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Challenge

We would like to assemble the fungi tree of life.

Francois Lutzoni and Rytas Vilgalys Department of Biology, Duke University

1500+ fungal species

http://ocid.nacse.org/research/aftol/about.php
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Many problems to be solved....

http://tolweb.org/tree?group=fungi

Zygomycota is not monophyletic. The position of some lineages such as
that of Glomales and of Engodonales-Mortierellales is unclear, but they may
lie outside Zygomycota as independent lineages basal to the Ascomycota-
Basidiomycota lineage (Bruns et al., 1993).
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Phylogeny

Phylogenetic trees describe the evolutionary relations among groups of
organisms.
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Constructing trees from sequence data

“Ten years ago most biologists would have agreed that all organisms evolved
from a single ancestral cell that lived 3.5 billion or more years ago. More
recent results, however, indicate that this family tree of life is far more
complicated than was believed and may not have had a single root at all.”
(W. Ford Doolittle, (June 2000) Scientific American).

Since the proliferation of Darwinian evolutionary biology, many scientists
have sought a coherent explanation from the evolution of life and have tried
to reconstruct phylogenetic trees.
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Methods to reconstruct a phylogenetic tree from DNA sequences include:

• The maximum likelihood estimation (MLE) methods: They describe
evolution in terms of a discrete-state continuous-time Markov process.
The substitution rate matrix can be estimated using the expectation
maximization (EM) algorithm. (for eg. Dempster, Laird, and Rubin
(1977), Felsenstein (1981)).

• Distance based methods: It computes pair-wise distances, which can
be obtained easily, and combinatorially reconstructs a tree. The most
popular method is the neighbor-joining (NJ) method. (for eg. Saito
and Nei (1987), Studier and Keppler (1988)).
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However

The MLE methods: An exhaustive search for the ML phylogenetic tree is
computationally prohibitive for large data sets.

The NJ method: The NJ phylogenetic tree for large data sets loses so
much sequence information.

Goal:

• Want an algorithm for phylogenetic tree reconstruction by combining the
MLE method and the NJ method.

• Want to apply methods to very large datasets.

Note: An algebraic view of these discrete stat problems might help solve
this problem.
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The generalized neighbor-joining mathod

The GNJ method: in 2005, Levy, Y., and Pachter introduced the
generalized neighbor-joining (GNJ) method, which reconstructs a
phylogenetic tree based on comparisons of subtrees rather than pairwise
distances

• The GNJ method is a method combined with the MLE method and the
NJ method.

• The GNJ method uses more sequence information: the resulting tree
should be more accurate than the NJ method.

• The computational time: polynomial in terms of the number of DNA
sequences.

Oxford 8



Ruriko Yoshida

The GNJ method
MJOIN is available at http://bio.math.berkeley.edu/mjoin/.
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Distance Matrix

A distance matrix for a tree T is a matrix D whose entry Dij stands for
the mutation distance between i and j.
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Distance Matrix

1 2 3 4 5 6
1 0 6 8 9 12 11
2 6 0 6 7 10 9
3 8 6 0 3 6 5
4 9 7 3 0 5 4
5 12 10 6 5 0 5
6 11 9 5 4 5 0

Table 1: Distance matrix D for the example.
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Definitions
Def. A distance matrix D is a metric iff D satisfies:

• Symmetric: Dij = Dji and Dii = 0.

• Triangle Inequality: Dik + Djk ≥ Dij.

Def. D is an additive metric iff there exists a tree T s.t.

• Every edge has a positive weight and every leaf is labeled by a distinct
species in the given set.

• For every pair of i, j, Dij = the sum of the edge weights along the path
from i to j.

Also we call such T an additive tree.
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Neighbor Joining method

Def. We call a pair of two distinct leaves {i, j} a cherry if there is exactly
one intermediate node on the unique path between i and j.

Thm. [Saitou-Nei, 1987 and Studier-Keppler, 1988]

Let A ∈ R
n×n such that Aij = D(ij) − (ri + rj)/(n − 2), where ri :=

∑n

k=1 D(ik). {i∗, j∗} is a cherry in T if Ai∗j∗ is a minimum for all i and j.

