Fundamental holes and saturation points of

a commutative semigroup and their applications to contingency tables

Ruriko Yoshida
Dept. of Mathematics Duke University
Joint work with A. Takemura
www.math.duke.edu/~ruriko

Problem

$A \in \mathbb{Z}^{d \times n}$ and $b \in \mathbb{Z}^{d}$.
Problem. Decide whether there exists an integral solution in the system

$$
A x=b, x \geq 0 .
$$

This problem is called an integral feasibility problem.
Note. This question arises in many areas, such as optimization, number theory, and statistics.

Observation

Assume the lattice L generated by the columns of A is \mathbb{Z}^{d}. Let cone (A) be the cone generated by the columns of A and $P_{b}=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq\right.$ $0\}$.

$$
P_{b} \neq \emptyset \Leftrightarrow b \in \operatorname{cone}(A) .
$$

Let Q be the semigroup generated by the columns \boldsymbol{a}_{i} of A, i.e. $Q=\{x \in$ $\left.\mathbb{R}^{d}: \sum_{i=1}^{n} \alpha_{i} \boldsymbol{a}_{i}, \alpha_{i} \in \mathbb{Z}_{+}\right\} \subset \operatorname{cone}(A) \cap \mathbb{Z}^{d}$.

$$
\begin{gathered}
P_{b} \cap \mathbb{Z}^{n} \neq \emptyset \Leftrightarrow b \in Q . \\
\left(P_{b} \neq \emptyset\right) \bigwedge\left(P_{b} \cap \mathbb{Z}^{n}=\emptyset\right) \Leftrightarrow b \in\left(\operatorname{cone}(A) \cap \mathbb{Z}^{d}-Q\right) .
\end{gathered}
$$

We study on the set of holes of $Q, H:=\operatorname{cone}(A) \cap \mathbb{Z}^{d}-Q$.

Motivation:

- (Algebra): Almost all focus in the algebraic literature on this topic is on the normal case (i.e. there are no holes).
- (Statistics): This is significant for statistics because many affine semigroups with statistical connections are not normal.

Note: Q is normal iff the Hilbert basis of cone (A) is in Q.
Problem: Find the necessary and sufficient conditions for H 's finiteness.

Notation and definitions

Def. The semigroup $Q_{\text {sat }}=\operatorname{cone}(A) \cap L$ is called the saturation of Q.

$$
\begin{aligned}
Q & =A \mathbb{Z}_{+}^{n}=\left\{\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{n} \boldsymbol{a}_{n}: \lambda_{1}, \cdots, \lambda_{n} \in \mathbb{Z}_{+}\right\} \\
K & =A \mathbb{R}_{+}^{n}=\left\{\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{n} \boldsymbol{a}_{n}: \lambda_{1}, \cdots, \lambda_{n} \in \mathbb{R}_{+}\right\} \\
L & =A \mathbb{Z}^{n}=\left\{\lambda_{1} \boldsymbol{a}_{1}+\cdots+\lambda_{n} \boldsymbol{a}_{n}: \lambda_{1}, \cdots, \lambda_{n} \in \mathbb{Z}\right\} \\
Q_{\text {sat }} & =K \cap L=\text { saturation of } A \supset Q \\
H & =Q_{\text {sat }} \backslash Q=\text { holes in } Q_{\text {sat }} \\
S & =\left\{\boldsymbol{a} \in Q: \boldsymbol{a}+Q_{\text {sat }} \subset Q\right\}=\text { saturation points of } Q \\
\bar{S} & =Q \backslash S=\text { non-saturation points of } Q
\end{aligned}
$$

Under the assumption above K and Q are pointed and S is non-empty by Problem 7.15 of [Miller and Sturmfels, 2004].

