
SUMMARY OF RESUTLTS FOR THE “UNFAIR” FAIRGROUND

GAME

P. HUGGINS AND R. YOSHIDA

1. Setup

We have ten bins, Bin[1], . . . , Bin[10], with corresponding score values
(1, 1, 2, 3, 3, 4, 4, 5, 6, 6). We let v[i] denote the score value of the bin Bin[i].

We have eight numbered balls Ball[1], . . . , Ball[8], which are rolled one at a time
into the bins, as described in Model D. We recall that winning scores are those
which are either less than 16 or greater than 40.

We let X denote the set of all possible valid outcomes of rolling the eight balls into
the bins. For any x ∈ X, we let s(x) denote the score of outcome x (as described
in the article).

2. A Useful Symmetry

Observation 1. We have P (s < 16) = P (s > 40)

Proof. We can interchange Bin[j] with Bin[11 − j] for all j = 1, ..., 5, and thereby
obtain a bijection f : X → X. Clearly, since f is induced by merely permuting the
bins, we have that P (f(x)) = P (x) for all outcomes x ∈ X. Furthermore, since
v[j] = 7 − v[11 − j] for all j, we have that s(f(x)) = 56 − s(x) for all x ∈ X.
Thus, s(f(x)) < 16 if and only if s(x) > 40. Similarly, s(f(x)) > 40 if and only if
s(x) < 16. ¤

Thus, our desired winning probability for the game is simply 2 ∗ P (s < 16).

3. Computing P (s < 16)

We consider disjoint cases, according to how many balls are contained in each bin.
We sum together the probabilities of those cases which result in a score less than
16, and clearly this yields P (s < 16).

As it turns out, there are only about 15000 possible cases altogether (and only
a couple hundred of these cases actually yield scores less than 16.) Thus, from a
computational perspective, this approach is very feasible, even for a home computer.

Date: January 23, 2005.

1



2 P. HUGGINS AND R. YOSHIDA

We represent each case by a 10-tuple of integers (where each entry is between 0
and 3), where the jth entry equals the number of balls contained in Bin[j].

We generate all the 15000 or so cases by using a recursive method which lists the
cases in “lexicographical” order as follows:

Case 1: (3, 3, 2, 0, 0, 0, 0, 0, 0, 0)
Case 2: (3, 3, 1, 1, 0, 0, 0, 0, 0, 0)
Case 3: (3, 3, 1, 0, 1, 0, 0, 0, 0, 0)

...

Last Case: (0, 0, 0, 0, 0, 0, 0, 2, 3, 3)

Then, for each case (a1, . . . , a10) which yields a score of 16 or less, we compute the
probability of the case according to how many bins have three balls (i.e., how many
ai equal 3):

If no bin has three balls:

(1) P (case) =

(

8

a1, . . . , a10

)

∗ (10−8)

If exactly one bin, Bin[r], has three balls:

Split into subcases according to which ball is the third (i.e. highest numbered) ball
to roll into Bin[r]. Let Subcase[k] denote the subcase that Ball[k] is the third ball
to roll into Bin[r].

(2) P (Subcase[k]) =

(

k − 1

2

)

(

5!
∏

i6=r (ai!)

)

∗ (10−k9−8+k)

(3) P (case) =

8
∑

k=3

P (Subcase[k])

If exactly two bins, Bin[r1] and Bin[r2], have three balls apiece:

Split into subcases according to which ball is the third (i.e. highest numbered)
ball to roll into Bin[r1] and which ball is the third to roll into Bin[r2]. Let
Subcase[k1][k2] denote the subcase that Ball[k1] is the third ball to roll into Bin[r1]
and Ball[k2] is the third ball to roll into Bin[r2].

By symmetry, we may suppose k1 < k2 so long as we remember to multiply our
probabilities by 2 when we sum them up.



SUMMARY OF RESUTLTS FOR THE “UNFAIR” FAIRGROUND GAME 3

(4)

P (Subcase[k1][k2]) =

(

k1 − 1

2

)(

k2 − 4

2

)

(

2!
∏

i/∈{r1,r2}
(ai!)

)

∗(10−k19−k2+k18−8+k2)

(5) P (case) =
∑

k1<k2, 3≤k1≤7, 6≤k2≤8

2 ∗ P (Subcase[k1][k2])

4. Computational Results

We wrote a C++ program which calculated the winning probability for Model D,
using the above formulas. The program was run on a Linux PC, taking advantage
of native 64-bit integer arithmetic to handle large integers.

The winning probability was outputted as an exact fraction:

(6) P (win) =
2572423315200

377913600000000
= 0.0068069 . . .

University of California, Berkeley

E-mail address: phuggins@math.berkeley.edu

Duke University

E-mail address: ruriko@math.duke.edu