Neighbor Joining Method:

Input. A tree matric D. Output. An additive tree T .
Idea. Initialize a star-like tree. Then find a cherry {i, j} and compute
branch length from the interior node x to i and from x to j. Repeat this
process recursively until we find all cherries.
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Neighbor Joining Method
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The GNJ method

• Extended the Neighbor Joining method with the total branch length of
m-leaf subtrees.

• Increasing 2 ≤ m ≤ n − 2, since there are more data, a reconstructed
tree from GNJ method gets closer to the true tree than the Saito-Nei NJ
method.

• The time complexity of GNJ method is O(nm).

Note: If m = 2, then GNJ method is the Neighbor Joining method with
pairwise distances.
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Notation and definitions

Notation. Let [n] denote the set {1, 2, ..., n} and
(

[n]
m

)

denote the set of
all m-element subsets of [n].

Def. A m-dissimilarity map is a function D :
(

[n]
m

)

→ R≥0.

In the context of phylogenetic trees, the map D(i1, i2, ..., im) measures the
weight of a subtree that spans the leaves i1, i2, ..., im.

Denote D(i1i2 . . . im) := D(i1, i2, ..., im).
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Weights of Subtrees in T

i

j

k

l
x1

x2

D(ijkl) is the total branch length of the subtree in green. Also D(x1x2)
is the total branch length of the subtree in pink and it is also a pairwise
distance between x1 and x2.
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Thm. [Levy, Y., Pachter, 2005] Let Dm be an m-dissimilarity map on n

leaves of a tree T , Dm :
(

[n]
m

)

→ R≥0 corresponding m-subtree weights,
and define

S(ij) :=
∑

X∈([n]\{i,j}
m−2 )

Dm(ijX).

Then S(ij) is a tree metric.

Furthermore, if T ′ is based on this tree metric S(ij) then T ′ and T have
the same tree topology and there is an invertible linear map between their
edge weights.

Note. This means that if we reconstruct T ′, then we can reconstruct T .
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Neighbor Joining with Subtree Weights

Input: n DNA sequences and an integer 2 ≤ m ≤ n − 2.

Output: A phylogenetic tree T with n leaves.

1. Compute all m-subtree weights via the ML method.

2. Compute S(ij) for each pair of leaves i and j.

3. Apply Neighbor Joining method with a tree metric S(ij) and obtain
additive tree T ′.

4. Using a one-to-one linear transformation, obtain a weight of each internal
edge of T and a weight of each leaf edge of T .
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Complexity

Lemma. [Levy, Pachter, Y.] If m ≥ 3, the time complexity of this algorithm
is O(nm), where n is the number of leaves of T and if m = 2, then the
time complexity of this algorithm is O(n3).

Sketch of Proof: If m ≥ 3, the computation of S(ij) is O(nm) (both
steps are trivially parallelizable). The subsequent neighbor-joining is O(n3)
and edge weight reconstruction is O(n2). If m = 2, then the subsequent
neighbor-joining is O(n3) which is greater than computing S(ij). So, the
time complexity is O(n3).

Note: The running time complexity of the algorithm is O(n3) for both
m = 2 and m = 3.
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Cherry Picking Theorem
Thm. [Levy, Pachter, Y.] Let T be a tree with n leaves and no nodes
of degree 2 and let m be an integer satisfying 2 ≤ m ≤ n − 2. Let
D :

(

[n]
m

)

→ R≥0 be the m-dissimilarity map corresponding to the weights
of the subtrees of size m in T . If QD(a∗b∗) is a minimal element of the
matrix

QD(ab) =

(

n − 2

m − 1

)

∑

X∈([n−i−j]
m−2 )

D(ijX)−
∑

X∈([n−i]
m−1)

D(iX)−
∑

X∈([n−j]
m−1)

D(jX)

then {a∗, b∗} is a cherry in the tree T .

Note. The theorem by Saitou-Nei and Studier-Keppler is a corollary from
Cherry Picking Theorem.

Oxford 21



Ruriko Yoshida

Simulation Results
With the Juke Cantor model.
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Consider two tree models...

Modeled from Strimmer and von Haeseler.

a

a

a

a

a/2

a/2

b

b

b

b

b

b

b

b
a

a

a

a

a/2

a/2

b

b

b

b

b

b

a

a

T1 T2

Oxford 23



Ruriko Yoshida

We generate 500 replications with the Jukes-Cantor model via a software
evolver from PAML package.

