
Chapter 7: DFT Filter Bank Solutions

à Problem 7.1 

Problem

An FIR Filter has Transfer function  Hz  2  z1  z2  0.5z3  and frequency response 
H . 

a) Determine the Impulse Response of the filter Fz  with frequency response 
F  H  0.2 . Is the impulse response going to be real?

b) Determine the impulse response of the filter Gz  with frequency response 
H  0.2  H  0.2 . How do you relate the two impulse responses fn  and  gn  ?

Solution

a) The transfer function Fz  is determined as Fz  Hzej0.2 . In fact you can verify that 
F  Fz zej  Hejej0.2  H  0.2 . Substituing for the z-Transform we 
obtain

 Fz  2  ej0.2z1  ej0.4z2  0.5ej0.6z3

This yields an impulse response

 fn  2n  ej0.2n  1  ej0.4n  2  0.5ej0.6n  3
Notice that it is computed as fn  hnej0.2n , with hn  the impulse response of Hz .

b) By the same argument the transfer function can be determined as 
Gz  Hzej0.2  Hzej0.2 . Therefore the transfer function  becomes

 Gz  4  2cos0.2z1  2cos0.4z2  cos0.6z3

 4  1.61803z1  0.6180z2  0.3090z3

and the impulse response

 gn  4n  1.61803n  1  0.6180n  2  0.3090n  3
It is computed as gn  ej0.2n  ej0.2nhn  2cos0.2nhn . Therefore 
gn  2Realfn .



à Problem 7.2

Problem

You want to determine the low frequency and high frequency components  of a signal xn . Design 
an efficient filter bank where the prototype filter has at least 50dB attenuation in the stopband and a 
transition region of   0.1 . Use the window method.

Solution

The prototype filter is a low pass filter with bandwidth 2 , with impulse response

 h0n  sin 2 nn wn
with wn  the non causal window sequence. Since we need 50dB attenuation in the stopband we use 
a Blackman window, which has a transition region   12N . Therefore we determine the filter 
length N  from the transition band as

 12N  0.1

This yields N  121 . The Low Pass Filter H0z  has the polyphase decomposition

 H0z  E0z2  z1E1z2
where

 E0z  
n
h02nzn  w0  1

since h02n  0  for n  0 . Similarly

 E1n  
n
h02n  1zn  

n
 sinn 2 2n1 w2n  1zn

à Problem 7.3

Solution

The prototype filter has frequency response H  with bandwith M  8 . Therefore the non causal 
impulse response of the prototype filter is given by

 hn  sin 8 nn wn
with wn  being a window of length N  1  21 . For example let wn  be a hamming window, 
which has the expression

 wn  N2   0.54  0.46 cos 2N n   for 0  n  N
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where we listed the causal expression generally found in most tables. From this expression it is easy to 
see that

 wn  0.54  0.46cos 220 n   for 10  n  10

Finally the expression of the impulse response hn  becomes

 hn   sin 8 nn 0.54  0.46cos 10 n   for  10  n  10

and zero otherwise.

The transfer function of the prototype filter is then given by

 Hz  0.0018z10  0.0014z9  0.0000z8 

0.0047z7  0.0149z6  0.0318z5  0.0543z4 

0.0794z3  0.1027z2  0.1191z  0.1250 

0.1191z1  0.1027z2  0.0794z3 

0.0543z4  0.0318z5  0.0149z6  0.0047z7 

0.0000z8  0.0014z9  0.0018z10

The eight polyphase components of the prototype filter then become as follows:

 Ekz8  
n


h8n  kz8n ,  for k  0, 1, ..., 7

which yields

 E0z8  h8z8  h0z0  h8z8  0.1250
E1z8  h9z8  h1z0  h7z8  0.0014z8  0.1191  0.0047z8

E2z8  h10z8  h2z0  h6z8  0.0018z8  0.1027  0.0149z8

E3z8  h3z0  h5z8  0.0794  0.0318z8

E4z8  h4z0  h4z8  0.0543  0.0543z8

E5z8  h5z0  h3z8  0.0318  0.0794z8

E6z8  h6z0  h2z8  h10z16  0.0149  0.1027z8  0.0018z16

E7z8  h7z0  h1z8  h9z16  0.0047  0.1191z8  0.0014z16

The implementation is shown below.

