cpabaz® Then the Hadamard
product g = g1 * g2 Is the power series such that:

g(z) = Z Ao bo 2.

a€eZd

Using the Hadamard product, we can obtain f(S1 N S2, 2) with the given
f(S1,2) and f(Ss,2), where S and S, are finite subsets of Z<.
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Example
let S ={zeR: -1 <zx<1}NZand So={reR:0<z<2}NZ.

—1 _ =2 .

f(Sl,Z) — 1-2) T (1—z-1) — (1—z-1) -+ (1—z-1) = g11 T+ G912,

2 1 212

f(82.2) = + ooy = ey T sy 9 o

f(S1,2) % f(S2,2) = g11 * 921 + g12 * g22 + G12 * go1 + g11 * goo

_ —2 1 — 272

==ty Tty Ty

L 14+ 2z = f(Sl M S2,Z).

=1 T1—
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Software for Lattice point Enumeration
Source codes are available and you can download from our website:
http://www.math.ucdavis.edu/ " latte.

If you want to try your examples, please send your example to

latte@math.ucdavis.edu.
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Question??
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Thanks you...
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