
Chapter 4: Problem Solutions
Digital Filters

Problems on Non Ideal Filters

à Problem 4.1

We want to design a Discrete Time Low Pass Filter for a voice signal. The specifications are:

Passband Fp  4kHz ,   with 0.8dB  ripple;

Stopband FS  4.5kHz , with 50dB attenuation;

Sampling Frequency Fs  22kHz .

Determine a) the discrete time Passband and Stopband  frequencies, b) the maximum and minimum 
values of  H    in the Passband and the Stopband, where H  is the filter frequency response.

Solution

a) Recall the mapping from analog to digital frequency   2FFs , with Fs  the sampling fre-
quency. Then the passband and stopband frequencies become p  2 422 rad  0.36  rad, 
s  2 4.522 rad  0.41 rad;

b) A 0.8dB  ripple means that the frequency response in the passband is within the interval 1    
where   is such that 20 log101    0.8 This yields   100.04  1  0.096. Therefore the 
frequency response within the passband is within the interval 0.9035   H   1.096. 
Similarly in the stopband the maximum value is  H   105020  0.0031

à Problem 4.2

A Digital Filter has frequency response H  such that  

 0.95   H   1.05 for 0    0.3

0   H   0.005 for 0.4    



Also let the sampling frequency be Fs  8kHz. Determine the Passband and Stopband frequencies in 
kHz, the Passband ripple and the Stopband attenuation in dB.

Solution

The passband ripple is given by 20 log101.05  0.42dB, and the attenuation in the stopband 
20log100.005  46dB . The analog passband frequency is 0.3 Fs 2  1.2kHz and the 
stopband 0.4 Fs 2  1.6kHz

à Problem 4.3

A continuous time filter has frequency response 

 HF  1
1 j2F1000

Determine the passband and stopband frequencies in Hz, assuming a passband ripple of 1dB and 
attenuation of 40dB in the stopband. Also determine the half power frequency Fc .

Solution.

A passband ripple of 1dB means that the frequency response is within the interval 
1     HF   1    with 20log101    1 , which yields   0.12. Since 
 HF   11 2F1000 2

 then we determine the passband from the equation

11 2F1000 2
 1  0.12  0.88 

which yields F  85 .9Hz. Similarly for the stopband, we need to determine the frequency where 
 HF   104020  0.01  which yields F  15, 914 Hz  Notice that this filter has a very long 
transition region, as we can see from the plot of its magnitude:
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à Problem 4.4

A Digital Filter is defined by the difference equation

 yn  0.99yn  1  xn
The filter is clearly recursive. Determine the impulse response hn . 

a) Is the filter stable?

b) Would you classify it as Low Pass, Band Pass ... or what?

c) Would you feel comfortable in implementing this on a digital machine? 

Solution

a) The filter is stable since its transfer function Hz  110.99z1  zz0.99  has one pole at 
z  0.99;

b) It is a low pass filter since it has one pole close to z  1 , ie   0 . This makes the frequency 
response "large" at small frequencies. A plot of its magnitude is as follows:
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à Problem 4.5

A simple averaging filter is defined as

 yn  1N xn  1  ...  xn  N
This is clearly an FIR Filter. 

a) Let N  4 . Determine the transfer function, its zeros and poles;

b) Determine a general form for zeros and poles for any N;

c) By comparing yn  and yn  1  determine a recursive implementation.  Also the transfer func-
tion, together with its zeros and poles of the recursive implementation. Looking at this example, can 
we say that "any" recursive filter is IIR?