Solutions_Chapter_7[1].nb 3



)( 8
0 zE



][nx ][0 nv

][1 nv

][7 nv

)( 8
1 zE

)( 8
7 zE

z

z

z DFT


à Problem 7.4

Solution

a) , b), c) Hz  is M Band, since h4n  0  for n  0;

d) Hz  is not  M Band since 
k
H  k 2   is not a constant for all  , as shown below.
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e) Hz  is M   Band since  
k
H  k 2   is a constant as shown below.
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à Problem 7.5

Solution

Let 1  5    and 2  5    for any  0    5 . Then Hz  is an M Band filter with 
A  15  as shown below.
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à Problem 7.6

Solution

With M  16  the prototype filters for both Analysis and Synthesis  have  a bandwidth c   16 . 
From what we have seen about maximally decimated  DFT Filter banks, if we want to use FIR filters, 
the only possibility for perfect reconstruction is that both filters hn  and gn  in the analysis and 
synthesis network have length M = 16. In this way we would have
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 Hz = h0 + h-1 z + ... + h-15 z15

Gz = g0 + g1 z-1 + ... + g15 z-15

with the Perfect Reconstruction condition

 hn gn = 1ÅÅÅÅÅÅÅ16

What makes this problem a bit different from the standard FIR window based design problem is the 
fact the filter order is odd, ie the total filter length is 16, which is even. In Chapter 4 we have consid-
ered only the case where the total filter length is odd as N = 2 L + 1. Although most of the time this is 
not a major restriction, in this case we have to design a filter with the precise length, and none of the 
filter coefficients can be zero. In other words we cant use (say) a filter with length 14, and assume 
h-15 = 0, since this would require g15 = ¶ , clearly not feasable.

In order to design a filter with even length, we can call Hdw  the frequency response of an ideal Low 
Pass Filter with bandwidth wc , and compute 

 hdn = IDTFT Hw e- j wÅÅÅÅÅ2  = 1ÅÅÅÅÅÅÅÅ2 p  
-wc

+wc

e- j wÅÅÅÅÅ2  ejwn dw

This leads to the impulse response

 hdn = sinwcn- 1ÅÅÅÅ2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pn- 1ÅÅÅÅ2 

Now the goal is to find a linear phase approximation with a finite number of coefficients. In particular 
let

 HL
` w = S

n=-L+1

L
 hdn e-jwn

which can be written as

 HL
` w = S

n=0

L-1
 hd-n ejwn + S

n=1

L
 hdn e-jwn

It is easy to see that hd-n = hdn + 1  and therefore we can write

 HL
` w = e-jw S

n=1

L
 hdn ejwn + S

n=1

L
 hdn e-jwn

This shows that e j wÅÅÅÅÅ2  H
`

Lw  is real, since

 e j wÅÅÅÅÅ2  HL
` w = e- j wÅÅÅÅÅ2  S

n=1

L
 hdn ejwn + e- j wÅÅÅÅÅ2  S

n=1

L
 hdn e-jwn

and therefore H
`

Lw  has linear phase. As a consequence a causal translation has linear phase too, 
which leads  to the linear phase FIR filter with frequency response

 HL
` w e-jwL-1 = S

n=0

2 L-1
 hdn - L + 1 e-jwn
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In our case, the bandwidth is wc = pÅÅÅÅÅÅÅ16 , the filter order is 15 = 2 L - 1, which yields L = 8, and the FIR 
filter bacomes

 hdn = sin pÅÅÅÅÅÅÅ16  n-7- 1ÅÅÅÅ2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pn-7- 1ÅÅÅÅ2  ,  for  n = 0, ..., 15

without including the window. Finally the filters hn  and gn  of the analysis and synthesis networks 
become

 h-n = hdn wn = sin pÅÅÅÅÅÅÅ16  n-7- 1ÅÅÅÅ2 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
pn-7- 1ÅÅÅÅ2   0.54 - 0.46 cos 2 pÅÅÅÅÅÅÅÅ15  n     for 0  n  N

and 

 gn = 16ÅÅÅÅÅÅÅÅÅÅÅÅÅh-n ,   for 0  n  N

In terms of the polyphase decomposition, every term is a constant, as

 E-kz = h-k
Fkz = gk

  

for k = 0, ..., 15. It is just a matter of computing the coefficients to determine the final result shown in 
the figure below for the analysis network.

