
C3. Matched Filters 
Objectives 

• Define the inner product between two vectors 
• Define the correlation between two signals 
• Detect the presence of a given pulse by the matched filter 

1. Introduction 
 
A very important problem in signal processing is the determining how two signals 
compare with each other. To give an example, you can program most cell phones to 
obey voice commands: how does it do? The cellphone compares the signal from the 
microphone to a dictionary of possible phonemes and decide which one is the “closest” 
one. 
Another example we will be addressing is the detection of a radar or sonar return. In 
this case a pulse is transmitted and, if there is a target, it bounces back. Since there is 
distortion and noise, what we receive is not identical to what we transmit and we need 
sort of define a measure of similarity, so we can decide whether the received signal is 
the oulse we expect. 
 
The main subject of this chapter is the correlation between two signals. It has a very 
specific definition, presented below, and it is a very effective way of deciding whether 
two signals are “correlated” to each other or not. For example in the case of the radar 
return, the pulse coming back from the target is “correlated” to the pulse we transmit. 
Based on this we will be introducing the concepts of the matched filter, which is at the 
basis of detection mechanisms for both radar and sonar systems. 

 

2. Correlated and Uncorrelated Signals 
VIDEO: Introduction (10:53) 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_1_introduction.mp4 
  
 

In this section we address the problem of determining whether or not two different 
signals are correlated with each other. In particular, given two signals ][],[ nynx , with 

1,...,0 −= Nn  of the same length N  we want to determine a criterion for which we can 
decide whether or not they are from the same source. 
 
Typical example is in radar or sonar applications. As it is well known, we determine the 
distance of a target by transmitting a pulse (say ][nx ) and detecting the return. The time 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_1_introduction.mp4


interval between transmission and reception gives the information on the distance of 
the target. The figure below illustrates the problem. 
 

 
Transmitted Pulse (top) and received waveform (bottom) 

 
The goal of the radar or sonar system is to detect the transmitted pulse, which in this 
case is one period of a sinusoid, from the received signal shown at the bottom of the 
figure.  In this case we can eyeball where the return is, and it is obvious that, what is 
received, is not an exact replica of the transmitted pulse: there is noise and distortion to 
be taken into account. 
 
The way to proceed is as shown in the figure below.  We compare the transmitted pulse 
with every segment of the recived signal and, based on some decision criterion, we 
decide whteher or not there is any “correlation”  between what is received and what 
has been transmitted. 

 
Detection of the transmitted pulse by comparing the received  signal with 

the transmitted pulse. 
 



From this example it is clear that we need a “measure” of how close (or how 
“correlated”) two signals are. Although the term “correlation” at this point is used very 
loosely, as an everyday term, we will see that it is a well defined mathematical term to 
assess how “correlated”  two signals are. 
 

VIDEO: Inner Product (9:55) 
http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_01_innerProduct.mp4 

 
  
 

The arguments we will be developing are based on the concept of “Inner Product” 
between two vectors. In particular 
 
Definition. Given two discrete time signals ][],[ nynx  with 1,...,0 −= Nn , we define 
the Inner Product between the two signals as 
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For completeness, we include the complex conjugate (“*”) since the signals can be 
complex. In most of what we are going to cover in this course, the signals are real.  
Before going into why this important, let see a couple of properties of the inner product. 
 
Properties of Inner Product. The inner product between two signals (or two vectors) 
defined above is such that: 
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with the equality yyxxxy rrr =
2

 valid if and only if ][][ nxCny =  for some constant C . 

These two properties mean the following: 
a. xxr  is just the energy of the signal by definition and it is never negative; 
b. the square of the inner product itself is upperbounded by yyxxrr , the product of the 
energies of the two signals, and it is maximum when the two signals are the same, 
apart from a scaling factor. 
 
These properties come from a geometric interpretation of signals and vectors, for which 
a signal is a vector in an N dimensional space and the inner product is what the reader 
might have seen in geometry as the “inner product” (also called “internal product” or 
“dot product”) between two vectors. The geometric definition is the product of the 
lengths of the vectors (just like xxr  and yyr ) times the “cos” of the angle in between. 