Minimal saturation points

We now consider minimal points of S with respect to S, Q and $Q_{\text {sat }}$. We call $\boldsymbol{a} \in S$ an S-minimal (a Q-minimal, a $Q_{\text {sat }}$-minimal, resp.) if there exists no other $\boldsymbol{b} \in S, \boldsymbol{b} \neq \boldsymbol{a}$, such that $\boldsymbol{a}-\boldsymbol{b} \in S\left(Q, Q_{\text {sat }}\right.$, resp.). More formally $\boldsymbol{a} \in S$ is
a) an S-minimal saturation point if $(\boldsymbol{a}+(-(S \cup\{0\}))) \cap S=\{\boldsymbol{a}\}$,
b) a Q-minimal saturation point if $(\boldsymbol{a}+(-Q)) \cap S=\{\boldsymbol{a}\}$,
c) a $Q_{\text {sat }}$-minimal saturation point if $\left(\boldsymbol{a}+\left(-Q_{\text {sat }}\right)\right) \cap S=\{\boldsymbol{a}\}$.

Let $\min (S ; S)$ denote the set of S-minimal saturation points, $\min (S ; Q)$ the set of Q-minimal saturation points, and $\min \left(S ; Q_{\text {sat }}\right)$ the set of $Q_{\text {sat }}{ }^{-}$ minimal saturation points.

Note. $\min \left(S ; Q_{\text {sat }}\right) \subset \min (S ; Q) \subset \min (S ; S)$.

Fundamental holes

Def. We call $\boldsymbol{a} \in H \subset Q_{\text {sat }}, \boldsymbol{a} \neq 0$, a fundamental hole if

$$
Q_{\mathrm{sat}} \cap(\boldsymbol{a}+(-Q))=\{\boldsymbol{a}\}
$$

Let H_{0} be the set of fundamental holes.
Ex. $A=\left(\begin{array}{ll}3 & 5\end{array}\right) . \quad Q_{\text {sat }}=\{0,1, \ldots\}, Q=\{0,3,5,6,7, \ldots\},-Q=$ $\{0,-3,-5,-6,-7, \ldots\} . H=\{1,2,4\}$. Among the 3 holes, 1 and 2 are fundamental. For example, $2 \in H$ is fundamental because

$$
\{0,1, \ldots\} \cap\{2,-1,-3,-4,-5, \ldots\}=\{2\} .
$$

On the other hand $4 \in H$ is not fundamental because

$$
\{0,1, \ldots\} \cap\{4,1,-1,-2,-3, \ldots\}=\{4,1\} .
$$

Fundamental holes

Lemma. [Takemura and Y., 2006]
H_{0} is finite.
Let $H_{0}=\left\{\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{M}\right\}$. For each $\boldsymbol{y}_{h} \in H_{0}$ and each \boldsymbol{a}_{i}, if there exists some $\lambda \in \mathbb{Z}$ such that $\boldsymbol{y}_{h}+\lambda \boldsymbol{a}_{i} \in Q$, let

$$
\bar{\lambda}_{h i}=\min \left\{\lambda \in \mathbb{Z} \mid \boldsymbol{y}_{h}+\lambda \boldsymbol{a}_{i} \in Q\right\}
$$

Otherwise define $\bar{\lambda}_{h i}=\infty$.
Thm. [Takemura and Y., 2006]
H is finite if and only if $\bar{\lambda}_{h i}<\infty$ for all $h=1, \ldots, M$ and all $i=1, \ldots, n$.

Thm. [Takemura and Y., 2006]
Let $B=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{L}\right\}$ denote the Hilbert basis of $Q_{\text {sat }}$. If $\boldsymbol{b}_{l}+\lambda \boldsymbol{a}_{i} \in Q$ for some $\lambda \in \mathbb{Z}$, let

$$
\bar{\mu}_{l i}=\min \left\{\lambda \in \mathbb{Z} \mid \boldsymbol{b}_{l}+\lambda \boldsymbol{a}_{i} \in Q\right\}
$$

and $\bar{\mu}_{l i}=\infty$ otherwise.
Then H is finite if and only if $\bar{\mu}_{l i}<\infty$ for all $l=1, \ldots, L$ and all $i=1, \ldots, n$.

