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Serum Cholesterol (mg/100ml)

Blood 1 2 3 4 5 6 7

Pressure < 200 200-209 210-219 220-244 245-259 260-284 > 284

1 < 117 2/53 0/21 0/15 0/20 0/14 1/22 0/11

2 117-126 0/66 2/27 1/25 8/69 0/24 5/22 1/19

3 127-136 2/59 0/34 2/21 2/83 0/33 2/26 4/28

4 137-146 1/65 0/19 0/26 6/81 3/23 2/34 4/23

5 147-156 2/37 0/16 0/6 3/29 2/19 4/16 1/16

6 157-166 1/13 0/10 0/11 1/15 0/11 2/13 4/12

7 167-186 3/21 0/5 0/11 2/27 2/5 6/16 3/14

8 > 186 1/5 0/1 3/6 1/10 1/7 1/7 1/7
Source : [Cornfield, 1962]

Data on coronary heart disease incidence in Framingham, Massachusetts
[Cornfield, 1962, Agresti, 1990]. A sample of male residents, aged
40 through 50, were classified on blood pressure and serum cholesterol
concentration. 2/53 in the (1,1) cell means that there are 53 cases, of
whom 2 exhibited heart disease.
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Imcomplete contingency table

Table 1: Effects of decision alternatives on the verdicts and social
perceptions of simulated jurors.

Condition
Alternative 1 2 3 4 5 6 7
First degree 11 [0] [0] 2 7 [0] 2

Second degree [0] 20 [0] 22 [0] 11 15
Manslaughter [0] [0] 22 [0] 16 13 5

Not guilty 13 4 2 0 1 0 2
Source : [Vidmar, 1972]

This table refers to the possible effects on decision making of limiting the
number of alternatives available to the number of a jury panel.

[0] refers to the structural zero on the cell.
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Independence model

Let X = {Xij} be a I × J table Xij ∈ N, i = 1, . . . , I, j = 1, . . . , J .

An observed table Xobs = {xobs
ij }, xobs

ij ∈ N, and 1 ≤ I, 1 ≤ J .

Xij ∼ Poi(µij) iid

where µij = ln(θij).

Consider the generalized linear model with a canonical linear predictor of
the form:

θij = λ + λR
i + λC

j + λRC
ij .

for i = 1, . . . , I and j = 1, . . . , J .

Independence model is a special case such that

λRC
ij = 0 for 1 ≤ i ≤ I, 1 ≤ j ≤ J.
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Hypothesis

The sufficient statistics for independence model include the row and column
margins. Hence, the conditional distribution of the table counts given the
margins is the same regardless of the values of the parameters in the model.

We have the following hypothesis test:

H0 : λRC
ij = 0 no interaction.

H1 : λRC
ij not constant over all cells.
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Exact p-value computation

Let X̂ be the MLE of the data under the model. Then Pearson’s χ2

statistics is

f(X) =

I
∑

i=1

J
∑

j=1

(X̂ij − Xij)
2

X̂ij

.

An exact permutation test based on the χ2 statistic is constructed as
follows. The p-value of this test is:

p = Ep[I{f(X)≥f(x)}|satisfying margins]

where x is an observed table and p is the hypergeometric distribution.
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In general we approximate the expected value by generating random draws
from the hypergeometric distribution and estimate

p̂ =
1

N

N
∑

i=1

I{f(xi)≥f(x)}

where N is the number of draws x
1, · · · ,xN iid from the hypergoemetric

conditional on the sufficient statistics under H0.

Note: This is the only possible method in situations where counts are very
small or the number of tables satisfying margins is very small.

Question: How can we generate random draws from this distribution?

Answer: Apply Diaconis-Sturmfels algorithm to the MCMC technique.
Diaconis-Sturmfels algorithm is the only method guaranteed to connect the
MC.
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What is a set of moves which connect all feasible contingency tables
satisfying these margins?

For unbounded tables under independence model, we know the set of moves
which connect all feasible contingency tables satisfying margins.

Note: We can generalize this problem by adding a bound for each cell of a
table in addition to row and column sums.

Note: If some of the bounds are zeros, then it is a incomplete table, i.e.,
table with structural zeros.

Question 1: Finding a set of moves which connect all feasible bounded
2-way contingency tables satisfying the row sums and column sums.