 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_01_innerProduct.mp4


 
VIDEO: Correlation Coefficient (13 :35) 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_01_correlation.mp4 
 
 
 

By this definition of inner product we define the “correlation coefficient” as 
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with the following properties: 
 
Properties of Correlation Coefficient. Let two signals ][],[ nynx  of the same length N  
be “zero mean”. Then the term xyρ  is such that 
 

10 ≤≤ xyρ  
with 1≈xyρ  if the two signals are similar to each other, and 0≈xyρ  if they are not. 
 
From this we can see that given two signals we have a measure to determine how 
closely related two signals are. 
 
Example. Consider again the radar return we discussed before. Then consider the inner 
product of the signal we transmitted and a part of the received signal with only noise. 
Referring to the figure below, we see the transmitted pulse ][nx , a part of the received 
signal containing only noise (no return) ][ny  and the product ][][ nynx  all with the same 
length 1,...,0 −= Nn . This corresponds to the part of received signal in the leftmost 
window in the previous figure. 
 

 
Transmitted Pulse, Noise only and the product of these two signals 

 
 
Notice that ][][ nynx  has positive and negative values and its sum is fairly small. In fact 
we can easily compute the inner product and correlation coefficients as 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_01_correlation.mp4


 

003.0
982
500

27.2

=

=
=

=

xy

yy

xx

xy

r
r
r

ρ

 

A value 003.0=xyρ  close to “zero” shows that there is no “correlation” between the to 
signals. In other words the reurn pulse is not there. 
 
Example. Now take the case in which there is a return. The figure below shows again the 
transmitted pulse ][nx  and a segment ][ny  of the received signal where there is a 
return, together with their product ][][ nynx . 
 

 
Transmitted Pulse, Received Pulse and the product of these two signals 

 
Since ][nx  and ][ny  tend to be the same (or at least similar), the product ][][ nynx  
tends to be mostly positive. Therefore the inner product (ie the sum of  ][][ nynx ) will 
not be small and the correlation coefficient is computed as 
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and it is fearly close to “one”. This shows that the signal is there. 
 

3. Inner Product in Matlab 
VIDEO: Inner Product in Matlab (4:48) 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_02_innerProductMatlab.mp4 
 

As we have seen several times, in Matlab a finite length signal is a vector of samples. 
Although in the time domain we tend to start the first index at “zero”, indicating “time 
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zero” as a starting point, in Matlab the index cannot be negative and it starts at “one”. 
For this reason we make a distinction in notation between a discrete time signal ][nx , 
n=0,…,N-1, and the elements Nnnx ,..,1),( =  of a vector in Matlab, as 
 

[ ])(),...,1( Nxxx =  
Given two signals as row  vectors x  and y  of the same length, the inner product is 
computed as 
 
rxy = x*y’ 
 
where the “prime” stands for “complex conjugate and transpose”.  
See a couple of examples. 
 
Example. Consider the two signals shown below, each one stored as a row vector. 
 

 
Two signals for the example 

Then we can compute 
 
rxy  = x*y’; 
rxx  = x*x’; 
ryy  = y*y’; 
rho = abs(rxy)/sqrt(rxx*ryy) 
 
and this yields rxy=-19.7, rxx=218.8, ryy=241.9 and the correlation coefficient 
rho=0.0856. This shows that the two signals are not correlated with each other. 
 
Example. Take two other signals shown in the figure below. 
 



 
Two signals for the example 

 
Same computations as for the previous example yield rxy=230.9, rxx=229.6, ryy=234.3 
and the correlation coefficient rho=0.995 close to “one”, so the two signals are strongly 
correlated. 
 

4. The Matched Filter. 
 

VIDEO: Radar/Sonar Application (4:15) 
http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_05_radarSonar.mp4 

 
In this section we want to extend what we understand about the inner product and the 
correlation coefficient to the design of a filter to detect the time of arrival of a pulse. 
This filter will be called a “matched filter” since it is matched to the particular pulse we 
try to detect.  
 
Standard application to radar or sonar is shown in the figure below where again we 
show the received signal with additive noise and the transmitted pulse (one period of a 
sinusoid). 
 

