Chapter 7: DFT Filter Bank Solutions

■ Problem 7.1

Problem

An FIR Filter has Transfer function H (z) = 2 + z^{-1} - z^{-2} + 0.5 z^{-3} and frequency response H (ω).

- a) Determine the Impulse Response of the filter F (z) with frequency response F (ω) = H (ω 0.2 π). Is the impulse response going to be real?
- b) Determine the impulse response of the filter G (z) with frequency response H (ω 0.2 π) + H (ω + 0.2 π). How do you relate the two impulse responses f [n] and g[n] ?

Solution

a) The transfer function F (z) is determined as F (z) = H (ze^{-j0.2 π}). In fact you can verify that F (ω) = F (z) |_{z=e^{j ω}} = H (e^{j ω} e^{-j0.2 π}) = H (ω - 0.2 π). Substituing for the z-Transform we obtain

$$F(z) = 2 + e^{j0.2\pi} z^{-1} - e^{j0.4\pi} z^{-2} + 0.5 e^{j0.6\pi} z^{-3}$$

This yields an impulse response

$$\texttt{f[n]} \,=\, 2\; \delta \, \texttt{[n]} \,+\, e^{\, \mathsf{j} \, \mathsf{0} \,\cdot 2\, \pi} \; \delta \, \texttt{[n-1]} \,-\, e^{\, \mathsf{j} \, \mathsf{0} \,\cdot 4\, \pi} \; \delta \, \texttt{[n-2]} \,+\, \mathsf{0.5} \; e^{\, \mathsf{j} \, \mathsf{0} \,\cdot 6\, \pi} \; \delta \, \texttt{[n-3]}$$

Notice that it is computed as $f[n] = h[n] e^{j0.2\pi n}$, with h[n] the impulse response of H(z).

b) By the same argument the transfer function can be determined as

G (z) = H (ze<sup>-j0 .2
$$\pi$$</sup>) + H (ze^{j0 .2 π}) . Therefore the transfer function becomes

G (z) = 4 + 2 cos (0.2
$$\pi$$
) z⁻¹ - 2 cos (0.4 π) z⁻² + cos (0.6 π) z⁻³ = 4 + 1.61803 z⁻¹ - 0.6180 z⁻² - 0.3090 z⁻³

and the impulse response

$$g[n] = 4 \delta[n] + 1.61803 \delta[n-1] - 0.6180 \delta[n-2] - 0.3090 \delta[n-3]$$

It is computed as $g[n] = (e^{j0 \cdot 2 \pi n} + e^{-j0 \cdot 2 \pi n}) \ h[n] = 2 \cos (0.2 \pi n) \ h[n]$. Therefore $g[n] = 2 \text{ Real } \{f[n]\}$.

Problem

You want to determine the low frequency and high frequency components of a signal x[n]. Design an efficient filter bank where the prototype filter has at least 50dB attenuation in the stopband and a transition region of $\Delta\omega = 0.1 \pi$. Use the window method.

Solution

The prototype filter is a low pass filter with bandwidth π / 2, with impulse response

$$h_0[n] = \frac{\sin(\frac{\pi}{2}n)}{\pi n} w[n]$$

with w[n] the non causal window sequence. Since we need 50dB attenuation in the stopband we use a Blackman window, which has a transition region $\Delta \omega = 12 \,\pi / \,\text{N}$. Therefore we determine the filter length N from the transition band as

$$\frac{12\,\pi}{N} \leq 0.1\,\pi$$

This yields N = 121. The Low Pass Filter $H_0(z)$ has the polyphase decomposition

$$H_0(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

where

$${\tt E_0} \ (\, z \,) \ = {\textstyle \sum\limits_n} \ h_0 \, [\, 2 \, \, n \,] \ z^{-n} \, = \, w \, [\, 0 \,] \ = \, 1$$

since $h_0[2n] = 0$ for $n \neq 0$. Similarly

$$E_1\left[\,n\,\right] \; = \; \underset{n}{\varSigma} \; h_0\left[\,2\;n\,+\,1\,\right] \; \; z^{-n} \; = \; \underset{n}{\varSigma} \; \; \frac{\; \sin\;\left(\pi n + \frac{\pi}{2}\,\right)}{\pi\;\left(\,2\;n + 1\,\right)} \; \; w\left[\,2\;n\,+\,1\,\right] \; \; z^{-n}$$