Question 2: If we know these bounds are non-zero, i.e., it is not an
incomplete table, then what is a set of moves connect all feasible bounded
2-way contingency tables satisfying the row sums and column sums?
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Exact p-value computation

Note that the row sums and column sums are the sufficient statistics under
H0. For example, we have

Total
x1,1 x1,2 x1,3 6
x2,1 x2,2 x2,3 6

Total 4 4 4

and each cell is bounded by 2, i.e., xi,j ≤ 2 for i = 1, 2 and j = 1, 2, 3.
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From the constraints we can set up the system of linear equations and
inequalities.

e.g. For our 2 × 3 table, we have:

x1,1 +x2,1 = 4
x1,2 +x2,2 = 4

x1,3 +x2,3 = 4
x1,1 +x1,2 +x1,3 = 6

x2,1 +x2,2 +x2,3 = 6
xi,j ∈ Z+

xi,j ≤ 2

where Z+ = {0, 1, 2, · · · }.
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By introducing slack variables we have the system of equations.

x1,1 +x2,1 = 4
x1,2 +x2,2 = 4

x1,3 +x2,3 = 4
x1,1 +x1,2 +x1,3 = 6

x2,1 +x2,2 +x2,3 = 6
xi,j +yi,j = 2

xi,j ∈ Z+

This is equivalent with 2 × 3 × 2 tables with constraints [A,C], [B,C],
[A,B] for factors A, B, C, which would arise for example in case-control
data with two factors A and B at three levels each.

In general, we can set up a system {x ∈ Z
d
+|Ax = b} for any tables.

Note: Thus, moves connect all integral points inside a feasible region
Pb = {x ∈ R

d|Ax = b, x ≥ 0} 6= ∅.
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What is a Markov Basis??

Suppose Pb = {x ∈ R
d|Ax = b, x ≥ 0} 6= ∅ and let M be a finite set such

that M ⊂ {x ∈ Z
d|Ax = 0}.

We define the graph Gb such that:

• Nodes of Gb are the lattice points inside Pb.

• We draw an undirected edge between a node u and a node v iff u−v ∈ M .

Definition : M is called a Markov basis if Gb is a connected graph for all
b with Pb 6= ∅.

Why do we care?: A Markov basis is the only known set of moves which
guarantees to connect all tables with any constraints.
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Example

To make it simple we just removed bounds.

Total
? ? ? ? ? ? ? ? ? 6
? ? ? ? ? ? ? ? ? 6

Total 4 4 4

Table 2: 2 × 3 tables with 1-marginals.

There are 19 tables satisfying these margins. We counted using a software
LattE.
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There are 3 elements in a Markov basis modulo signs.

In fact such moves are called basic moves.
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A table with the marginals plus an element of a Markov basis is also a table
with the given marginals.
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A Markov basis for 2 × 3 tables. An element of the Markov basis is a
undirected edge between integral points in the polytope.
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Fact: For any 2-way contingency tables with row and column sums (without
bounds), we know that a set of basic moves forms a Markov basis.

However: If you add a constraint of bounds, then it is not necessarily true
anymore.

For example,
0 0 1
1 0 0
0 1 0

0 1 0
0 0 1
1 0 0

with structural zeros in the diagonal cells are not connected by the basic
moves.
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Note: A Gröbner basis of a toric idea IA associate to a matrix A with any
term order is a Markov basis associate to a matrix A. So one can compute
a Markov basis from a Gröbner basis of IA with any term order.

Note: There are several nice software to compute Gröbner bases (such as
4ti2).

However: Computing a Gröbner basis is very hard in general.
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Notation

Without loss of generality, we represent a table by a vector of counts
n = (n1, . . . , nk). Let X = {1, . . . , k} be the sample space of the
contingency table. In the special case of two-way I × J tables, we will also
denote the sample space with X = {1, . . . , I} × {1, . . . , J}.

The fiber of an observed table nobs with respect to a function T : N
k −→ N

s

is the set
FT (nobs) =

{

n | n ∈ N
k , T (n) = T (nobs)

}

.

When the dependence on the specific observed table is irrelevant, we will
write simply FT instead of FT (nobs).

In mathematical statistics framework, the function T is usually the minimal
sufficient statistic of some statistical model.

KAIST 19



Ruriko Yoshida

Definition: A Universal Gröbner basis of an ideal is the Gröbner basis with
respect to every term order.

Let a s × k-matrix AT be a configuration of T and IAT
be a toric ideal

associate with AT .

