
Chapter 6: Problem Solutions
Multirate Digital Signal Processing: 

Fundamentals

Sampling, Upsampling and Downsampling

à Problem 6.1

Solution

From the definiton of downsampling,

 yn  x2n
a) yn  2n  n
b) yn  2n  1  0

c) yn  12nu2n  un  

d) yn  ej0.2n

e) yn  ej0.2nu2n  yn  ej0.2nun
f) yn  2cos0.4n
g) yn  2cos0.5  2n  2 cosn  1n

h) yn  2sinn  0

i) yn  cos2n  1

j) yn  2sin2n  0



















à Problem 6.3

Solution
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In all cases  

 Y  12 X 2   12 X 2     for  all 

Whene there is no aliasing, ie X  0  for 2        then this relation simpilfies to

 Y  12 X 2 
a) B  5  2 . Then there is no aliasing after downsampling and therefore Y  is as shown below
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b) B  2 . Then again there is no aliasing after downsampling and therefore Y  is as shown below
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c) B  34 . In this cases there is aliasing and we have to account for it. Best way to do it is proceed in 
two steps: sampling and then downsampling.
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The sampling operation yields

 Y  12 X  12 X  
The figure below shows both 12 X  and 12 X   .
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Then downsampling yields Y  Y 2  , just a rescaling of the frequency axis. The final results is 
shown below.
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d) B   . Same reasoning as in c). This time it is easy to see that 

 Y  12 X  12 X    12  for all 

and therefore  Y  Y 2   12   for all  .

à Problem 6.4

Solution

Recall that yn  x n2 2n  12 x n2 1  1n  12 x n2 1  ejn
a) yn  n;

b) yn  12 1n  1un
c) yn  12 e

j0.05n  12 e
j0.05n

d) yn   12 e
j0.05n  12 e

j0.05nun
e)  
yn   14 e

j0.05n  14 e
j0.05nun   14 e

j0.05n  14 e
j0.05nun  

which becomes

 yn  12 cos0.05nun  12 cos0.95nun
f) similarly yn  12 cos0.05n  12 cos0.95n

à Problem 6.5

Solution
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Using the DTFT. For upsampling

 S  X2
and downsampling

 Y  12 S 2   12 S 2  
Substitute for S  to obtain 
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 S 2   X2 2   X
S 2    X2 2    X  2

Therefore

 Y  12 X  12 X  2  X
from the periodicity of the DTFT.

à Problem 6.6

Solution

From the diagram it is easy to verify that

 yn   xn if n even
0 if n odd

Therefore yn  xn2n , and Yz  12 Xz  Xz , or equivalently, 
Y  12 X  X   .

One way we can verify this is the following: call vn  the output of the downsampler. Then

 V  12 X 2   X 2  
Since yn  is the output of the upsampler then YV2  12 X  X    as we 
expect.

à Problem 6.7

Solution
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The effect of modulation on the frequency spectrum is as follows

 DTFTxMn  12 X  0  12 X  0
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where xMn  xncos0n .

After upsampling by 2 the signal yn  has DTFT

 Y  XM2  12 X2  0  12 X2  0
a) 0  4 . Then XM  and Y  are shown below.
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b) 0  2 . Then XM  and Y  are shown below.
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c) 0   . Then XM  and Y  are shown below.
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In this case notice the maximum amplitude of the DTFT being "one" (rather then 1/2 as in the previous 
cases). This is due to the fact that X    X   .

à Problem 6.8

Solution

In this problem we need to increase the sampling frequency from Fs  8kHz to Fs  12kHz, ie by 
a factor 128  32 . Therefore with ideal filters the scheme is as shown below.
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à Problem 6.9

Solution

In this case the Low Pass Filter H  is a non ideal FIR filter. The whole problem is to choose the 
correct specifications for the filter.

 The stopband has to be S  3 , since the purpose of this filter is to stop the frequency artifacts 
generated by the upsampling operation. The passband has to be decided on the basis of the bandwirdth 
of the signal we want to pass and the desired complexity of the filter. For a window based, recall that 
we need a hamming window (from the desired attenuation) with transition region   8N . 
Therefore an FIR filter of length N  will have a passband p  3  8N .

à Problem 6.10

Solution

The digital signal has frequencies at 1  26   3  rad and 2  2 2 6  2  3  
rad.  Therefore the output signal has frequencies at   3 , 23  and also at 
 3    23 ,  3    23 , 23     3  and 23     3 . All 
components at  3  and  23  are going to sum with each other.