■ Problem 7.3

Solution

The prototype filter has frequency response $H(\omega)$ with bandwith $\frac{\pi}{M} = \frac{\pi}{8}$. Therefore the non causal impulse response of the prototype filter is given by

$$h[n] = \frac{\sin(\frac{\pi}{8}n)}{\pi n} w[n]$$

with w[n] being a window of length N+1=21. For example let w[n] be a hamming window, which has the expression

$$w\left[n-\frac{N}{2}\right]=0.54-0.46$$
 cos $\left(\frac{2\,\pi}{N}\right.n)$ for $0\leq n\leq N$

where we listed the causal expression generally found in most tables. From this expression it is easy to see that

$$w[n] = 0.54 + 0.46 \cos(\frac{2\pi}{20}n)$$
 for $-10 \le n \le 10$

Finally the expression of the impulse response h[n] becomes

$$h[n] = \left(\frac{\sin(\frac{\pi}{8}n)}{\pi n}\right) (0.54 + 0.46\cos(\frac{\pi}{10}n)) \text{ for } -10 \le n \le 10$$

and zero otherwise.

The transfer function of the prototype filter is then given by

$$\begin{array}{l} \text{H (z)} = -0.0018 \ z^{10} - 0.0014 \ z^9 + \ 0.0000 \ z^8 + \\ 0.0047 \ z^7 + \ 0.0149 \ z^6 + \ 0.0318 \ z^5 + \ 0.0543 \ z^4 + \\ 0.0794 \ z^3 + \ 0.1027 \ z^2 + \ 0.1191 \ z + \ 0.1250 + \\ 0.1191 \ z^{-1} + \ 0.1027 \ z^{-2} + \ 0.0794 \ z^{-3} + \\ 0.0543 \ z^{-4} + \ 0.0318 \ z^{-5} + \ 0.0149 \ z^{-6} + \ 0.0047 \ z^{-7} + \\ 0.0000 \ z^{-8} - 0.0014 \ z^{-9} - 0.0018 \ z^{-10} \\ \end{array}$$

The eight polyphase components of the prototype filter then become as follows:

$$E_{-k}(z^8) = \sum_{n=-\infty}^{+\infty} h[8n-k] z^{-8n}$$
, for $k = 0, 1, ..., 7$

which yields

$$\begin{split} &E_0 \ (z^8) = h[-8] \ z^8 + h[0] \ z^0 + h[8] \ z^{-8} = 0.1250 \\ &E_{-1} \ (z^8) = h[-9] \ z^8 + h[-1] \ z^0 + h[7] \ z^{-8} = -0.0014 \ z^8 + 0.1191 + 0.0047 \ z^{-8} \\ &E_{-2} \ (z^8) = h[-10] \ z^8 + h[-2] \ z^0 + h[6] \ z^{-8} = -0.0018 \ z^8 + 0.1027 + 0.0149 \ z^{-8} \\ &E_{-3} \ (z^8) = h[-3] \ z^0 + h[5] \ z^{-8} = 0.0794 + 0.0318 \ z^{-8} \\ &E_{-4} \ (z^8) = h[-4] \ z^0 + h[4] \ z^{-8} = 0.0543 + 0.0543 \ z^{-8} \\ &E_{-5} \ (z^8) = h[-5] \ z^0 + h[3] \ z^{-8} = 0.0318 + 0.0794 \ z^{-8} \\ &E_{-6} \ (z^8) = h[-6] \ z^0 + h[2] \ z^{-8} + h[10] \ z^{-16} = 0.0149 + 0.1027 \ z^{-8} - 0.0014 \ z^{-16} \\ &E_{-7} \ (z^8) = h[-7] \ z^0 + h[1] \ z^{-8} + h[9] \ z^{-16} = 0.0047 + 0.1191 \ z^{-8} - 0.0014 \ z^{-16} \end{split}$$

The implementation is shown below.