Theorem [Rapallo and Rogantin, 2007] A Universal Gröbner basis of the
toric ideal IAT

is a Markov basis of bounded tables under the given model.

If we know a Universal Gröbner basis for AT , then we can compute a MB
for incomplete tables.
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Computing a MB for incomplete tables

Let X0 ⊂ X be the set of structural zeros of the table, let T ′ be the function
T restricted to X ′ = X \ X0 and let I ′

AT
be the toric ideal associated with

AT ′

Definition A Markov basis computed through a Universal Gröbner basis is
a Universal Markov basis.

Theorem [Rapallo and Y., 2009] Let n be a contingency table and let Fb

T

be its bounded fiber under the bound n ≤ b. Let X0 be the set of structural
zeros. Then a Universal Markov basis for F b

T ′ is obtained from a Universal
Markov basis for F b

T by removing the moves involving the cells in X0.
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Example
Let us consider 4×4 contingency tables with fixed marginal totals. Without
structural zeros, the Universal Markov basis is formed by 204 binomials: 36
moves involving 4 cells: 96 moves involving 6 cells: and 72 moves involving
8 cells.

Suppose that the cell (1, 1) is a structural zero. This kind of table is
depicted below, where [0] means a structural zero, while the symbol •
denotes a non-zero cell.









[0] • • •
• • • •
• • • •
• • • •









Applying Theorem, we remove: 9 moves involving 4 cells: 36 moves
involving 6 cells: and 36 moves involving 8 cells. The Universal Markov
basis in this case has 123 moves.
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Example cont...

Suppose now that the whole main diagonal contains structural zeros, as in
the figure below.









[0] • • •
• [0] • •
• • [0] •
• • • [0]









In this situation we remove: 30 moves involving 4 cells: 80 moves involving
6 cells: and 66 moves involving 8 cells. Finally, the Universal Markov basis
has only 28 moves.
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However, the Universal Gröbner basis of the toric ideal IAT
is, in general,

much bigger than a Gröbner basis of the toric ideal IAT
with respect to a

given term order. So in general it is very hard to compute.

Just to give the idea of such increase, we present in the following table the
number of moves of the standard Markov basis for square I × I tables for
the first I’s.

2 3 4 5 6 7
Standard Markov basis 1 9 36 100 225 441
Universal Gröbner basis 1 15 204 3, 940 113, 865 4, 027, 161

Thus, we consider the set of connecting moves.
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Markov subbases

Definition: [Chen et. al., 2007] A Markov subbasis MAT ,nobs
for nobs ∈ N

k

and integer matrix AT is a finite subset of ker(AT )∩Z
k such that, for each

pair of vectors u, v ∈ FT , there is a sequence of vectors mi ∈ MAT ,nobs
, i =

1, . . . , l, such that

u = v +

l
∑

i=1

mi,

0 ≤ v +

j
∑

i=1

mi, j = 1, . . . , l.

The connectivity through nonnegative lattice points only is required to hold
for this specific nobs.

Note: MAT ,nobs
for every nobs ∈ N

k and for a given AT is a Markov basis
M for AT .
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Markov subbases for tables with positive bounds

We first study Markov subbases MAT ,nobs
for any bounded two-way

contingency tables nobs ∈ N
k with positive bounds, i.e., no structural

zeros, under independence model.

Theorem [Rapallo and Y., 2009] Consider I×J tables with row and column
sums fixed and with all cells bounded. If these bounds are positive, then
a Markov subbasis for the tables is the standard Markov basis for I × J
tables with row and column sums fixed without bounds, i.e., the set of basic
moves of all 2 × 2 minors.
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Example

Consider now 4 × 4 tables with fixed row and column sums, and with all
bounded cells.

The constraint matrix that fixes row and column sums in a 4× 4 table gives
a toric ideal with a

(

4
2

)

×
(

4
2

)

element Gröbner basis, i.e., a Markov basis is

formed by the basic moves of the form

(

+1 −1
−1 +1

)

for all 2 × 2 minors of

the table.

The full Markov basis for bounded tables has 204 moves. However, by the
theorem above the Markov subbasis for this table is the standard Markov
basis for a 4×4 table with fixed row and column sums fixed without bounds.
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Markov subbases for incomplete tables

Now we study Markov subbases MAT ,nobs
for any incomplete I × J

contingency tables nobs ∈ N
k with positive margins, i.e., AT (nobs) > 0,

under independence model.

