Chapter 7: DFT Filter Bank Solutions

m Problem 7.1

Problem

An FIR Filter has Transfer function H (z) =2 +z 1 -z2 + 0.5 z3 and frequency response
H (w).

a) Determine the Impulse Response of the filter F (z) with frequency response
F (w) =H (w-0.2 ). Is the impulse response going to be real?

b) Determine the impulse response of the filter G (z) with frequency response
H(w-0.2xn) +H (w+0.2).How do you relate the two impulse responses f[n] and g[n] ?
Solution

a) The transfer function F (z) is determinedas F (z) = H (ze3°-27) | In fact you can verify that
F (w) =F (Z) |,.eiv =H (eJ?e39-27) = H (w - 0.2 ). Substituing for the z-Transform we
obtain

F(z)=2+el0-27z1_gel0-4772,0.5el0-6773
This yields an impulse response
fin]=26[n] +el%-275n-1] -el9-475N-2] +0.5el0-675[n-3]
Notice that it is computed as F[n] = h[n] e¥9-2™ with h[n] the impulse response of H (Z) .

b) By the same argument the transfer function can be determined as
G (z) =H (ze39-27m) + H (zed0-27)  Therefore the transfer function becomes

G(z) =4+2cos (0.25) z1-2cos (0.47) z?%+cos (0.6) 23
=4+1.61803z1-0.61802z2-0.30902z3

and the impulse response

g[n] =45[n] +1.618035[n-1] -0.61805[Nn-2] -0.30905[n - 3]

Itis computedasg[n] = (ed9-2™M , e130-2M) hn] =2 cos (0.2 ) h[n]. Therefore
g[n] = 2Real {f[n]}.
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m Problem 7.2

Problem

You want to determine the low frequency and high frequency components of a signal x [n] . Design
an efficient filter bank where the prototype filter has at least 50dB attenuation in the stopband and a
transition region of Aw = 0.1 sr. Use the window method.

Solution
The prototype filter is a low pass filter with bandwidth st / 2, with impulse response

ho[n] = 3N(2N win)

with w[n] the non causal window sequence. Since we need 50dB attenuation in the stopband we use
a Blackman window, which has a transition region Aw = 12 st / N. Therefore we determine the filter
length N from the transition band as

121 < 0.1
This yields N = 121. The Low Pass Filter Hy (z) has the polyphase decomposition
Ho (z) = Eo (2%) +Zz 1 E1 (2%)
where

Eo (z) =2 hg[2n] z"=w[0] =1

n
since hg[2nNn] = 0 forn £ 0. Similarly
Ei[n] =>ho[2n+1]z"=3 %W[2n+l] z™"
n n

m Problem 7.3

Solution

The prototype filter has frequency response H (w) with bandwith & = & . Therefore the non causal
impulse response of the prototype filter is given by

hin] = sin(gn) win]

I

with w[n] being a window of length N + 1 = 21. For example let w[n] be a hamming window,
which has the expression

win-41=0.54-0.46cos (4~ n) forO=n=N
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where we listed the causal expression generally found in most tables. From this expression it is easy to
see that

w[n] =0.54+0.46cos (55 n) for-10<n <10

Finally the expression of the impulse response h[n] becomes

hinj = (2"t&" ) (0.54 +0.46 cos ({5 n)) for -10 < n = 10

I

and zero otherwise.
The transfer function of the prototype filter is then given by

H (z) =-0.0018 z1° - 0.0014 z° + 0.0000 z8 +
0.0047 z" + 0.0149 2% + 0.0318z°% + 0.0543 z* +
0.0794 73+ 0.1027z2 + 0.1191z+ 0.1250 +
0.1191z 1+ 0.1027z 2+ 0.0794z 3 +
0.0543z 4+ 0.0318z°+ 0.0149z 6+ 0.0047 z 7 +
0.0000z8-0.0014z°-0.0018 z 10

The eight polyphase components of the prototype filter then become as follows:

E « (28) :niﬁomh[Sn—k] z8n fork=0,1, -..,7
which yields
Eo (z8) =h[-8]12z8+h[0] z°+h[8] z8 =0.1250
E1 (28 =h[-9]12z8 +h[-1]12°+h[7]28=-0.001428%+0.1191 +0.0047 z8
Eo (28 =h[-10] 28 +h[-2]2°+h[6] z®=-0.00182% + 0.1027 +0.0149 z 8
Es(z8) =h[-3]12°+h[5]2z8=0.0794+0.0318 28
E4 (z8) =h[-4]12°+h[4] 28 =0.0543+0.0543 28
Es (z8) =h[-5]12°+h[3]2z8=0.0318+0.07942z8
Ee (28 =h[-6]2°+h[2] z8+h[10] 216 =-0.0149+0.1027 28 -0.0018 z"16
E7(z8) =h[-712°+h[1]2z8+h[9] 216 -0.0047 +0.1191 28 -0.0014 z 16

The implementation is shown below.
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m Problem 7.4

Solution
a),b),c)H (z) isM-Band, sinceh[4n] =0 forn # 0;
d)H (z) isnot M -Band since E H (w -k %) isnota constant for all w, as shown below.