Solution

a) With N  4  we obtain the transfer function Hz  14 z1  z2  z3  z4 . After normaliza-
tion this becomes

 Hz  14 
z3z2z1z4

The are four poles at z  0  and three zeros from the solution

 z3  z2  z  1  1z4
1z  0

Therefore the zeros must be such that z4  1 , with the exclusion of z  1 . That is to say z4  ejk2  
for k  1, 2, 3 , and therefore the zeros are z  jk  with k  1, 2, 3 , ie z  j, 1, j.This is 
shown in the  z-plane below.
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b) Since the transfer function is of the form

 Hz  1N 
1zN

zN1z
the zeros are of the form z  ejk 2N , k  1, ..., N  1  and the poles are all at z  0 .

c) Since yn  1N xn  1  ...  xn  N  and 
yn  1  1N xn  2  ...  xn  N  1  by comparing  yn  and yn  1  we  see 

that

 yn  yn  1  1N xn  1  1N xn  N  1
This yields the transfer function

 Hz  1N 
z1zN1
1z1  1N 

1zN
zN1z

as we saw before. This is an example of a recursive filter with finite impulse response (FIR).

Problems on FIR Filters

à Problem 4.6

We want to design a Low Pass FIR Filter with the following characteristics:
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Passband 10kHz,

Stopband 11kHz, with attenuation  of 50dB,

Sampling frequency 44kHz

Determine the causal impulse response hn , and an expression for the phase within the passband. 
Use one of the standard windows listed in section 4.3.

Solution

First we have to determine the specifications in the digital freq. domain.

Passband:  p  2 1044  0.4545 rad

Stopband:  S  2 1144  0.5 rad

Therefore we choose the passband of the ideal filter as C  12 p  S  2144   0.477 . We 
need a Blackman window to satisfy the 50dB attenuation in the stopband. With this window the transi-
tion region has a width of 12N . Since we want a transition region S  P  244 we deter-
mine the filter length N  as

 244  12 N

which yields N  1222  264 . Therefore we choose N  265 and a shift L  132. Finally the 
impulse response is

 hn  hdn  132 wBlackmann
 sin0.4545 n132n132 wBlackmann

which is shown below.
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Within the passband the phase is linear and it is given by the expression

 ≠H   L  132 

à Problem 4.7

Repeat Problem 2.1 with  an equiripple filter  using the "remez" function in Matlab. Plot the two 
frequency responses and compare the two filters in terms of performance and complexity.

Solution

With Matlab we need first to determine the order of the filter. Use the function "remezord" as follows:

N, fo, mo, k  remezord10000, 11000, 1, 0, delta, delta, 44000;

with delta  10^5020  the maximum deviation corresponding to 50dB's. This yields an 
order N  114 , in the sense that the transfer function is of the form

 Hz  h0  h1z1  ...  h114z114

The impulse response hn  is obtained as

h  remezN, fo, mo, k
where fo, mo  and k  are from remezord. 
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Notice that the order of the equiripple filter N  114 is considerably smaller than the order of the 
filter designed with the Blackman window in Problem 4.6.

à Problem 4.8

Repeat Problem 4.6 using the Kaiser window. 

Solution

Wi the Kaiser window we have to determine the parameters N  and b from the specifications. In particu-
lar we want  an attenuation A  50dB  which yields a factor    from the expression

   0.5842A  210.4  .07886A  21  4.53

Also the filter length is determine from the expression

 N  A82.285   422.285   22  128.717

So we can choose N  129  and L  64 . The frequency response of the filter therefore becomes

 sin0.4545 n64n64 wKaisern
Its magnitude is shown below.
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à Problem 4.9

 We want to approximate a filter with frequency response

 HF   e0.1F if  F   10 Hz
0 if  F   11Hz

Let the sampling frequency be Fs  50Hz, and the attenuation in the stopband be 40dB. Determine 
the impulse response of a FIR filter which approximates this frequency response. Plot the frequency 
response in terms of magnitude and phase to verify that the approximation holds.