Without loss of generality, we can assume that all margins are positive
because cell counts in rows and/or columns with zero marginals are necessary
zeros and such rows and/or columns can be ignored in the conditional
analysis.

Let X = {(i, j) | 1 ≤ i ≤ I, 1 ≤ j ≤ J} and let S be a non-trivial subset of
X .
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Proposition [Aoki and Takemura, 2005] Suppose we have I×J tables with
fixed row and column sums. A set of basic moves is a Markov subbasis
for I × J contingency tables, I, J ≥ 4, with structural zeros in only
diagonal elements, i.e., (i.e., cells with indices in S = {(i, j) : i = j for
i = 1, . . . , min(I, J)}) under the assumption of positive marginals.

How about if cells in S are structural zeros, where S does not contain
diagonals?

We consider 3× 3 and 4× 4 tables under independence model with all cells
bounded. We assume row and column sums are positive. We have studied
in which S all cells can be structural zeros in order for the standard Markov

basis, i.e., the moves of the form

(

+1 −1
−1 +1

)

for all 2 × 2 minors of the

table, to connect these bounded tables with positive conditions.
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To analyze these cases we recall some definitions from commutative algebra:

An ideal I ⊂ R[x] is radical if

{f ∈ R[x] | fn ∈ I for some n} = I ;

Let I, J ⊂ R[x] be ideals. The quotient ideal (I : J ) is defined by:

(I : J ) = {f ∈ R[x] | f · J ⊂ I} ;
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Let I, J ⊂ R[x] be ideals. The saturation of I with respect to J is the
ideal defined by:

(I : J∞) = {f ∈ R[x] | gm · f ∈ I, g ∈ J , for some m > 0} ;

Let Z = {z1, . . . , zs} ⊂ R
k. A lattice L generated by Z is defined:

L = ZZ.

M ⊂ R
k is called a lattice basis of L if each element in L can be written

as a linear integer combination of elements in M .
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Theorem [Chen, Dinwoodie, and Y., 2008] Suppose IM is a radical ideal,
and suppose M is a lattice basis. Let p = x1 · · ·xk. For each index `
with (AT )` > 0, let I` = 〈xh〉(AT )`,h>0 be the monomial ideal generated by
indeterminates for cells that contribute to margin `. Let L be the collection
of indices ` with (ATn)` > 0. Define

IL =

(

IM :
∏

`∈L

I`

)

.

If
(IL : (IL : p)) = 〈1〉 (1)

then the moves in M connect all the tables in FT .

Using this theorem we study incomplete 3 × 3 and 4 × 4 tables.
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Incomplete 3 × 3 tables

If |S| = 1 or |S| = 2 then Equation in (1) holds. Thus, the 9 moves of the

form

(

+1 −1
−1 +1

)

for all 2 × 2 minors of the table connect bounded tables.

For |S| = 3, if S = {(1, 1), (2, 2), (3, 3)} after an appropriate interchange
of rows and columns, i.e. there are 6 patterns of S, then Equation in
(1) does not hold. Otherwise for other patterns of S, Equation in (1)
holds. Thus, 9 moves connect bounded tables. For |S| > 3, if S contains
{(1, 1), (2, 2), (3, 3)} after appropriate interchange of rows and columns,
then Equation in (1) does not hold. Otherwise for other patterns of S,
Equation in (1) holds. Thus, these 9 moves connect bounded tables.
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Big open problem for Markov subbases for incomplete

tables

We also consider 4 × 4 tables under independence model with all cells
bounded. We assume row and column sums are positive. After an
appropriate interchange of rows and columns, if we have structural zero
constraints on all diagonal cells (i.e., cells with indices in S = {(i, j) : i = j
for i = 1, . . . , I}), then Equation in (1) does not hold.

Using the previous proposition and examples we have the following problem.

Problem [Rapallo and Y., 2009] Suppose we have I × J tables with fixed
row and column sums. What is the necessary and sufficient condition on S
so that the set of basic moves connects all tables under the assumption of
positive marginals?
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Advertisement...

The Sepcial Session on Advances in Algebraic Statistics

Organized by Sonja Petrović and RY

2010 AMS Spring Southeastern Sectional Meeting

Lexington, KY, March 27–28, 2010 (Saturday – Sunday)

http://www.ams.org/amsmtgs/2162_program_ss2.html#title
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Thank you....
The paper is available at http://arxiv.org/abs/0905.4841.
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