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Puzzle

Is there a table satisfying these given margins?
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Each cell has nonnegative integral value.
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Answer
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There does not exist such a table, although the marginals are consistent.
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Suppose we have a given set of margins for contingency tables.
Want: decide whether there exists a table satisfying the given margins.

This is called the multi-dimensional integer planar transportation
problem and it can be applied to data sequrity problem.

In terms of Optimization, we can rewrite this problem as an integral
feasibility problem, that is:

Decide whether there exists an integral solution in the system
Axr =0b, x >0,

where A € Z9%™ and b € Z°.
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Observation

Assume the lattice L generated by the columns of A is Z?. Let cone(A) be
the cone generated by the columns of A and P, ={x €¢ R": Ax = b,x >
0}. We assume that cone(A) is pointed.

P, # () & b € cone(A).

Let () be the semigroup generated by the columns a; of A4, i.e. Q@ = {x €
RY: ST aga, a; € Zy} C cone(A) NZY

PNZ"£0<beq.

(Pb#@)/\(PbﬂZ”:@)@bE (cone(A)NZ* - Q).
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We study on the set of holes of ), H := cone(A) NZ% — Q.

Motivation: Once we solve this problem, then we can solve an integer
linear feasibility problem in a constant time if we vary the right-hand-side b.

Note: @ is normal (i.e. H = () iff the Hilbert basis of cone(A) is in Q.

Note: Barvinok and Woods showed that: suppose we fix d and n. We can
compute all holes of () in polynomial time using short rational functions
in polynomial time.

However: It is an implicit representation of H, and also their method
cannot be implemented at this moment.

Problem: Find an explicit representation of H.
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Fundamental holes

Def. We call a € H C Qs.t, a # 0, a fundamental hole if there is no
other hole b’ € H such that h — h' € (). Let F be the set of fundamental

holes.

Ex. A=357). Qsas ={0,1,...}, Q ={0,3,5,6,7,...}, H={1,2,4}.
Among the 3 holes, 1 and 2 are fundamental. For example, 2 € H is
fundamental because

{0,1,...}n{2,—1,-3,—4,-5,...} ={2}.
On the other hand 4 € H is not fundamental because

4—-1=3¢€qQ.
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Def. The semigroup (QQs.t = cone(A) N L is called the saturation of @ (i.
€. Qsat :Q+HorH:Qsat_Q)-

We call s € () a saturation point of ), if s 4+ Qg+ C (). The set of all
saturation points of () is denoted by S.

Note. If cone(A) is pointed then S # ().
s € S is called a Q-minimal of S there is no other s’ € S with s — s’ € Q.

Llet fe F. s (f+Q)NQ is called @-minimal of (f + Q)N Q if there is
no other s’ € (f+ Q) NQ with s — s’ € Q.

s € S is called a S-minimal of S there is no other s’ € S with s — s’ € 5.
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Example

Figure 1: Non-holes, holes and fundamental hole for Example.
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Example cont.

() has infinitely many holes
H={1,1) +a-(1,0):a e},

out of which only (1,1)T is fundamental,

() has three (-minimal saturation points: (1,2)7, (1,3)7, and (1,4)T.

The output from our algorithm looks like:

H={1L1)T+a 1,0)T:acZ.}

CMU
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Algorithm
Input: A € Z4*",
Output: An explicit representation of H.

1. Compute the set F' of fundamental holes.

2. For each of the finitely many f € F', compute all z = f + A\ where all
minimal inhomogenous solutions (A, i) of

{\p) €Z3: f + AN = Au}. (1)

3. From the minimal inhomogenous solutions (A, u) of (1), compute an
explicit representation of the holes of Q) in f + Q.