Remark. For each $1 \leq i \leq n$, let $\tilde{Q}_{(i)}=\left\{\sum_{j \neq i} \lambda_{j} \boldsymbol{a}_{j} \mid \lambda_{j} \in \mathbb{Z}_{+}, j \neq i\right\}$ be the semigroup spanned by $\boldsymbol{a}_{j}, j \neq i$. For each extreme \boldsymbol{a}_{i} and for each $\boldsymbol{b}_{l} \notin Q$, we only have to check

$$
\boldsymbol{b}_{l} \in\left(-\mathbb{Z}_{+} \boldsymbol{a}_{i}\right)+\tilde{Q}_{(i)} .
$$

Ruriko Yoshida

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 4
\end{array}\right)
$$

Example

$$
B=\left\{\boldsymbol{b}_{1}=(1,0)^{t}, \boldsymbol{b}_{2}=(1,1)^{t}, \boldsymbol{b}_{3}=(1,2)^{t}, \boldsymbol{b}_{4}=(1,3)^{t}, \boldsymbol{b}_{5}=(1,4)^{t}\right\}
$$

Then we can write \boldsymbol{b}_{3} as the following:

$$
\begin{aligned}
(1,2)^{t} & =-(1,0)^{t}+2 \cdot(1,1)^{t} \\
& =(1,0)^{t}-(1,1)^{t}+(1,3)^{t} \\
& =(1,1)^{t}-(1,3)^{t}+(1,4)^{t} \\
& =2 \cdot(1,3)^{t}-(1,4)^{t}
\end{aligned}
$$

We have $\bar{\mu}_{3 i}=1$ for each $i=1, \ldots, 4$ and $\bar{\mu}_{l i}=0$, where $l \neq 3$ for each $i=1, \ldots, 4$. Thus by Theorem above, the number of elements in H is finite. Note that H consists of only one elements $\left\{\boldsymbol{b}_{3}=(1,2)^{t}\right\}$.

Ruriko Yoshida
Thm. [Takemura and Y., 2006]
The following statements are equivalent.

1. $\min (S ; S)$ is finite.
2. cone (S) is a rational polyhedral cone.
3. There is some $s \in S$ on every extreme ray of K.
4. H is finite.
5. \bar{S} is finite.

Prop. [Takemura and Y., 2006]
$\min (S ; Q)$ is finite.

Ruriko Yoshida

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 4
\end{array}\right) .
$$

Example

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 4
\end{array}\right) . \\
& H=\left\{(1,2)^{t}\right\} . \\
& \bar{S}=\left\{(0,0)^{t},(1,0)^{t},(1,1)^{t}\right\} . \\
& \min (S ; S)=\left\{(1,3)^{t},(1,4)^{t},(2,0)^{t},(2,1)^{t},(2,2)^{t},(2,3)^{t},(2,4)^{t},\right. \\
& \left.(2,5)^{t},(3,0)^{t},(3,1)^{t},(3,2)^{t}\right\} .
\end{aligned}
$$

Thus, H, \bar{S}, and $\min (S ; S)$ are all finite.

Ruriko Yoshida

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 4
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 4
\end{array}\right)
$$

H consists of elements $\{(k, 1): k \in \mathbb{Z}, k \geq 1\}$.
$\bar{S}=\left\{(i, 0)^{t}: i \in \mathbb{Z}, i \geq 0\right\}$,
$\min (S ; S)=\left\{(k, j)^{t}: k \in \mathbb{Z}, k \geq 1,2 \leq j \leq 3\right\} \cup\{(1,4)\}$.
Thus, H, \bar{S}, and $\min (S ; S)$ are all infinite. However, $\min (S ; Q)=$ $\left\{(1,2)^{t},(1,3)^{t},(1,4)^{t}\right\}$ is finite.