Solution

- a), b), c) H (z) is M Band, since h [4 n] = 0 for $n \neq 0$;
- d) H (z) is not M Band since $\sum\limits_{k}$ H (ω k $\frac{\pi}{2}$) is not a constant for all ω , as shown below.

e) H (z) is M – Band since $\sum\limits_{k}$ H (ω – k $\frac{\pi}{2}$) is a constant as shown below.

Solution

Let $\omega_1 = \frac{\pi}{5} - \Delta \omega$ and $\omega_2 = \frac{\pi}{5} + \Delta \omega$ for any $0 \le \Delta \omega \le \frac{\pi}{5}$. Then H (z) is an M – Band filter with A = $\frac{1}{5}$ as shown below.

■ Problem 7.6

Solution

With M = 16 the prototype filters for both Analysis and Synthesis have a bandwidth $\omega_c = \pi / 16$. From what we have seen about maximally decimated DFT Filter banks, if we want to use FIR filters, the only possibility for perfect reconstruction is that both filters h[n] and g[n] in the analysis and synthesis network have length M = 16. In this way we would have

$$H(z) = h[0] + h[-1]z + ... + h[-15]z^{15}$$

 $G(z) = g[0] + g[1]z^{-1} + ... + g[15]z^{-15}$

with the Perfect Reconstruction condition

$$h[n] g[n] = \frac{1}{16}$$

What makes this problem a bit different from the standard FIR window based design problem is the fact the filter order is odd, ie the total filter length is 16, which is even. In Chapter 4 we have considered only the case where the total filter length is odd as N = 2L + 1. Although most of the time this is not a major restriction, in this case we have to design a filter with the precise length, and none of the filter coefficients can be zero. In other words we cant use (say) a filter with length 14, and assume h[-15] = 0, since this would require $g[15] = \infty$, clearly not feasable.

In order to design a filter with even length, we can call $H_d(\omega)$ the frequency response of an ideal Low Pass Filter with bandwidth ω_c , and compute

$$h_d[n] = \text{IDTFT} \{ H(\omega) e^{-j\frac{\omega}{2}} \} = \frac{1}{2\pi} \int_{-\omega_c}^{+\omega_c} e^{-j\frac{\omega}{2}} e^{j\omega n} d\omega$$

This leads to the impulse response

$$h_d[n] = \frac{\sin(\omega_c(n-\frac{1}{2}))}{\pi(n-\frac{1}{2})}$$

Now the goal is to find a linear phase approximation with a finite number of coefficients. In particular let

$$\hat{H_L}(\omega) = \sum_{n=-L+1}^{L} h_d[n] e^{-j\omega n}$$

which can be written as

$$\hat{H}_L(\omega) = \sum_{n=0}^{L-1} h_d[-n] e^{j\omega n} + \sum_{n=1}^{L} h_d[n] e^{-j\omega n}$$

It is easy to see that $h_d[-n] = h_d[n+1]$ and therefore we can write

$$\hat{H}_L(\omega) = e^{-j\omega} \sum_{n=1}^L h_d[n] e^{j\omega n} + \sum_{n=1}^L h_d[n] e^{-j\omega n}$$

This shows that $e^{j\frac{\omega}{2}} \hat{H}_L(\omega)$ is real, since

$$e^{j\frac{\omega}{2}}\hat{H_L}(\omega) = e^{-j\frac{\omega}{2}}\sum_{n=1}^{L}h_d[n]e^{j\omega n} + e^{-j\frac{\omega}{2}}\sum_{n=1}^{L}h_d[n]e^{-j\omega n}$$

and therefore $\hat{H}_L(\omega)$ has linear phase. As a consequence a causal translation has linear phase too, which leads to the linear phase FIR filter with frequency response

$$\hat{H}_L(\omega) e^{-j\omega(L-1)} = \sum_{n=0}^{2L-1} h_d[n-L+1] e^{-j\omega n}$$