CMU 11



Ruriko Yoshida

Computing fundamental holes
The set F' of fundamental holes is finite, since it is a subset of

P = Z)\jA.j:OS)\la---a)\n<1
j=1

Algorithm. (Computing fundamental holes)

e Compute the minimal integral generating set B of cone(A) N L.

e Check each z € B whether it is a fundamental hole or not, that is,
compute BN F.

e Generate all nonnegative integer combinations of elements in BN F' that
lie in P and check for each such z whether it is a fundamental hole or
not.
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Example cont

In our example, the lattice L = Z2. With this, the minimal Hilbert basis B
of cone(A) N L consists of 5 elements:

B = {(17 O)Tv (17 1)T7 (17 2)T7 (17 3)T7 (17 4)T}’

out of which only (1,1)T is a hole.

Being in B, (1,1)T must be a fundamental hole. Thus, BN F = {(1,1)T}.

Note that 2 - (1,1)T = (2,2)T € @ and consequently, there is no other
fundamental hole in @, i.e. FF = {(1,1)T}.
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Computing minimal inhomogenous solutions

The (finitely many) minimal inhomogeneous solutions to the above linear
system can be computed, for example, with 4ti2.

Example cont. Let f = (1,1)T and consider (f + Q) N Q. The linear
system to solve is

1 + Al + A9 + AS + Aq
1 —+ 2X9 + 3)\3 —+ 4y

[ po pg  + [
2 +  3pg  + 4py

with A\;, u; € Z4, 1,5 € {1,2,3,4}.
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Example cont

4ti2 gives the following 5 minimal inhomogeneous solutions (A, ) to
system (1):

AN p) — z=f+ A\
(0,0,0,2,0,0,3,0)T — (3,97
(0,1,0,0,1,0,1,0)T — (2,37
(0,0,1,0,1,0,0,1)T — (2,47
(0,0,1,0,0,2,0,0)T — (2,4)T
(0,0,0,1,0,1,1,0)T — (2,5)T
Thus, we have {(2,3)7,(2,4)7,(2,5)T,(3,9)7}.
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Computing the holes in f + Q)
Let 14 5 € Q[z1,...,2,] be the monomial ideal generated by

Ian;=(@ ANEZL, f+ANE(f+Q)NQ).

Note. If cone(A) is pointed, there are only finitely many A € Z’} such that
J+ AN =z for each z € f + Q. Thus, by solving f + A\ = 2, A € Z} for
all minimal inhomogenuous solutions in (f + Q) N Q, we can find a finite
generating set for 14 ;.

Note. While the monomial z* corresponds to z = f + A\ € f 4+ Q, we
have 2 € (f + Q)N Q if and only if z* € I4 ;. Thus, the set of holes in
f + @ corresponds to the set of standard monomials of the monomial ideal

IA)f
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Example cont

Construct the generators of the monomial ideal 14 ¢ by finding all
representations of the form z = f + A\ X € Z2 for each z in (f + Q)N Q
for each z € {(2,3)7,(2,4)7,(2,5)7,(3,9)T}.

z = [+ A\
(2,3)T = (1,1)T+ A(0,1,0,0)7
(2,4)T = (1,1)T+ A(0,0,1,0)T
(2,57 = (1,1)T+ A(0,0,0,1)T
(3,97 = (1,1)T+ A(0,0,0,4)T
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Example
Thus, we get the monomial ideal

IA,f = <£IL‘2, I3, CIZ‘4>,

whose set of standard monomials is {x{ : a € Z, }.

Thus, the set of holes in f 4+ @ is

{f+ad1:acZi}={1,1)T+a(1,0)7

CMU
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Computing Q-minimal saturation points

Want to compute min(S; @), the set of all Q-minimal saturation points of
(). Note that min(S; @) is always finite.