 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_05_radarSonar.mp4


Correlation between received signal and transmitted pulse 
 
At every time n  define the following 
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It is easy to see that  ][nrys  defined in this way is the inner product between the 
transmitted pulse 1,...,0],[ −= Ns   and the window of received data 

1,...,0],[ −=+ Nny  , starting at sample n.  Following what we have seen in the 
previous section, when 0nn ≠  we correlate the pulse with just noise, and the result is 
small. When 0nn =  we correlate the transmitted pulse with the received pulse, and the 
output is large. 
 

VIDEO: Matched Filter (18:37) 
http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_06_matchedFilter.mp4 

  
A close look at the expression above shows that it can be written as a “convolution” and 
therefore implemented as a digital filter. In fact write it as 
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and compare it with the response of a digital FIR filter seen in the previous chapters, as 
 

]1[]1[]1[]1[...][]0[][ˆ +−−+−++= NnyNhnyhnyhnr  
 
 
Comparing the last two equations, we can see that the impulse response 
 

1,...,0],1[][ * −=−−= NnnNsnh  
 

yields an FIR filter whose output is given by 
 

]1[][ˆ +−= Nnrnr ys  

that is to say ][nrys  with a time delay of 1−N . The impulse response of this filter is just 

the transmitted pulse, reversed in time and cojugated, since ]1[]0[ * −= Nsh , 
]2[]1[ * −= Nsh , …, ]0[]1[ *sNh =− . 

 
This is shown in the figure below. 
 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_06_matchedFilter.mp4


 
Crosscorrelation as the output of an FIR Filter 

 
If the received signal is like 
 

][][][ 0 nwnnAsny +−=  
with A  indicating attenuation and ][nw  additive noise, the output of the matched filter 
yields a peak at time 10 −+= Nnn , that is to say with a time delay depending on the 
length of the transmitted pulse. 
 
Example. Assume again that the transmitted pulse 19,...,0],[ =nnx  is one period of a 
sinusoid and the transmitted signal is shown below. 
 

 
Received Signal ][ny  and output of matched  filter 

If the maximum at the output of the match filter is (say) at n=120, then the time of 
arrival of the pulse (time delay between transmitted and received signal) is 
 

101191200 =−=n  

 

5. Autocorrelation of a Signal 
VIDEO: Autocorrelation (14:03) 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_07_autocorrelation.mp4 
  

Now the question is how do we choose a “good pulse”, ie a pulse with a sharp maximum 
with no ambiguities. In the absence of noise, let us see how we can characterize the 
output of a match filter. Again assume the input to be ][][ 0nnAsny −=  with no noise, 
and the output of the match filter becomes 
 

]1[][ˆ +−= Nnrnr ys  
with 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_07_autocorrelation.mp4
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The sequence ][nrss  defined as 
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is called the autocorrelation of the signal and it contains quite a bit of information on 
the signal characteristics. See an example. 
 
Example. Let 1,...,0],[ −= Nnns  be a rectangular pulse as shown on the left of the 
figure below. 
 

 
Rectangular Pulse (left) and its Autocorrelation (right) 

 
Its autocorrelation ][nrss  is shown n the right, and it can be easily computed by applying 
the definition. In fact, see a few terms 
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and in general, for any k  between 1 and N-1 we can write 
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The plot of this data yields a triangle as shown above. 
 
Clearly for more complex signals we can use “xcorr” in Matlab as follows 
 
N=20;  % data length 
s=ones(1,N); % rectangular pulse of length N 
rss=xcorr(s); % compute autocorrelation 



n=-N+1:N-1; % vector of indeces for the plot 
stem(n,rss) % plot the autocorrelation 
 
The end result of the plot is shown in the figure below and it is as expected. 
 

 
Autocorrelation of rectangular pulse of length N=20 samples 

 
One thing we can see from this plot is that the maximum is not very sharp and, with a 
bit of noise, it can exhibit some uncertainties. 
 
Let’s see some other signals. 
 
Example. Let ][ns  be a sinusoidal signal of length 50=N  as shown on the left of the 
figure below. Its autocorrelation is shown on te right hand side of the same figure.  
 

 
Sinusoid (left) of length N=50 samples and its autocorrelation (right) 

 
Notice that the autocorrelation hs several peaks, negative and positive and still it is not 
very concentrated around te mximum. 



