Ruriko Yoshida

A generalization of the integer

linear infeasibility problem

Ruriko Yoshida
Dept. of Statistics University of Kentucky

Joint work with A. Takemura

www.math.duke.edu/ "ruriko

Magdeburg



Ruriko Yoshida

Puzzle

Is there a table satisfying these given margins?
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Each cell has nonnegative integral value.
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Answer
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There does not exist such a table, although the marginals are consistent.
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Suppose we have a given set of margins for contingency tables.
Want: decide whether there exists a table satisfying the given margins.

This is called the multi-dimensional integer planar transportation
problem.

In terms of Optimization, we can rewrite this problem as an integral
feasibility problem, that is:

Decide whether there exists an integral solution in the system
Ax =0b, x >0,

where A € Z9%™ and b € Z°.
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Generalized infeasibility problem

Suppose we have a matrix A.

Problem: Want to find all integral vectors b such that the system {Ax =
b, x > 0} has a real solution but it does not have an integral solution.

Motivation: Once we solve this problem, then we can solve an integer
linear feasibility problem in a constant time if we vary the right-hand-side b.

Applications:

1. Statistics: Multi-dimensional integer planar transportation problem.

2. Number Theory: Frobeius Problem.
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Observation

Assume the lattice L generated by the columns of A is Z?. Let cone(A) be
the cone generated by the columns of A and P, ={x €¢ R": Ax = b,z >

0}.

P, # () & b € cone(A).

Let () be the semigroup generated by the columns a; of A4, i.e. Q@ = {x €
RY: S aya, a; € Zy} C cone(A) NZY

PNZ"#£0<beq.

(Pb#(l))/\(PbﬂZ”:@)@bE (cone(A)NZ* - Q).
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We study on the set of holes of ), H := cone(A) NZ% — Q.

Note: Barvinok and Woods showed that: Suppose we fix d and n.

1. We can decide where () is normal in polynomial time using short rational
functions.

2. We can compute all holes of () in polynomial time using short rational
functions.

However: Their method cannot be implemented at this moment.

Problem: Find the necessary and sufficient conditions for H's
finiteness.
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Notation and definitions

Def. The semigroup Qs.t = cone(A) N L is called the saturation of Q).
S={{a e Q:a+ Qs C Q} = saturation points of @,
S = @\ S = non-saturation points of Q.

Under the assumption above K and () are pointed and S is non-empty by
Problem 7.15 of [Miller and Sturmfels, 2004].

We call @ € S an S-minimal (a @-minimal resp.) if there exists no other
be S, b+#a,suchthata—be S (Q resp.).

min(S;.S) = S-minimal saturation points of Q)
min(S; Q)) = Q-minimal saturation points of @),

Note. min(S; Q) C min(S;.5).
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Example cont

S
—
W =
=

H ={(1,2)"}.
S ={(0,0)"}.

min(S; S) = {(1,0), (1,1)¢, (1,3)%, (1,4)}.

Thus, H, S, and min(S;.S) are all finite.

Magdeburg
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Fundamental holes
Def. We call a € H C Qs.t, a # 0, a fundamental hole if

Qsat N (a + (—Q)) = {a}.
Let Hy be the set of fundamental holes.

Ex. A=357). Qs = {0,1,...}, Q@ = {0,3,5,6,7,...}, —Q =
{0,-3,—5,—6,—7,...}. H ={1,2,4}. Among the 3 holes, 1 and 2 are
fundamental. For example, 2 € H is fundamental because

{0,1,...}n{2,-1,-3,—4,-5,...} ={2}.
On the other hand 4 € H is not fundamental because

{0,1,..3n{4,1,-1,-2,-3,...} = {4,1}.
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Fundamental holes
Lemma. [Takemura and Y., 2006]
Hy is finite.

Let Hy = {y1,...,ym}. For each y, € Hy and each a;, if there exists
some A\ € Z such that y, + Aa; € Q, let

S\hz’ = mln{)\ € Z ’ Yn + Aa; € Q}

Otherwise define \,; = oco.
Thm. [Takemura and Y., 2006]

H is finite if and only if A\j; < oo forallh=1,...,M andalli=1,...,n.
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Thm. [Takemura and Y., 2006]

Let B = {by,...,br} denote the Hilbert basis of Qgat. If by + Aa; € Q for
some \ € Z, let
QUi = min{)\ e 7L | b, + \a; € Q}

and [i;; = oo otherwise.