We have the following equivalences:

selS & se@and s+ Qsat € Q (by definition)
& seQands+HCQ (Qsat =QUH and s+Q C Q,Vs € Q)
& seQands+FCQ (HCF+Q)
&S s+fef+Qands+fCQ VfeF
& s+fe(f+Q)NQ VfeF.
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Consequently, we have

seSese (J(f+Q)NQ)— /]

Jer

and thus, with s = A\ for some A € Z"! (as s € )), we get

seSertce ﬂIA,f::IAv
fEF

by definition of I4 . 14 is a monomial ideal and can be found
algorithmically, for example with the help of Grobner bases. The elements
s € min(S; Q) correspond exactly to the (finitely many!) ideal generators
™ of I4 via the relation s = AN,
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Example cont

In our example, we have I4 = I4 s = (x2,%3,%4), as there exists only one
fundamental hole f. The three generators of 14 correspond to the three
()-minimal saturation points (1,2)7, (1,3)T, and (1,4)T.
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Deciding whether H is finite or not
Thm. [Takemura and Y., 2006]

Let B = {by,...,br} denote the Hilbert basis of Qs.:. If b; + Aa; € Q for
some \ € Z, let
Ui = mm{)\ e Z | b, + \a; € Q}

and [1;; = oo otherwise.

Then H is finite if and only if ju;; < oo for all { = 1,...,L and all
1=1,...,n.

Remark. For each 1 < i < n, let Q(i) = {2 Niaj | \j € Ly, j F# i}
be the semigroup spanned by a;,j # i. For each extreme a; and for each
b; ¢ (), we only have to check

b, € (—Z+ai) + Q(i), fori=1,...,L.
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Thm. [Takemura and Y., 2006]

The following statements are equivalent.

1. min(5;S), the set of all S-minimal points in .S, is finite.
2. cone(S) is a rational polyhedral cone.

3. There is some s € S on every extreme ray of K.

4. H is finite.

5. S is finite.

CMU
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2 X 2 X 2 x 2 tables with 2-margins.
The semigroup has 16 generators a;, ..., as in Z**.

The Hilbert basis of the cone generated by these 16 vectors contains 17
vectors by, ...,by7. The first 16 vectors are the same as a;, i.e. b; = a;,
1 =1,...,16. The 17-th vector b7 is

bi;=(11... 1)

consisting of all 1's.
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Thus, bi7 € (). Then we set the 16 systems of linear equations such that:

Pj . b1 +baxs+ - + bigrig = b1y

r; €L, x; € Ly, fori# j,
for j=1,2,.--,16.

Using LattE, we showed that the 16 systems of linear equations have
integral solutions.

Thus by theorems above, H, S, and min(S;.S) are finite.
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2 X 2 X 2 x 2 tables with 2-margins and 3-margin i.e. [12][13][14][123] and
with levels of 2 on each node.

The semigroup is generated by 16 vectors in Z!2.

The Hilbert basis consists of these 16 vectors and two additional vectors

bir=(111111111000)%  bs=(111111110111)%

ThUS, b17, b18 Q/ Q
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Then we set the system of linear equations such that:

bix1 + baxg + -+ + bigxrie = bi7
x1€4_, x; € Ly, fori=2,---,16.

We solved the system via 1rs, CDD and LattE.

We noticed that this system has no real solution (infeasible).

Thus by theorems above, H, S, and min(S;.S) are infinite.

CMU
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Prop. [Takemura and Y., 2006]
3 X 4 x 7 table with 2-margins has infinite number of holes.

Sketch of pf.

sum

QOO0
Ol OO O
Ol OO O
Ol OO O
QO OO

sum

Table 1: the 7-th 3 x 4 slice is uniquely determined by its row and its
column sums. c is an arbitrary positive integer. Thus for each choice of
positive integer the beginning 3 X 4 X 6 part remains to be a hole. Since
the positive integer is arbitrary, 3 X 4 X 7 table has infinite number of holes.
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Future work

Known. Results on the saturation of 3-DIPTP are summarized in Theorem
6.4 of a paper by Ohsugi and Hibi, (2006). They show that a normality
(i.e. @ is saturated) or non-normality (i.e. @ is not saturated) of () is not
known only for the following three cases:

S5X5Hx3, dHx4x3, 4x4x3.

Note. 4 x 4 x 3 is solved! We want to decide whether semigroups of these
tables above are normal or not.

Also we want to decide whether 3 x 4 x 6 table with 2-margins have a finite
number of holes.
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A preprint is available at arxiv:

http://arxiv.org/abs/math.C0/0607599
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Thank you....
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