Solution

In the digital domain, let   2FFs  and therefore F  Fs 2 . Therefore the filter's desired 
frequency response becomes

  H   e52 if     25 rad
0 if  F   2.2 5 rad

The ideal filter therefore is going to have a frequency response Hd  given by

  Hd   e52 if     2.15
0 otherwise

and the impulse response
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 hdn  12  
2.15

2.15

e52ejnd  2.274050.795775 Cos1.31947 n1. n Sin1.31947 n5.685128.97758 n2

Since we want 40dB attenuation in the stopband we can use a hamming window, which has a transi-
tion region of width 8N . The desired width is   250 and therefore N  is determined from 
the equation

 250  8N

and N  50  4  200. Choose N  201 and L  100. This yields the impulse response

 hn  hdn  100whammingn

à Problem 4.10

A bandpass filter needs to be designed, to pass a signal within frequencies 4kHz and 8kHz, with 
two transition regions  not exceeding F  0.5kHz . Also we want the attenuation in the stopband 
not exceeding 50dB, and the same error within the passband. Finally let the sampling frequency be 
Fs  44kHz .

a) Determine the impulse response of the ideal filter;

b) Design the filter using  the Kaiser window;

c) Design the filter using the equiripple method.

Compare the two frequency responses.

Solution

a) In the digital frequency domain we want to design a bandpass filter which passes the frequencies 
between 2 444  211 rad  and 2 844  411 rad. Therefore the impulse 
response of the ideal filter is

 hdn  12  
211

411

ejnd  12  
411

211

ejnd   Sin 2 n 11 Sin 4 n 11 n  if n  0
0 if n  0

b) From the formulas of the Kaiser window we determine the parameters   and N  as follows from the 
attenuation  A  50dB  and the width of the stopband   2 0.544   44 rad.  Recall the 
formulas:

10 Solutions_Chapter4[1].nb



 0.5842A  210.4  .07886A  21  4.53

N  A82.285  257.434

which yields a window of length N  259 and a time delay L  129. Finally thr impulse response 
becomes

 hn  hdn  129wkaisern

à Problem 4.11

You want to design a low pass filter with passband Fp  2kHz and stopband FS  2.5kHz, with 
attenuation of at least 40dB. Let the sampling frequency be Fs  10kHz. Using the techniques you 
know, determine the design with the least number of coefficients.

Solution

First we translate the specifications into the digital frequency domain:

Passband p  2 210  25

Stopband S  2 2.510  2

  2  25  10

We know three techniques:

a) Window based: from the desired attenuation we need a hamming window. From the  transition 
region

   8N  10

we obtain the length of the filter N  81;

b) Kaiser window: applying the formulas with A  40 and   0.1  we obtain

 N  4082.2850.1  45

c) Equiripple Filter: using the matlab function "remezord" we obtain the order N  39 which yields 
the lowest complexity. The corresponding frequency response is shown below (magnitude only in 
dB's).
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à Problem 4.12

In the section on equiripple filters we have taken a few things for granted. In this problem try  to prove 
the following simple facts:

a) when the order of the filter N  increases, the maximum error decreases;

b) the solution is unique, in the sense that, for any given  order N , there  is only one impulse response 
h0, ..., hNwhich minimizes the maximum error.

Solution

a) Call h


N  h


N0, ..., h


NN  the optimal solution (in the minmax sense) of order N . Then 
the  vector

 hN1  h


N0, ..., h


Nn, 0  h


N1

represents an impulse response of order N  1 , not necessarily optimal. Therefore

 eh


N1  ehN1  eh


N
The leftmost inequality is due to the fact that hN1  is not the optimal solution of order N  1 , and the 
rightmost equality is due to the fact

 HN1  H


N  for all 
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where HN1  and H


N  are the frequency responses of hN1  and h


N .

b) If there were two different solutions h


N  and gN  of the same order N  having the sign alternation 
property, the difference H


N  G


N  would have N  1  roots against the assumption of being 

polynomials (in cos) of order N .

à Problem 4.13

A Hilbert Transform is a filter with frequency response

 Hd  jsign
with sign  1  for   0  being  the signum function.

a) Plot the magnitude and phase of the filter;

b) Determine the impulse response hdn;

c) Determine a causal approximation h0, ..., hN  using a rectangular window. Plot the 
magnitude of the frequency response for various values of N , say N  40, 60, 120 . Does it con-
verge everywhere? In this case what would you call the transition region?