Then H is finite if and only if j;; < oo for all | = 1,...,L and all
1=1,...,n

Remark. For each 1 < i < n, let Q(z = {2 Niaj | \j € Zy, j # i}

be the semigroup spanned by a,,j # i. For each extreme a; and for each
b; ¢ (Q, we only have to check

b € (—Z+a;) + Quy, fori=1,...,L.
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Example

B =1{b; =(1,0)%, by = (1,1)", b5 = (1,2)", by = (1,3)", b5 = (1,4)"}.

Then we can write b3 as the following:

(1,2) —(1,0)* +2-(1,1)°
(1,0)" = (1,1)" +(1,3)’
= (L1)'=(1,3)"+(1,4)
2-(1,3)" — (1,4)".
We have ji3; = 1 foreach i =1, ...,4 and [i;; = 0, where [ # 3 for each

v =1, ...,4. Thus by Theorem above, the number of elements in H is
finite. Note that H consists of only one elements {b3 = (1,2)"}.
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Thm. [Takemura and Y., 2006]

The following statements are equivalent.

1. min(S;9S) is finite.

2. cone(S) is a rational polyhedral cone.

3. There is some s € S on every extreme ray of K.
4. H is finite.

5. S is finite.

Prop. [Takemura and Y., 2006]

min(.S; Q) is finite.

Magdeburg
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Example

1 1 1 1
AZ(O 2 3 4)'
H consists of elements {(k,1) : k€ Z, k > 1}.

S ={(i,0)t:icZ,i>0},

min(S;S) ={(k,j)':ke€Z, k>1,2<j<3}U{(1,4}

Thus, H, S, and min(S;S) are all infinite. However, min(S;Q) =

((1,2)%, (1,3)%, (1,4)} is finite.

Magdeburg
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2 X 2 X 2 x 2 tables with 2-margins.
The semigroup has 16 generators a;,...,as in Z**.

The Hilbert basis of the cone generated by these 16 vectors contains 17
vectors by,...,by7. The first 16 vectors are the same as a;, i.e. b; = a;,
1 =1,...,16. The 17-th vector b7 is

bi;=(11... 1)

consisting of all 1's.
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Thus, bi7 € (). Then we set the 16 systems of linear equations such that:

P;: bix1 +baxa+--- + bigrie = bi7

r; €L, x; € Ly, fori# j,
forj=1,2,---,16.

Using LattE, we showed that the 16 systems of linear equations have
integral solutions.

Thus by theorems above, H, S and min(S;.S) are finite.
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2 X 2 X 2 x 2 tables with 2-margins and 3-margin i.e. [12][13][14][123] and
with levels of 2 on each node.

The semigroup is generated by 16 vectors in Z!2.

The Hilbert basis consists of these 16 vectors and two additional vectors

biy=(111111111000)%  bs=(111111110111)%

ThUS, b17, b18 Q Q
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Then we set the system of linear equations such that:

bix1 + baxg + -+ + bigxrie = bi7
x1€2_, x; € Ly, fori=2,---,16.

We solved the system via 1rs, CDD and LattE.

We noticed that this system has no real solution (infeasible).

Thus by theorems above, H, S, and min(S;.S) are infinite.

Magdeburg
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Prop. [Takemura and Y., 2006]
3 X 4 x 7 table with 2-margins has infinite number of holes.

Sketch of pf.

sum

QI O] OO
Ol OO O
Ol OO O
Ol OO O
QOO O

sum

Table 1: the 7-th 3 x 4 slice is uniquely determined by its row and its
column sums. c is an arbitrary positive integer. Thus for each choice of
positive integer the beginning 3 X 4 X 6 part remains to be a hole. Since
the positive integer is arbitrary, 3 X 4 X 7 table has infinite number of holes.
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Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem
6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality
(i.e. @ is saturated) or non-normality (i.e. @ is not saturated) of @) is not
known only for the following three cases:

SXHXx3, ox4x3, 4x4x3.

We want to decide whether semigroups of these tables above are normal or
not.

Also we want to decide whether 3 x 4 x 6 table with 2-margins have a finite
number of holes.
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A preprint is available at arxiv:

http://arxiv.org/abs/math.ST/0603108
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Thank you....
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