0034.0

0056.0

0119.0

0218.0

0339.0

0462.0

0562.0

0618.0

0562.0

0618.0

0034.0

0056.0

0119.0

0218.0

0339.0

0462.0

DFT
][nx

PS /

][0 nv

][15 nv





Solutions_Chapter_7[1].nb 7



à Problem 7.7

Solution

First we can verify that, in the  the system below  

 wn =  vn if n even
0 if n odd

2 2
][nv ][nw

which yields wn = vn d2n = 1ÅÅÅÅ2  vn + -1n vn . Therefore, as you recall, 

 W w = 1ÅÅÅÅ2  V w + 1ÅÅÅÅÅ2  V w - p
and therefore

 W z = 1ÅÅÅÅ2  V z + 1ÅÅÅÅ2  V -z
Applying this result it is easy to see that

 Y z = Gz  1ÅÅÅÅ2  Hz X z + 1ÅÅÅÅ2  H-z X -z
= 1ÅÅÅÅ2  Gz Hz X z + 1ÅÅÅÅ2  Gz H-z X -z

à Problem 7.8

Solution

In this case we have a filter bank with two filters. Therefore M = 2 and forperfect  reconstruction the 
filters have to be

 Hz = h0 + h-1 z
Gz = g0 + g1 z-1

with the condition

 h0 g0 = 1ÅÅÅÅ2

h-1 g1 = 1ÅÅÅÅ2

Then Let us see how to relate X z = Z  xn  with Y z = Z  yn . Applying the result from the previ-
ous problem we have
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 Y z = Gz  1ÅÅÅÅ2  Hz X z + 1ÅÅÅÅ2  H-z X -z +

+ G-z  1ÅÅÅÅ2  H-z X z + 1ÅÅÅÅ2  Hz X -z
which becomes

 Y z = 1ÅÅÅÅ2  Gz Hz + G-z H-z X z + 1ÅÅÅÅ2  Gz H-z + G-z Hz X -z
Now let's see the two transfer functions X z Ø Y z  and X -z Ø Y z  with the perfect reconstruc-
tion conditions above:

 1ÅÅÅÅ2  Gz Hz + G-z H-z =
1ÅÅÅÅ2  g0 + g1 z-1 h0 + h-1 z + g0 - g1 z-1 h0 - h-1 z =

=
1ÅÅÅÅ2  2 g0 h0 + g1 h-1 + g0 h-1 - g0 h-1 z + g1 h0 - g1 h0 z-1

= 1 for all z 

 

1ÅÅÅÅ2  Gz H-z + G-z Hz =
1ÅÅÅÅ2  g0 + g1 z-1 h0 - h-1 z + g0 - g1 z-1 h0 + h-1 z =

=
1ÅÅÅÅ2  2 g0 h0 - g1 h-1 + -g0 h-1 + g0 h-1 z + g1 h0 - g1 h0 z-1

= 0 for all z 

Therefore. as expected,

 Y z = X z
and the filter bank perfectly reconstructs the input signal.

à Problem 7.9

Solution

a) From the Problem 7.8, we can write Y z  in terms of the input signal X z  and its alias X -z . The 
aliasing comes from the downsampling operation.

In terms of the DTFT we can write

 Y w = Aw X w + Bw X w - p
where

 Aw = 1ÅÅÅÅ2  Gw Hw + 1ÅÅÅÅ2  Gw - p Hw - p
Bw = 1ÅÅÅÅ2  Gw Hw - p + 1ÅÅÅÅ2  Gw - p Hw

In our case the two prototype filters have frequency response Hw = Gw  as shown below.
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Therefore:

 Aw =   10ÅÅÅÅÅÅÅp 2  w - 0.55 p 2 + 10ÅÅÅÅÅÅÅp 2  w - 0.45 p 2 if 0.45 p <  w  < 0.55 p

1 otherwise
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Analogously:

 Bw =  -  10ÅÅÅÅÅÅÅp 2   w  -0.55 p   w  -0.45 p if 0.45 p <  w  < 0.55 p

0 otherwise

and the maximum value is at w = ≤ pÅÅÅÅ2  where the maxixmum is B≤ pÅÅÅÅ2  = 0.25, as shown below.


45.0 55.0



)(B

b) For the given signal

 X w = 20 pdw + 2 pdw - 0.2 p + 2 pdw + 0.2 p - 3 pdw - 0.7 p - 3 pdw + 0.7 p ,  for 
-p § w < p

Therefore the reconstructed signal becomes
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 Y w = Aw X w + Bw X w - p
with Aw, Bw  as above, and

 X w - p = 20 pdw - p + 2 pdw + 0.8 p + 2 pdw - 0.8 p - 3 pdw + 0.3 p - 3 pdw - 0.3 p
From the plot of Aw  and Bw  we can verify that 

 A0 = A≤0.2 p = A≤0.7 p = 1

B≤ p = B≤0.8 p = A≤0.3 p = 0

and therefore, for the given signal,  yn = xn .

