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Birthday and death day

Table 1: Relationship between birthday and death day
Jan Feb March April May June July Aug Sep Oct Nov Dec

Jan 1 0 0 0 1 2 0 0 1 0 1 0
Feb 1 0 0 1 0 0 0 0 0 1 0 2

March 1 0 0 0 2 1 0 0 0 0 0 1
April 3 0 2 0 0 0 1 0 1 3 1 1

May 2 1 1 1 1 1 1 1 1 1 1 0
June 2 0 0 0 1 0 0 0 0 0 0 0

July 2 0 2 1 0 0 0 0 1 1 1 2
Aug 0 0 0 3 0 0 1 0 0 1 0 2
Sep 0 0 0 1 1 0 0 0 0 0 1 0

Oct 1 1 0 2 0 0 1 0 0 1 1 0
Nov 0 1 1 1 2 0 0 2 0 1 1 0

Dec 0 1 1 0 0 0 1 0 0 0 0 0

Table 1 shows data gathered to test the hypothesis of association between
birth day and death day. The table records the month of birth and death for
82 descendants of Queen Victoria. A widely stated claim is that birthday-
death day pairs are associated. Columns represent the month of birth day
and rows represent the month of death day.
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Common Diagonal Effect Model

In two-way contingency tables we sometimes find that frequencies along
the diagonal cells are relatively larger (or smaller) compared to off-diagonal
cells, particularly in square tables with the common categories for the rows
and the columns, such as the previous example.

In this case a simple model is to assume a common additional parameter for
all the diagonal cells. We call this the Common Diagonal Effect Model.

But following a result from Ohsugi and Hibi, the semigroup formed by the
columns of the CDEM design matrix is not normal; it has at least one hole.
We feel more research on non-normal semigroups is needed, so here we
develop some theory for this case.
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An example CDEM design matrix

In the CDEM, the sufficient statistics for a table are the row sums, column
sums, and the sum of the main diagonal.
Example: Consider a 3 × 3 table and its marginals

x11 x12 x13 r1

x21 x22 x23 r2

x31 x32 x33 r3

c1 c2 c3 d

where the xij are the cell counts and each r, c, and d corresponds to a row,
column, or diagonal sum.
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Now we set up a system of linear equations.

x11 +x21 +x31 = c1

x12 +x2,2 +x32 = c2

x13 +x23 +x33 = c3

x1,1 +x1,2 +x1,3 = r1

x2,1 +x2,2 +x2,3 = r2

x31 +x32 +x33 = r3

x1,1 +x22 +x33 = d
xi,j ∈ Z+

where Z+ = {0, 1, 2, · · · }.
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The coefficients of these equations provide the model matrix for our marginal
sums.





















1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1




















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Suppose we have a given set of margins for contingency tables.

Suppose if we want to decide whether there exists a table satisfying the
given margins.

This is called the multi-dimensional integer planar transportation

problem and it can be applied to data sequrity problem.

In terms of Optimization, we can rewrite this problem as an integral

feasibility problem, that is:

Decide whether there exists an integral solution in the system

Ax = b, x ≥ 0,

where A ∈ Z
d×n and b ∈ Z

d.
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Observation

Assume the lattice L generated by the columns of A is Z
d. Let cone(A) be

the cone generated by the columns of A and Pb = {x ∈ R
n : Ax = b, x ≥

0}. We assume that cone(A) is pointed.

Pb 6= ∅ ⇔ b ∈ cone(A).

Let Q be the semigroup generated by the columns ai of A, i.e. Q = {x ∈
R

d :
∑n

i=1 αiai, αi ∈ Z+} ⊂ cone(A) ∩ Z
d.

Pb ∩ Z
n 6= ∅ ⇔ b ∈ Q.

(Pb 6= ∅)
∧

(Pb ∩ Z
n = ∅) ⇔ b ∈

(

cone(A) ∩ Z
d − Q

)

.
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Some definitions

Let A = {a1, ..., an} , ai ∈ Z
d be the design matrix for tables under the

CDEM. Let Q denote the commutative semigroup generated by the columns
of A.

Let K be the rational polyhedral cone generated by the columns of A and
let L be the lattice generated by the columns of A. We will be assuming
that L = Z

d.

The saturation Qsat of Q is defined as Qsat = K ∩ L, and the elements of
H = Qsat / Q are called holes of Q
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The problem with holes

When sensitive data is released, the marginals are often perturbed to
prevent information about individual members of the population from being
recovered. If the perturbed marginals are a hole of the semigroup of the
design matrix, the data is broken instead of bent.

Sequential importance sampling faces a similar problem; if a sampled table
contains a hole, it must be rejected. This can cause an increase in sampling
time in cases where holes abound.