Zk:H(a)—k%)

4 2

e)H (z) isM - Band since E H (w -k %) isaconstant as shown below.



Solutions_Chapter_7[1].nb

N | N —

m Problem 7.5

Solution

Letw; = € -Awandwy = £ + Aw forany O < Aw < £ .ThenH (z) isanM -Band filter with

A = % asshown below. ’
t > H (0-k%)
k

T

Ao Aw

v

m Problem 7.6

Solution

With M = 16 the prototype filters for both Analysis and Synthesis have a bandwidth we = 77/ 16.
From what we have seen about maximally decimated DFT Filter banks, if we want to use FIR filters,
the only possibility for perfect reconstruction is that both filters h[n] and g[n] in the analysis and
synthesis network have length M = 16. In this way we would have
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H(z) = h[0] + h[-1] z + ... + h[-15] z!°
G() =9g[0]+9g[1]zt+..+g[15]z71°

with the Perfect Reconstruction condition
hin] gln] = &

What makes this problem a bit different from the standard FIR window based design problem is the
fact the filter order is odd, ie the total filter length is 16, which is even. In Chapter 4 we have consid-
ered only the case where the total filter length isodd as N = 2 L + 1. Although most of the time this is
not a major restriction, in this case we have to design a filter with the precise length, and none of the
filter coefficients can be zero. In other words we cant use (say) a filter with length 14, and assume
h[-15] = 0, since this would require g[15] = oo, clearly not feasable.

In order to design a filter with even length, we can call Hy(w) the frequency response of an ideal Low
Pass Filter with bandwidth w, and compute

+we Cu
ha[n] = IDTFT{H(w)e 1%} = 5= [ e 1% el dw

e
This leads to the impulse response

sin(we(n-7))
Mn—%)

hg[n] =

Now the goal is to find a linear phase approximation with a finite number of coefficients. In particular
let

A L .
H(w)= X hg[n]e N
n=-L+1
which can be written as
R L-1 _ L .
HL(w) = X hq[-n]el“"+ X hg[n]eten
n=0 n=1
It is easy to see that hq[—n] = hg[n + 1] and therefore we can write
R L _ L _
H (w) =e™ ¢ 21 hq[n] eJ“" + 21 hq[n] e~ 1N
n= n=
This shows that el 7 H | (w) is real, since
A ., L _ o, L _
el7H (w)y=¢e"172 Zl hg[n]el“" + e~ 17 Zl hg[n] e~ len
n= n=

and therefore H (w) has linear phase. As a consequence a causal translation has linear phase too,
which leads to the linear phase FIR filter with frequency response

. _ 2L-1 _
Hi (w) e lot=D = ZO hg[n — L+ 1] e Jen
nN=
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In our casg, the bandwidth is we = 5 , the filter order is 15 =2 L — 1, which yields L = 8, and the FIR
filter bacomes

sin(4 (N-7-%))
a(n-7-%)

hq[n] = , forn=0, .., 15

without including the window. Finally the filters h[n] and g[n] of the analysis and synthesis networks
become

sin(Z (n—7-3))
a(n-7-7)

h[-n] = hg[n]w[n] = (0.54-0.46cos(2£n)) forO=<n=<N

and

g[n]:h[lfsn], forO<n <N

In terms of the polyphase decomposition, every term is a constant, as

E_«(2) = h[—k]
Fu(2) = glk]

fork =0, ..., 15. Itis just a matter of computing the coefficients to determine the final result shown in
the figure below for the analysis network.
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m Problem 7.7

Solution

First we can verify that, in the the system below
v[n] ifneven

Wi =70 it nodd
v[n] w[n
e 2 P

which yields w[n] = v[n] 6,[n] = % (v[n] + (=1)" v[n]). Therefore, as you recall,
W)= 3 V() + 5 V-
and therefore
W@ =2 V@ + 3 V(-2)
Applying this result it is easy to see that
Y(@) =G (3 HO X@ + 3 H(=2) X(~2))

= 2 G()H@) X(@) + + G(2) H(-2) X(-2)

m Problem 7.8

Solution

In this case we have a filter bank with two filters. Therefore M = 2 and forperfect reconstruction the

filters have to be

H(z) = h[0] + h[-1]z
G(z) = g[0] + g[1] z*

with the condition

h[0] g[0] = 5
h(-1]g[1] = 3

Then Let us see how to relate X(z) = Z {x[n]} with Y (z) = Z {y[n]}. Applying the result from the previ-

ous problem we have



Solutions_Chapter_7[1].nb

Y@ =62 (3 HO X@+ 3 H-2) X(-2) +
+G(-2) (3 H(-2) X(2) + 3 H(2) X(~2))

which becomes
Y(@) = 3 (G(2)H(@) + G(-2) H(-2)) X(2) + 5 (G(2) H(-2) + G(-2) H(2)) X (-2)

Now let's see the two transfer functions X(z) - Y (z) and X(-z) - Y (z) with the perfect reconstruc-
tion conditions above:

3 (G H@) + G(-2) H(-2)) =
2 ((9[0] + g[1] 27%) (h[O] + h[-1] 2) + ((9[0] — g[1] z7) (h[0] — h[-1] 2)) =

3 (2(g[0] h[0] + g[1] h[—1]) + (g[0] h[-1] — g[O] h[-1])  + (g[1] h[0] - g[1] h[0]) z™1)

=1 forallz
2 (G@H(2)+G(-2)H(@) =

3 (@01 + g[1] z7%) (h[0] - h[-1] 2) + ((g[0] - g[1] %) (h[0] + h[-1] 2)) =

2 (2(g[01h[0] — g[1] h[-1]) + (=g[0] h[—1] + g[0] h[—1]) z + (g[1] h[0] — g[1] h[0]) %)
=0 forallz
Therefore. as expected,
Y(2) = X(2)

and the filter bank perfectly reconstructs the input signal.

m Problem 7.9

Solution

a) From the Problem 7.8, we can write Y (z) in terms of the input signal X (z) and its alias X(—z). The
aliasing comes from the downsampling operation.

In terms of the DTFT we can write
Y () = Aw) X(w) + B) X (@ - )
where
Aw) = 3 G HW) + 3 Gw-mHw-7n)
B(w) = 3 G(w) H(w -7 + 3 G(w - m) Hw)

In our case the two prototype filters have frequency response H(w) = G(w) as shown below.
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f H(o)

]/—ﬁ\/ — 3 (w—0.5517)

0.457 |

4 a)
0.557
Therefore:
A(w):{(%)2|w—0.55n|2+($)2|w—o.457r|2 if 0457 <|w| <0557
1 otherwise
4
L 1A
/ ’ — ’ ‘ >< | >< ~—»
—r 0.457 ! T 0
0.557
Analogously:

12 2(Jw|-055m) (|w|-0.457) if 0.457 <|w| <0557

B(w) =
{ 0 otherwise

and the maximum value is at w = + 5 where the maxixmum is B(+ %) = 0.25, as shown below.

4 B(w)

— A A
—T Vol S

0.457 05571

b) For the given signal

X(w) =20 16(w) + 2 6(w — 0.2 71) + 2 10(w + 0.2 1) — 3716(w — 0.7 1) — 376(w + 0.7 7), for
-T<w<7m

Therefore the reconstructed signal becomes
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Y(w) = A(w) X(w) + B(w) X(w —7)
with A(w), B(w) as above, and
X(w-m)=20m0(w—7)+2710(w +0.871) + 2716(w — 0.8 71) — 37m0(w + 0.37) —376(w — 0.37)
From the plot of A(w) and B(w) we can verify that

AQO)=A027m) =A07m) =1
B(xn) =B(+0.871) = A(x0.371) =0

and therefore, for the given signal, y[n] = x[n].
m Problem 7.10

Solution

First let's see what is the transfer function (or the frequency response) of the system shown below.

x[n] vn] y[n]

t2 —» Q(2) | »] 2

Applying standard considerations we can see that

Yw) =35 Q)V(£) + 5 QAL -nV(4 -n)
Also, from the upsampler, V(w) = X (2 w), which implies

V(5)=X(w)

V(g -m)=XQ2(5 -m)=X(w-2n1) = X(w)

using the periodicity of the DTFT. Therefore, subsituting into the expression for Y (w) we obtain
Y() =% (Q(%)+Q(% - m) X(w)
= Qo(w) X(w)

Therefore the impulse response qg[n] = IDTFT {Qo(w)} is the impulse response q[n] downsampled by
two, ie

Qo[n] = q[2n]
In other words from the polyphase decomposition
Q@) = Qu(z») + 77t Qu(?)

where
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Q@) =Z{q[2n+k]}
we can determine the transfer function Qq(z).
a) We want to determine the four transfer functions Y;(z) / Xj(z) fori, j =0, 1. See each one separately:

Yo(2) _ . H 1 1
a5 = 0: since, in this case

Q) =61 H@) =3 L-zr+z2-7%F A+t + 2+ 25

_ 1 3_ -1 3
=55 (-7 -77"+2+77)
and therefore Qq(z) = 0 since there are no even powers of z in Q(z).

Yi@D _ - o . )
3 =0: since, in this case
1

== @3+rt-2-7)

and therefore Qq(z) = 0 since there are no even powers of z in Q(z)

Yo(2)

23 = §5 77 +4+22): since, in this case

QD) =G Ho@ =5 Q+zt+22+7H 2 A+ +22+29)

=L @ %+272+37 +4+32+22%2+ %)

and the polyphase decomposition

Q)= 2z2+4+22)+77 = @ 2+3+322+7

which yields
Q@) = % 2271 +4+212).

Y1(2)
X1(2)

= % (2771 +4+22): since, in this case
Q) =GiH@ =7 A~z +22-7% ; 1-2'+2 -2

= (-2%+222-37 +4-32+222-19)

and the polyphase decomposition
1 - -11 -

Q)=+ Rz 2+4+22)+77 5 (-72-3-322-7%
which yields
Q@ =+ @Qzl+4+22).

b)