The number represents a percentage which we got the same tree topology.

l a/b m=2 m=3 m=4 fastDNAml
500 0.01/0.07 68.2 76.8 80.4 74.8

0.02/0.19 54.2 61.2 73.6 55.6
0.03/0.42 10.4 12.6 23.8 12.6

1000 0.01/0.07 94.2 96 97.4 96.6
0.02/0.19 87.6 88.6 96.2 88
0.03/0.42 33.4 35 52.4 33.6

Table 2: Success Rates for the model T1.
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l a/b m=2 m=3 m=4 fastDNAml
500 0.01/0.07 84.4 86 85.6 88.4

0.02/0.19 68.2 72 73.2 88.4
0.03/0.42 18.2 29.2 36.2 87.4

1000 0.01/0.07 95.6 97.8 97.4 99.4
0.02/0.19 88.4 89.6 93.4 99.8
0.03/0.42 40 48.2 57.6 96.6

Table 3: Success Rates for the model T2.
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Applications of GNJ method
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The EMGNJ algorithm

The GNJ method: in 2005, Levy, Y., and Pachter introduced the
generalized neighbor-joining (GNJ) method, which reconstructs a
phylogenetic tree based on comparisons of subtrees rather than pairwise
distances

The EMGNJ algorithm (the Algebraic Biology, 2005): iterates between
the EM algorithm for estimating substitution rates and the generalized NJ
method for phylogenetic tree reconstruction.
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Simulation Results

We implemented subroutines of the EMGNJ algorithm with m = 4 under
the JC model.
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S-locus receptor kinase (SRK)

In pollen, Plant self-incompatibility (SI) specificity is determined by the
S-locus cysteine-rich protein gene (SCR), which encodes small secreted
hydrophilic and positively charged proteins of 50 to 59 amino acids.

Both SRK and SCR are members of large families of genes that are expressed
in a variety of plant tissues.

Maturation of the flower in self-incompatible crucifers is accompanied by
the insertion of SRK into the plasma membrane of stigma epidermal cells
and of SCR into the pollen coat.

“Recognition and rejection of self in plant reproduction” by JB Nasrallah
Science, 296, (2002) p 305 – 308.
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Figure 1: Nasrallah (2002), Nature
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Find the phylogenetic tree for 21 different species’ S-locus receptor
kinase (SRK) sequences involved in the self/nonself discriminating self-
incompatibility system of the mustard family (Sainudiin et al, 2005).

Symmetric difference (∆) between 10, 000 trees sampled from the likelihood
function via MCMC and the trees reconstructed by 5 methods.

DNAml(A) is a basic search with no global rearrangements, whereas
DNAml(B) applies a broader search with global rearrangements and
randomize input order of sequences 100 times.
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A = sub-routine of the EMGNJ method, B = Saitou-Nei NJ method, C =
fastDNAml, D = DNAml(A), F = DNAml(B), and G = TrExML.

∆ A B C D F G
0 0 0 0 2 3608 0
2 77 0 0 1 471 0
4 3616 171 6 3619 5614 0
6 680 5687 5 463 294 5
8 5615 4134 3987 5636 13 71

10 12 8 5720 269 0 3634
12 0 0 272 10 0 652
14 0 0 10 0 0 5631
16 0 0 0 0 0 7

The result tree via the EMGNJ method is much better than the Saito-Nei
NJ metho dTrExML and fastDNAml.
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Stochastic NJ Importance Sampling method

The Moore-rejection samplers are a class of rejection samplers that can
be applied to target a density over a compact domain with a well-defined
interval extension. Interval arithmetics are binary operations over intervals
instead of using real numbers.

Using the Moore-rejection samplers via interval methods we can sample
trees via the GNJ method. We call this method, the Bayesian interval
generalized neighbor-joining method (BIGNJ).
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The outline of this method is the following.

1. Take samples for each subtrees with size m via the samplers.

2. Consider the set of samples as an estimation of a probability distribution
for each subtree.

3. Instead of taking a total branch length of each subtree, take the
estimation of a probability distribution for each subtree weight.

4. Run the GNJ method with the set of estimations of probability
distributions.
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Thank you....
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