As the result from Ohsugi and Hibi guarantees the existence of holes under
the CDEM, we will investigate their distribution.
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An example

Consider American football. With one rare exception, the list of all possible
score changes is

(

2 0 3 0 7 0 8 0
0 2 0 3 0 7 0 8

)

In this case, Qsat = K ∩ L = Z
2
+ and Q = Z

2
+ / {(k, 1) , (1, k) | ∀k ∈

Z+}. So the holes in this semigroup are all scores where at least one team
has exactly one point. You can get there with rational additions of the
permitted score changes, but not with integral additions.
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Example

Figure 1: Non-holes, and holes for Example.

A =

(

1 1 1 1
0 2 3 4

)

.
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Example cont.

Q has infinitely many holes

H = {(1, 1)⊺ + α · (1, 0)⊺ : α ∈ Z+},

out of which only (1, 1)⊺ is in the min. Hilbert basis.
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A condition for finiteness of H
Thm. [Takemura and Y., 2008]

Let B = {b1, . . . , bL} denote the Hilbert basis of Qsat. If bl + λai ∈ Q for
some λ ∈ Z, let

µ̄li = min{λ ∈ Z | bl + λai ∈ Q}

and µ̄li = ∞ otherwise.

Then H is finite if and only if µ̄li < ∞ for all l = 1, . . . , L and all
i = 1, . . . , n.

Remark. For each 1 ≤ i ≤ n, let Q̃(i) = {
∑

j 6=i λjaj | λj ∈ Z+, j 6= i}
be the semigroup spanned by aj, j 6= i. For each extreme ai and for each
bl 6∈ Q, we only have to check

bl ∈ (−Z+ai) + Q̃(i), for l = 1, . . . , L.
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Applications to contingency tables under the CDEM

We will now apply the theorem to a 3 × 3 table under the CDEM. After
removing redundant rows with cddlib, we get the 6 × 9 matrix

















1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1
















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The Hilbert basis of the cone generated by these nine vectors (computed
via normaliz) consists of the nine vectors and three more.

b10 = (1 1 0 1 1 1)
t

b11 = (1 0 1 1 0 1)
t

b12 = (0 1 1 0 1 1)
t

These vectors are holes of the semigroup. And solving the semigroup
membership problem via lrs, we determined that

b10 /∈ (−Na1) + Q1.

Thus by Theorem above, there are an infinite number of holes.
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The 2 × 3 case

Consider the 2 × 3 table with the following marginals, with y11 + y22 = c.
Here we can use combinatorics in lieu of applying the theorem.

y11 y12 y13 c
y21 y22 y23 c
c c 0

The unique solution for these equations is

c

2
= y11 = y12 = y21 = y22, 0 = y13 = y23

which is clearly not an integral for any odd positive integer c.
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As suggested in Ohsugi and Hibi, the element of the lattice

(

c c 0
0 0 2c

)

−

(

0 0 c
0 0 c

)

has the above marginals. So the previous table is a hole for all positive
odd integer c; you can get there with the lattice, but not with integral
combinations of the columns of the design matrix.
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More generally

In the case of a 2 × 2 table we have a unique solution to b = Ax and thus
no holes, but for larger cases we will always have infinitely many holes.

Thm. [Takemura, Thomas and Y., 2008]
Let R, C ∈ Z be positive integers such that min{R, C} ≥ 2 and
max{R, C} ≥ 3. The semigroup generated by columns of the design
matrix with fixed row sums, column sums, and diagonal sum has infinitely
many holes.

This arises from the fact that every such table has a 2 × 3 subtable, and
every hole in the subtable corresponds to a unique hole in the larger table.
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Distribution of holes
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Saturation points

We call s ∈ Q a saturation point of Q, if s + Qsat ⊆ Q. The set of all
saturation points of Q is denoted by S.

Note. If cone(A) is pointed then S 6= ∅.

Ex. In the previous example, any score where both teams have two or more
points would be a saturation point. Any score where either team has zero
points but no team has one point would be a non-saturation point (but not
a hole).
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Thm.[Takemura and Y., 2007] A face F of K is nowhere saturated (i.e.,
contains no saturation points) if and only if for some element b of the
Hilbert basis B

b = x1a1 + ... + xnan, xj ∈ Z and xj ≥ 0 for aj /∈ F

does not have a feasible solution. Otherwise F is almost saturated (i.e.,
not nowhere saturated).
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Results on hole distribution in the 3 × 3 case

Using allfaces gmp from cddlib, we calculated which faces of the polyhedral
cone defined by the design matrix for a 3 × 3 table are almost saturated
and which are nowhere saturated.

Dimension # of faces # of nowhere # of almost
6 1 0 1
5 16 0 16
4 54 3 51
3 67 13 54
2 36 18 18
1 9 9 0

MIP 23



Ruriko Yoshida

Conclusions

So we have an entire family of semigroups with an infinite number of holes.
Most theoretical studies on semigroups have been assuming normality, an
absence of holes. In practice there are cases where this assumption does
not hold, as with the CDEM. We think that we need more research on
semigroups with holes.

In addition, non-normality of the semigroups causes difficulty for sequential
importance sampling. While a Markov basis has been obtained for this
model, it is still of interest to consider how to perform SIS under the
CDEM.
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Questions?
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Thank you....

MIP 26