In our case, the bandwidth is $\omega_c = \frac{\pi}{16}$, the filter order is 15 = 2L - 1, which yields L = 8, and the FIR filter bacomes

$$h_d[n] = \frac{\sin(\frac{\pi}{16}(n-7-\frac{1}{2}))}{\pi(n-7-\frac{1}{2})}$$
, for $n = 0, ..., 15$

without including the window. Finally the filters h[n] and g[n] of the analysis and synthesis networks become

$$h[-n] = h_d[n] w[n] = \frac{\sin(\frac{\pi}{16} (n - 7 - \frac{1}{2}))}{\pi(n - 7 - \frac{1}{2})} (0.54 - 0.46 \cos(\frac{2\pi}{15} n)) \quad \text{for } 0 \le n \le N$$

and

$$g[n] = \frac{16}{h[-n]}$$
, for $0 \le n \le N$

In terms of the polyphase decomposition, every term is a constant, as

$$E_{-k}(z) = h[-k]$$
$$F_k(z) = g[k]$$

for k = 0, ..., 15. It is just a matter of computing the coefficients to determine the final result shown in the figure below for the analysis network.

Solution

First we can verify that, in the the system below

which yields $w[n] = v[n] \delta_2[n] = \frac{1}{2} (v[n] + (-1)^n v[n])$. Therefore, as you recall,

$$W(\omega) = \frac{1}{2} V(\omega) + \frac{1}{2} V(\omega - \pi)$$

and therefore

$$W(z) = \frac{1}{2} V(z) + \frac{1}{2} V(-z)$$

Applying this result it is easy to see that

$$Y(z) = G(z) \left(\frac{1}{2} H(z) X(z) + \frac{1}{2} H(-z) X(-z) \right)$$

= $\frac{1}{2} G(z) H(z) X(z) + \frac{1}{2} G(z) H(-z) X(-z)$

■ Problem 7.8

Solution

In this case we have a filter bank with two filters. Therefore M=2 and forperfect reconstruction the filters have to be

$$H(z) = h[0] + h[-1] z$$

$$G(z) = g[0] + g[1] z^{-1}$$

with the condition

$$h[0] g[0] = \frac{1}{2}$$

 $h[-1] g[1] = \frac{1}{2}$

Then Let us see how to relate $X(z) = Z\{x[n]\}$ with $Y(z) = Z\{y[n]\}$. Applying the result from the previous problem we have

$$Y(z) = G(z) \left(\frac{1}{2} H(z) X(z) + \frac{1}{2} H(-z) X(-z) \right) +$$

$$+ G(-z) \left(\frac{1}{2} H(-z) X(z) + \frac{1}{2} H(z) X(-z) \right)$$

which becomes

$$Y(z) = \frac{1}{2} (G(z) H(z) + G(-z) H(-z)) X(z) + \frac{1}{2} (G(z) H(-z) + G(-z) H(z)) X(-z)$$

Now let's see the two transfer functions $X(z) \to Y(z)$ and $X(-z) \to Y(z)$ with the perfect reconstruction conditions above:

$$\frac{1}{2} (G(z) H(z) + G(-z) H(-z)) =$$

$$\frac{1}{2} ((g[0] + g[1] z^{-1}) (h[0] + h[-1] z) + ((g[0] - g[1] z^{-1}) (h[0] - h[-1] z)) =$$

$$=$$

$$\frac{1}{2} (2 (g[0] h[0] + g[1] h[-1]) + (g[0] h[-1] - g[0] h[-1]) z + (g[1] h[0] - g[1] h[0]) z^{-1})$$

