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Future Work

The Minimum Evolution (ME) method: This is a distance based
method and weighted Least Square method. It finds a closest additive
metric from the given non-additive distance matrix with the smallest branch
lengths (more biologically makes sense). Its time complexity is NP-hard.

Neighbor-joining (NJ) algorithm: This is the most popular distance
based method. It estimates the ME tree (it is a greedy algorithm to find
the ME tree). Its time complexity is polynomial time (O(n3)).

Question: From this point of view, the NJ is “optimal” when the algorithm
outputs the ME tree. Then, how “often” the NJ returns the ME tree (i.e.,
the output tree from the ME and the output tree from the NJ have the
same tree topology)? This is joint work with K. Eickmeyer, P. Huggins, and
L. Pachter.
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The NJ phylogenetic tree for large data sets loses so much sequence
information and we do not know how well it performs with pairwise distances
that are not tree metrics, especially when all pairwise distances are estimated
via the MLE.

Goal:

• Analyze the behavior of the NJ on five/six taxa.

• Show that the NJ tree topology is determined by polyhedral subdivisions

of the spaces of dissimilarity maps R
(n
2)

+ .

Notation: We notate a, b, c, d as leaves and i, j as a pair of leaves.
(i = {a, b} etc...)
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Neighbor Joining algorithm

Def. We call a pair of two distinct leaves {a, b} a cherry if there is exactly
one intermediate node on the unique path between a and b.

Let D = (D(ab)) ∈ R
n×n be the distance matrix of T .

Thm. (Q-criterion) [Saitou-Nei, 1987 and Studier-Keppler, 1988]

Let Q ∈ R
n×n such that Qab = Dab − (ra + rb)/(n − 2), where ra :=

∑n

k=1 Dak. {a∗, b∗} is a cherry in T if Qa∗b∗ is a minimum for all a and b.

Neighbor Joining Algorithm:

Input. A tree matric D. Output. An additive tree T .
Idea. Initialize a star-like tree. Then find a cherry {a, b} and compute
branch length from the interior node x to a and from x to b. Repeat this
process recursively until we find all cherries.
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The Q-criterion

The resulting matrix is again symmetric, and we can see it as a vector of
dimension m =

(

n
2

)

just like the input data. Moreover, the Q-criterion is
obtained from the input data by a linear transformation:

q = A(n)d,

where d is a vector representation of D, q is a vector representation of Q,
and the entries of the matrix A(n) are given by

A
(n)
ij = A

(n)
ab,cd =







n − 4 if i = j,
−1 if i 6= j and {a, b} ∩ {c, d} 6= ∅,
0 else,

where a > b is the row/column-index equivalent to i and likewise for c > d
and j.

Isaac 5



Ruriko Yoshida

Example

For n = 4 we have

A(4) =

















0 −1 −1 −1 −1 0
−1 0 −1 −1 0 −1
−1 −1 0 0 −1 −1
−1 −1 0 0 −1 −1
−1 0 −1 −1 0 −1
0 −1 −1 −1 −1 0

















.

The Q-criterion:

find smallest qi for i = 1, · · · ,m such that q = A(n)d.
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Shifting Lemma

Note: There is an n-dimensional linear subspace of R
m which does not

affect the outcome of NJ (Mihaescu et al, 2006). For a leaf a we define its
shift vector sa by

(sa)b,c :=

{

1 if a ∈ {b, c}

0 else

which represents a tree where the leaf a has distance 1 from all other leaves
and all other distances are zero. The Q-criterion of any such vector is −2
for all pairs, so adding any linear combination of shift vectors to an input
vector does not change the relative values of the Q-criteria.
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The first step in cherry picking

After computing the Q-criterion q, the NJ proceeds by finding the minimum
entry of it, or, equivalently, the maximum entry of −q.

Therefore, the set of all parameter vectors d for which the NJ will select
cherry i in the first step is the normal cone at a vertex −Aei of the polytope

Pn := conv{−Ae1, . . . ,−Aem}. (1)

The shifting lemma implies that the affine dimension of the polytope Pn is
at most m − n.
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Reducing the number of taxa

Suppose out of our n taxa {1, . . . , n}, the first cherry to be picked is the
(

n
2

)

th cherry {n − 1, n}, which we view as the new node number n − 1.

The reduced pairwise distance matrix is one row and one column shorter
than the original one. Explicitly,

d′

i =

{

di for 1 ≤ i ≤
(

n−2
2

)

1
2(di + di+(n−2) − dm−1) for

(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)
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We see that the reduced distance matrix depends linearly on the original
one:

d′ = Rd,

with R = (rij) ∈ R
(m−n+1)×m, where

rij =























1 for 1 ≤ i = j ≤
(

n−2
2

)

1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = i

1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = i + n − 1

−1/2 for
(

n−2
2

)

+ 1 ≤ i ≤
(

n−1
2

)

, j = m
0 else

The process of picking cherries is repeated until there are only three taxa
left, which are then joined to a single new node.
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Example for n = 4

1 2

3 4

1 3

2 4

2 3

1 4

(0, -1, 1, 1, -1, 0)

(-1, 1, 0, 0, 1, -1)

(1, 0, -1, -1, 0, 1)
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The cone C45,3

Since we can apply a permutation σ ∈ S5 on taxa, without loss of generality,
we suppose that the first cherry to be picked is the cherry with leaves 4 and
5. This is true for all input vectors d which satisfy

(h10,i,d) ≥ 0 for i = 1, . . . ,9,

where the vector
h

(n)
ij := −A(n)(ei − ej).