à Problem 7.10

Solution

First let's see what is the transfer function (or the frequency response) of the system shown below.

2 2
][nx ][ny

)(zQ
][nv

Applying standard considerations we can see that

 Y w = 1ÅÅÅÅ2  Q wÅÅÅÅÅ2  V  wÅÅÅÅÅ2  + 1ÅÅÅÅ2  Q wÅÅÅÅÅ2 - p V  wÅÅÅÅÅ2 - p
Also, from the upsampler, V w = X 2 w , which implies

 V  wÅÅÅÅÅ2  = X w
V  wÅÅÅÅÅ2 - p = X 2  wÅÅÅÅÅ2 - p = X w - 2 p = X w

using the periodicity of the DTFT. Therefore, subsituting into the expression for Y w  we obtain

 Y w = 1ÅÅÅÅ2  Q wÅÅÅÅÅ2  + Q wÅÅÅÅÅ2 - p X w
= Q0w X w

Therefore the impulse response q0n = IDTFT Q0w  is the impulse response qn  downsampled by 
two, ie

 q0n = q2 n
In other words from the polyphase decomposition 

 Qz = Q0z2 + z-1 Q1z2
where
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 Qkz = Z q2 n + k
we can determine the transfer function Q0z .

a) We want to determine the four transfer functions Yiz  X jz  for i, j = 0, 1. See each one separately:

 Y0zÅÅÅÅÅÅÅÅÅÅÅÅÅX1z = 0 :  since, in this case

 Qz = G1z H0z = 1ÅÅÅÅ4  1 - z-1 + z-2 - z-3 1ÅÅÅÅ4  1 + z1 + z2 + z3
= 1ÅÅÅÅÅÅÅ16  -z-3 - z-1 + z + z3

and therefore Q0z = 0 since there are no even powers of z  in Qz .

 Y1zÅÅÅÅÅÅÅÅÅÅÅÅÅX0z = 0 :  since, in this case

 Qz = G0z H1z = 1ÅÅÅÅ4  1 + z-1 + z-2 + z-3 1ÅÅÅÅ4  1 - z1 + z2 - z3
= 1ÅÅÅÅÅÅÅ16  z-3 + z-1 - z - z3

and therefore Q0z = 0 since there are no even powers of z  in Qz

 Y0zÅÅÅÅÅÅÅÅÅÅÅÅÅX0z = 1ÅÅÅÅÅÅÅ16  2 z-1 + 4 + 2 z :   since, in this case

 Qz = G0z H0z = 1ÅÅÅÅ4  1 + z-1 + z-2 + z-3 1ÅÅÅÅ4  1 + z1 + z2 + z3
= 1ÅÅÅÅÅÅÅ16  z-3 + 2 z-2 + 3 z-1 + 4 + 3 z + 2 z2 + z3

and the polyphase decomposition

 Qz = 1ÅÅÅÅÅÅÅ16  2 z-2 + 4 + 2 z2 + z-1 1ÅÅÅÅÅÅÅ16  z-2 + 3 + 3 z2 + z4
which yields

 Q0z = 1ÅÅÅÅÅÅÅ16  2 z-1 + 4 + 2 z .

 Y1zÅÅÅÅÅÅÅÅÅÅÅÅÅX1z = 1ÅÅÅÅÅÅÅ16  2 z-1 + 4 + 2 z :   since, in this case

 Qz = G1z H1z = 1ÅÅÅÅ4  1 - z-1 + z-2 - z-3 1ÅÅÅÅ4  1 - z1 + z2 - z3
= 1ÅÅÅÅÅÅÅ16  -z-3 + 2 z-2 - 3 z-1 + 4 - 3 z + 2 z2 - z3

and the polyphase decomposition

 Qz = 1ÅÅÅÅÅÅÅ16  2 z-2 + 4 + 2 z2 + z-1 1ÅÅÅÅÅÅÅ16  -z-2 - 3 - 3 z2 - z4
which yields

 Q0z = 1ÅÅÅÅÅÅÅ16  2 z-1 + 4 + 2 z .

b) 
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