$$= 1 \quad \text{for all } z$$

$$\frac{1}{2} (G(z) H(-z) + G(-z) H(z)) =$$

$$\frac{1}{2} ((g[0] + g[1] z^{-1}) (h[0] - h[-1] z) + ((g[0] - g[1] z^{-1}) (h[0] + h[-1] z)) =$$

$$=$$

$$\frac{1}{2} (2 (g[0] h[0] - g[1] h[-1]) + (-g[0] h[-1] + g[0] h[-1]) z + (g[1] h[0] - g[1] h[0]) z^{-1})$$

$$= 0 \quad \text{for all } z$$

Therefore, as expected,

$$Y(z) = X(z)$$

and the filter bank perfectly reconstructs the input signal.

■ Problem 7.9

Solution

a) From the Problem 7.8, we can write Y(z) in terms of the input signal X(z) and its alias X(-z). The aliasing comes from the downsampling operation.

In terms of the DTFT we can write

$$Y(\omega) = A(\omega) X(\omega) + B(\omega) X(\omega - \pi)$$

where

$$A(\omega) = \frac{1}{2} G(\omega) H(\omega) + \frac{1}{2} G(\omega - \pi) H(\omega - \pi)$$

$$B(\omega) = \frac{1}{2} G(\omega) H(\omega - \pi) + \frac{1}{2} G(\omega - \pi) H(\omega)$$

In our case the two prototype filters have frequency response $H(\omega) = G(\omega)$ as shown below.

Therefore:

$$A(\omega) = \left\{ \frac{\left(\frac{10}{\pi}\right)^2 |\omega - 0.55\pi|^2 + \left(\frac{10}{\pi}\right)^2 |\omega - 0.45\pi|^2 \text{ if } 0.45\pi < |\omega| < 0.55\pi}{1} \right\}$$
 otherwise

Analogously:

$$B(\omega) = \begin{cases} -\left| \frac{10}{\pi} \right|^2 (\left| \omega \right| - 0.55 \pi) (\left| \omega \right| - 0.45 \pi) & \text{if } 0.45 \pi < \left| \omega \right| < 0.55 \pi \\ 0 & \text{otherwise} \end{cases}$$

and the maximum value is at $\omega = \pm \frac{\pi}{2}$ where the maximum is $B(\pm \frac{\pi}{2}) = 0.25$, as shown below.

b) For the given signal

$$X(\omega) = 20 \pi \delta(\omega) + 2 \pi \delta(\omega - 0.2 \pi) + 2 \pi \delta(\omega + 0.2 \pi) - 3 \pi \delta(\omega - 0.7 \pi) - 3 \pi \delta(\omega + 0.7 \pi),$$
 for
-π ≤ ω < π

Therefore the reconstructed signal becomes

$$Y(\omega) = A(\omega) X(\omega) + B(\omega) X(\omega - \pi)$$

with $A(\omega)$, $B(\omega)$ as above, and

$$X(\omega - \pi) = 20 \pi \delta(\omega - \pi) + 2 \pi \delta(\omega + 0.8 \pi) + 2 \pi \delta(\omega - 0.8 \pi) - 3 \pi \delta(\omega + 0.3 \pi) - 3 \pi \delta(\omega - 0.3 \pi)$$

From the plot of $A(\omega)$ and $B(\omega)$ we can verify that

$$A(0) = A(\pm 0.2 \pi) = A(\pm 0.7 \pi) = 1$$

$$B(\pm \pi) = B(\pm 0.8 \pi) = A(\pm 0.3 \pi) = 0$$

and therefore, for the given signal, y[n] = x[n].

■ Problem 7.10

Solution

First let's see what is the transfer function (or the frequency response) of the system shown below.