à Problem 6.11

Solution

a)  Hz  2  4z3  6z6  z13  5z3  2z6  z22  2z3
b) Hz  2  2z2  5z4  6z6  z13  4z2  2z4  2z6
c) Hz  2z2  1  2z2  5z4  6z6  z1z2  3  4z2  2z4  2z6
d)  Hz  z3  4z3  6z6  z1z3  2  5z3  2z6  z22z6  3z3  2z3
e) Hz  

n0


0.5nzn  

n0


0.52nz2n  z1 

n0


0.52n1z2n  whixh yields

 Hz  110.25z2  z1 0.510.25z2

f) Hz  zz0.8  which can be written as 

Hz  
n0


0.8nzn  

n0


0.82nz2n  z1 

n0


0.82n1z2n . This becomes

 Hz  110.64z2  z1 0.810.64z2

The same result can be obtained by an alternative way:
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 Hz  zz0.8 
z0.8z0.8  z2

z20.64  z1 0.8z2
z20.64

amd you can verify that the two answers are the same.

g) You can verify that the general exprezzion for the polyphase terms is 

 Hkz  
n


hnM  kzn

for k  0, ..., M  1 . Applying this formula we obtain

 Hkz  
n


 sin 5 3nk5 3nk zn   for  k  0, 1, 2

à Problem 6.12

Solution

a) From the transfer function of the filter       Hz  1  z1  2z2  z3  z4  z5  z6

and M  4  we obtain the decomposition

 Hz  H0z4  z1H1z4  z2H2z4  z3H3z4
with

 H0z  1  z1

H1z  1  z1

H2z  2  z1

H3z  1

The block diagram of the system is shown below:

4
1z

1z

1z

4

)(0 zH

4 )(1 zH

4 )(2 zH

)(3 zH

][nx ][ny

b) Using the same filters, the realization is as follows:
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4
1z

1z

1z

)(0 zH
][nx ][ny

4)(1 zH

4)(2 zH

4)(3 zH

c) When M  2  the polyphase decomposition becomes H0z  1  2z1  z2  z3  and 
Hz  1  z1  z2

Therefore the system becomes as shown below:

2
1z

)(0 zH

2 )(1 zH

][nx ][ny
2

Now notice that the cascade upsampler - downsampler (both by 2) is just an identity. Also the cascede 
upsampler - time delay - downsampler as shown gives an output of zero, no matter what the input is 
(easy to verify). This is shown below:

22 

22 1z  0
Therefore the overall system looks like this one:
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)(0 zH
][nx ][ny

Applications of MultiRate

à Problem 6.13

Solution

a) In digital frequency, the passband is P  225 6000    120 radians, and the stopband 
is S  2306000   100 radians. As a consequence the transition region is 
  S  P  0.0017 . For a 60 dB attenuation we can use (say) a Kaiser window with parame-
ters 

   0.110260  8.7  5.6533
N  6082.285  4, 261.1

and therefore the order is 4, 262 . This yields a total number of

4, 2626, 000  25.572106  multiplications and additions per second

b) Since we want to reject all frequencies above 30Hz, we can downsample from the orginal sampling 
frequency (6kHz) down to 60Hz, ie by a factor D  6, 00060  100. As seen in class, this can be 
done in three stages by factoring D  100 as (say)

 100  1052

as shown below

H1 H2

][nx
10 5 23H

kHzFF x 61  HzF 6002  HzF 1203  Fy 

Now the specifications of the filters become as follows:
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H1 : Fp  25Hz, FS  600  30  570Hz,   2570  25 6000  0.1817

H2 : Fp  25Hz, FS  120  30  90Hz,   290  25 600  0.2167

H3 : Fp  25Hz, FS  60  30  30Hz,   230  25120  0.0833

From the transition bands we can determine the orders of the filters. using the Kaiser window again we 
have the orders N1, N2, N3  of the threee filters to be. respectively,

N1  6082.285  40

N2  6082.285  34

N3  6082.285  87

Finally the total number of operations per second becomes:

 opssec  406000  34600  87 120  270, 840  0.28106

which is  reduction of a factor of more than 90. Also notice that we are not even attempting to save 
even more in computation using the polyphase decomposition!

à Problem 6.14

Solution

Q1) Recall the Butterworth filter frequency response:

  H 2  1
1 c

2N  1
12 p

2N

Then for the reconstruction filter, the passband is Fp  22kHz  222, 000 , that is to say 
p  44, 000 radsec . The stopband has to be at half the sampling frequency, ie 
FS  44.12  22.05kHz, that si to say S  44, 100 rad sec.

From the passband ripple we determine the factor e from

 112  1  0.012  0.9801   2  0.0203 and therefore   0.1425

We determine the order from the requirement 

  HS 2  1
10.0203 44.144 2N  0.012  104

Solving for N  gives a very large number, and the analog filter cannot be implemented. Furthermore 
there will be a distortion in phase from the reconstruction filter itself.

Q2) Now the filter has still the same expression, but with N  4 , since we are restricted to a 4 pole 
filer. Therefore the filter is given by 

  H 2  1
10.0203 44,000 8

Since we want the attenuation to be 40dB in the stopband, we can solve for the stopband, as
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 1
10.0203 44,000 8  0.012  104

which yields 

 S44,000   10410.0203 
18

 5.1470

Therefore the stopband of this filter is at FS  5.147022kHz  113.24kHz. This has to coin-
cide with half the sampling frequency, and therefore the new sampling frequency is 
Fs  2113.24kHz  226.5kHz . In other words we have to upsample at least by 
226.5/44.1=5.1 times before the Digital to Analog conversion.
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