 
Example. Let the pulse ][ns  be a chirp of length 50=N  samples. It is generated in 
Matlab as 
 
s=chirp(0:49,0,49,0.1) 
 
The signal (left) and its autocorrelation (right)  are shown in the figure below. Notice 
now that the peak is sharp and this is very good choice for target detection. 
 

 
Chirp (left) and its autocorrelation (right) 

 
Example. Last example is a signal ][ns  which is generated as pseudonoise as 
 
s=randn(1,N); 
 
with N again the pulse length in number of samples. The pulse and its autocorrelation 
are shown in the figure below. Notice that, even for this signal here, the autocorrelation 
has a sharp peak, just suitable for signal detection. 
 

 
Pseudonoise (left) and its autocorrelation (right) 

 
 



6. Detection with Noise 
VIDEO: Detection with Noise (24.39) 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_08_detectionWithNoise.mp4 
 

In this last section we see a very important property of the matched filter. When the 
pulse is detected, this filter yields a peak. But the question now is how is this peak 
affected by noise.  
 
In order to see this we need to first characterize noise and  disurbances. In  numerous 
applications a disturbance ][nw  is characterized by what is called “white noise”. It 
sounds exactly like the colorless white noise we experience in real life when, for 
example, we turn on the radio or the TV and there is no reception: we just hear some 
“white noise”. It is called white because it contains all the frequencies like the white 
light. 
 
A plot of a white noise signal, generated in Matlab as 
 
w = randn(1,N); 
 
is shown in the figure below. 
 

 
White Noise 

 
As the sequence tends to an infinite length, its autocorrelation ][nrww  tends to become 
a “delta” function as shown in the figure below. 
 

http://faculty.nps.edu/rcristi/eo3404/c-filters/videos/c3_08_detectionWithNoise.mp4


 
Autocorrelation of White Noise 

 
 
What is important now is to understand how a white noise disturbance affects the 
output of the matched filter. In other words we want to see what is the relationship 
between the Signal to Noise Ratio of the received signal, at the input of the filter, and 
the Signal to Noise Ratio after the matched filter. We will see that the SNR itself will be 
improving by a factor of N, the length of the transmitted pulse. 
 
In order to see this, consider the figure below, where we have a filter with impulse 
response 1,..,0],[ −= Nnnh , of length N samples and the input is a white noise signal 

][nw . The goal is to relate the power of the signal at the output with the power of the 
signal at the input. 
 

 
 

White Noise Input ][nw  to an FIR filter and the corresponding output ][nw  
 
If we call ][nw  the output of the filter, it is related to the input by the convolution as 
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From this expression we can compute the average Power by taking the average over a 
long sequence as 
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For a length M large, the rightmost sum tends to the ideal correlation of the white 
noise, as 
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As a consequence we can see that as ∞→M ,  
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Now let us go back to the matched filter which is recalled in the figure below. 
 

 
Summary of Matched Filter with Additive Noise 

 
At the peak of the output, ie at 10 −+= Nnn , the output of the filter is 
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is the square of the peak of the signal, what we can call the instantaneous power (there 
is  only one sample!) at detection. Also the Power of the noise, from what we have seen 
before, becomes 
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Therefore the Signal to Noise Ratio at the peak of the output signal becomes 
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since the pulse at the receiver has a Power 
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The above expression shows the relation between the received SNR and the SNR after 
the matched filter, when we have a detection. The very good news is that there is a 
“Processing Gain” N which depends on the length of the pulse. Let ‘s see and example. 
 
Example. Suppose we transmit the chirp shown, with length N=50 samples. Let the SNR 
at the receiver be SNR=0dB. 
 

 
Transmitted and Detected Chirp with length N=50 and received SNR=0dB 

 
The peak of the output shows that we have a detection of the pulse and, at the peak, 
the SNR is dB17)50(log10 10 =  
 
Long chirps of lengths N=100 and N=300 are shown below, for the same SNR=0dB at the 
reception. As expected, the values of the peak get larger as the pulse length N in 
creases. 
 

 
 
Transmitted and Detected Chirp with length N=100 and received SNR=0dB 

 



 

 
Transmitted and Detected Chirp with length N=300 and received SNR=0dB 
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