Applying standard considerations we can see that

$$Y(\omega) = \frac{1}{2} Q(\frac{\omega}{2}) V(\frac{\omega}{2}) + \frac{1}{2} Q(\frac{\omega}{2} - \pi) V(\frac{\omega}{2} - \pi)$$

Also, from the upsampler, $V(\omega) = X(2\omega)$, which implies

$$V(\frac{\omega}{2}) = X(\omega)$$

$$V(\frac{\omega}{2} - \pi) = X(2(\frac{\omega}{2} - \pi)) = X(\omega - 2\pi) = X(\omega)$$

using the periodicity of the DTFT. Therefore, substituting into the expression for $Y(\omega)$ we obtain

$$Y(\omega) = \frac{1}{2} \left(Q(\frac{\omega}{2}) + Q(\frac{\omega}{2} - \pi) \right) X(\omega)$$
$$= Q_0(\omega) X(\omega)$$

Therefore the impulse response $q_0[n] = \text{IDTFT}\{Q_0(\omega)\}\$ is the impulse response q[n] downsampled by two, ie

$$q_0[n] = q[2n]$$

In other words from the polyphase decomposition

$$Q(z) = Q_0(z^2) + z^{-1} Q_1(z^2)$$

where

$$Q_k(z) = Z\left\{q[2\,n+k]\right\}$$

we can determine the transfer function $Q_0(z)$.

a) We want to determine the four transfer functions $Y_i(z)/X_j(z)$ for i, j = 0, 1. See each one separately:

 $\frac{Y_0(z)}{X_1(z)} = 0$: since, in this case

$$Q(z) = G_1(z) H_0(z) = \frac{1}{4} (1 - z^{-1} + z^{-2} - z^{-3}) \frac{1}{4} (1 + z^1 + z^2 + z^3)$$
$$= \frac{1}{16} (-z^{-3} - z^{-1} + z + z^3)$$

and therefore $Q_0(z) = 0$ since there are no even powers of z in Q(z).

 $\frac{Y_1(z)}{X_0(z)} = 0$: since, in this case

$$Q(z) = G_0(z) H_1(z) = \frac{1}{4} (1 + z^{-1} + z^{-2} + z^{-3}) \frac{1}{4} (1 - z^1 + z^2 - z^3)$$
$$= \frac{1}{16} (z^{-3} + z^{-1} - z - z^3)$$

and therefore $Q_0(z) = 0$ since there are no even powers of z in Q(z)

$$\frac{Y_0(z)}{X_0(z)} = \frac{1}{16} (2 z^{-1} + 4 + 2 z)$$
: since, in this case

$$Q(z) = G_0(z) H_0(z) = \frac{1}{4} (1 + z^{-1} + z^{-2} + z^{-3}) \frac{1}{4} (1 + z^1 + z^2 + z^3)$$
$$= \frac{1}{16} (z^{-3} + 2 z^{-2} + 3 z^{-1} + 4 + 3 z + 2 z^2 + z^3)$$

and the polyphase decomposition

$$Q(z) = \frac{1}{16} (2 z^{-2} + 4 + 2 z^{2}) + z^{-1} \frac{1}{16} (z^{-2} + 3 + 3 z^{2} + z^{4})$$

which yields

$$Q_0(z) = \frac{1}{16} (2 z^{-1} + 4 + 2 z).$$

 $\frac{Y_1(z)}{X_1(z)} = \frac{1}{16} (2z^{-1} + 4 + 2z)$: since, in this case

$$Q(z) = G_1(z) H_1(z) = \frac{1}{4} (1 - z^{-1} + z^{-2} - z^{-3}) \frac{1}{4} (1 - z^1 + z^2 - z^3)$$

= $\frac{1}{16} (-z^{-3} + 2z^{-2} - 3z^{-1} + 4 - 3z + 2z^2 - z^3)$

and the polyphase decomposition

$$Q(z) = \frac{1}{16} (2 z^{-2} + 4 + 2 z^2) + z^{-1} \frac{1}{16} (-z^{-2} - 3 - 3 z^2 - z^4)$$

which yields

$$Q_0(z) = \frac{1}{16} (2 z^{-1} + 4 + 2 z).$$