Applications to contingency tables

$2 \times 2 \times 2 \times 2$ tables with 2 -marginals.
The semigroup has 16 generators $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{16}$ in \mathbb{Z}^{24}.
The Hilbert basis of the cone generated by these 16 vectors contains 17 vectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{17}$. The first 16 vectors are the same as \boldsymbol{a}_{i}, i.e. $\boldsymbol{b}_{i}=\boldsymbol{a}_{i}$, $i=1, \ldots, 16$. The 17 -th vector \boldsymbol{b}_{17} is

$$
\boldsymbol{b}_{17}=\left(\begin{array}{lll}
1 & 1
\end{array}\right)^{t}
$$

consisting of all 1's.

Thus, $\boldsymbol{b}_{17} \notin Q$. Then we set the 16 systems of linear equations such that:

$$
\begin{gathered}
P_{j}: \quad \boldsymbol{b}_{1} x_{1}+\boldsymbol{b}_{2} x_{2}+\cdots+\boldsymbol{b}_{16} x_{16}=\boldsymbol{b}_{17} \\
x_{j} \in \mathbb{Z}_{-}, x_{i} \in \mathbb{Z}_{+}, \quad \text { for } i \neq j,
\end{gathered}
$$

for $j=1,2, \cdots, 16$.
Using LattE, we showed that the 16 systems of linear equations have integral solutions.

Thus by theorems above, H, \bar{S}, and $\min (S ; S)$ are finite.
$2 \times 2 \times 2 \times 2$ tables with 2 -marginals and 3-marginal i.e. [12][13][14][123] and with levels of 2 on each node.

The semigroup is generated by 16 vectors in \mathbb{Z}^{12}.
The Hilbert basis consists of these 16 vectors and two additional vectors

$$
\boldsymbol{b}_{17}=\left(\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right)^{t}, \quad \boldsymbol{b}_{18}=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}\right)^{t}
$$

Thus, $\boldsymbol{b}_{17}, \boldsymbol{b}_{18} \notin Q$.

Then we set the system of linear equations such that:

$$
\begin{array}{r}
\boldsymbol{b}_{1} x_{1}+\boldsymbol{b}_{2} x_{2}+\cdots+\boldsymbol{b}_{16} x_{16}=\boldsymbol{b}_{17} \\
x_{1} \in \mathbb{Z}_{-}, x_{i} \in \mathbb{Z}_{+}, \text {for } i=2, \cdots, 16 .
\end{array}
$$

We solved the system via lrs, CDD and LattE.
We noticed that this system has no real solution (infeasible).
Thus by theorems above, H, \bar{S}, and $\min (S ; S)$ are infinite.

3 dimensional tables

Consider the following table.

This table is a hole.

Prop. [Takemura and Y., 2006]
$3 \times 4 \times 7$ table with 2-marginals has infinite number of holes.
Sketch of pf.

					sum
	c	0	0	0	c
	0	0	0	0	0
	0	0	0	0	0
sum	c	0	0	0	c

Table 1: the 7 -th 3×4 slice is uniquely determined by its row and its column sums. c is an arbitrary positive integer. Thus for each choice of positive integer the beginning $3 \times 4 \times 6$ part remains to be a hole. Since the positive integer is arbitrary, $3 \times 4 \times 7$ table has infinite number of holes.

Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem 6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality (i.e. Q is saturated) or non-normality (i.e. Q is not saturated) of Q is not known only for the following three cases:

$$
5 \times 5 \times 3, \quad 5 \times 4 \times 3, \quad 4 \times 4 \times 3
$$

We want to decide whether semigroups of these tables above are normal or not.

Also we want to decide whether $3 \times 4 \times 6$ table with 2 -marginals have a finite number of holes.

Thank you....

http://arxiv.org/abs/math.ST/0603108