Then, the set of all input vectors d for which the first picked cherry is 4-5
and the second one is 1-2:

C45,3 :=
{d | (h10,i,d) ≥ 0 for i = 1, . . . , 9, and (r1 − r2,d) ≥ 0, (r1 − r3,d) ≥ 0}

where r1, r2 and r3 are the first three rows of −A(4)R(5).
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The NJ cones

For n = 5, there is only one unlabeled tree and there are 15 labeled trees.
There are 30 cones in the 5 dimension (i.e. there are two cones per a
labeled tree).

• They do not form a fan.

• The union of cones C12,3 and C45,3 does not form a convex body (i.e.
the union of two cones for one tree topology does not form a convex
cone).
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For n = 6
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Figure 1: The two possible topologies for trees with six leaves, with edges
connecting to leaves shrunk to zero.

There are three different classes of cones which cannot be mapped onto
each other by the group action, CI, CII, CIII.
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• Type I: a, b, c, d, e, f → a, b, c, d, (ef) → a, b, (cd), (ef),→ Fig. 1(a)

• Type II: a, b, c, d, e, f → a, b, c, d, (ef) → a, b, (cd), (ef)
→ cd − a − b − ef (like Fig 1(b), but different labels)

• Type III: a, b, c, d, e, f,→ a, b, c, d, (ef) → a, b, c, (d(ef))
→ ab − c − d − ef (exactly as in Fig 1(b))

CI CII CIII

stabilizer 〈(12), (34), (56)〉 〈(12), (56)〉 〈(12), (56)〉
size of stabilizer 8 4 4
number of cones 90 180 180
cones giving same
labeled topology 6 2 2
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Simulation Results
With the Juke Cantor and Kimura 2 parameter models.
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Consider two tree models...

Modeled from Strimmer and von Haeseler.

a

a

a

a

a

b

b

b

b

b b

b

b

b

T1 T2
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We generate 10, 000 replications at the edge length ratio, a/b = 0.03/0.42
for sequences of length 500BP with the Jukes-Cantor and Kimura 2
parameter models via a software evolver from PAML package.

For each set of 5 sequences, we compute first pairwise distances via the
heuristic MLE method using a software fastDNAml. To compute cones, we
used MAPLE and polymake.

We say an input vector (distance matrix) is correctly classified if the
vector locates in one of the cones where the vector representation of the
tree metric (noiseless input) lies. We say an input vector is incorrectly
classified if the vector locates in the complement of the cones where the
vector representation of the tree metric lies.
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For distance matrices which are correctly classified by the NJ algorithm, we
compute the minimum distance to any cone giving a different tree topology.

0
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0 0.05 0.1 0.15 0.2 0.25 0.3
distance

Distances of correctly classified vectors from closest misclassified vector

T1 JC
T2 JC

T1 Kimura
T2 Kimura

noiseless input

Figure 2: Distances of correctly classified input vectors from the closest
correctly classified vector.
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Mean and variance of the distances of correctly classified vectors from the
nearest misclassified vector.

JC Kimura2
T1 T2 T1 T2

# of cases 3,581 6,441 3,795 4,467
Mean 0.0221 0.0421 0.0415 0.0629
Variance 2.996 · 10−4 9.032 · 10−4 1.034 · 10−3 2.471 · 10−3
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For input vectors to which the NJ algorithm answers with a tree topology
different from the correct tree topology, we compute the distances to the
two cones for which the correct answer is given and take the minimum of
the two. The bigger this distance is, the further we are off.
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Figure 3: Distances of correctly incorrectly classified input vectors from the
closest incorrectly classified vector.
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Mean and variance of the distances of misclassified vectors to the nearest
correctly classified vector.

JC Kimura2
T1 T2 T1 T2

# of cases 6,419 3,559 6,205 5,533
Mean 0.0594 0.0331 0.0951 0.0761
Variance 0.0203 7.39 · 10−4 0.0411 3.481 · 10−3
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Future work

“On the optimality of the neighbor-joining algorithm” by K. Eickmeyer, P.
Huggins, L. Pachter, R. Y.

In fact, the ME tree topology is also determined by polyhedral subdivisions

of the spaces of dissimilarity maps R
(n
2)

+ . By comparing these two polyhedral
subdivision, we study the optimality of the NJ algorithm.

In particular, we investigate and compare the polyhedral subdivisions for
n ≤ 10. (For n = 4, it is 100%, for n = 5, it is 99.5%, for n = 6, with
the catapilar, 91.34%, with 3 cherries, 90.34 %, for n = 7, and it is about
78.87% with 2-cherry and 82.46% with 3-cherry etc.)

It will be submitted soon (hopefully).
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Thank you....

The preprint is available at math.CO/0703081.
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