Solution

a) Since  Hd    jsign   1  for all  , and

 PhaseH    2 if   0
 2 if   0

we obtain the plot below.



|)(| H

1



)( H

2


2

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b) The impulse response becomes

 hdn  12  




jsignejnd  2 Sin n 2 2

n   if n  0

and hd0  0 . 

c) The plots of

 HL  
nL

L
hdnejn

are shown below (magnitude only) for L  20, 40, 60 corresponding to the orders 
N  40, 60, 120  respectively.  The transition region is defined around the frequency   0 .

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1

1.2
N40

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1

1.2
N60
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Problems on IIR Filters

à Problem 4.14

Using the Bilinear Transformation, determine the order N  and the cut off frequency c  of the analog 
prototype filter for the following discrete time design:

a) passband 8kHz;

b) stopband 9kHz;

c) passband ripple 0.5dB;

d) stopband attenuation 40dB;

e) sampling frequency Fs  44kHz .

Solution

First we define the problem in the digital frequency domain:

 p 
2  FpFs

 1.1424 rad

S  2  FSFs
 1.2852 rad

Then we determine the specifications of the Analog Prototype:
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 p  Fs2 Tan p2   56554.2 radsec
S  Fs2 Tan S2   65876.0 radsec

Now from the Passband Ripple we determine e as

 p  100.520  0.944

   1p
2

 1  0.349

Then we determine the order of the filter

 N 
log 1s

2

2s

2 
2 log sp

  37.0762

which yields N  38 . Finally we determine the cut off frequency of the filter as

 c  p 1N  58141.4 radsec

and therefore its frequency response becomes

 H  1
12 p

2N  1
1 p1N 2N

The following plot shows the poles of the filter in the s-plane:

16 Solutions_Chapter4[1].nb



-5 -4 -3 -2 -1

-6

-4

-2

2

4

6

The frequency response (magnitude only) is shown next:
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à Problem 4.15

A 4-th order Butterworth filter has cut off frequency c  200 radsec .

a) Determine the zeros and poles of the transfer function;

b) What would be its passband and stopband frequencies if we want 1dB ripple in the passband and 
40dB attenuation in the stopband?

c) If we apply a Bilinear Transformation with sampling frequency Fs  1kHz, determine  the zeros 
and poles in the z-plane.

Solution

a) Recall that an N  th  order Butterworth Filter has poles on a circle with radius 
c  200 radsec  spaced by an angle of 360 2N  3608  45 degrees.  The poles are 
shown in the figure below

planes 

and they are given by p1,4  200ej58  and p2,3  200ej78 . All zeros are at s   .

b) From the frequency response H 1
1 200 8  we  solve for p  and S  , as

 Hp  10120  530.673 radsec
HS  104020  1986.89 radsec

c) Applying the formula for the Bilinear Transformation each pole is mapped as

 z  
s 2Ts
s 2Ts
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This yields poles in the z-plane at 0.673045  j 0.433479  and 0.53675  j0.143193 and 
four  zeros at z  1 .

à Problem 4.16

Repeat Problem 4.14 using a Chebyshev filter. Which one would you choose if complexity is an issue?

Solution

The specifications of the prototype filter are the same, since they depend on the original specifications 
of the filter and on the bilinear transformation. Recall them here for convenience:

 p 
2  FpFs

 1.1424 rad

S  2  FSFs
 1.2852 rad

 p  Fs2 Tan p2   56554.2 radsec
S  Fs2 Tan S2   65876.0 radsec

 p  10120  0.944
S  104020  0.01

   1p
2

 1  0.349

Then use the formulas for the Chebyshev Filter, from section 4.4, to obtain N  12  (the complexity of 
the filter) and the frequency response as shown below.

The filter order is determined from the formula

N 
log 

1S
2 21 1S

2
 S




log


 Sp

 Sp
2

 1




which yields N  12 . Then the poles of the filter in the s-plane are computed as
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 




2  1  1








1N

;

r1 
p 2  1


2 
;

r2 
p 2  1


2 
;

p  r2cos  2 k  1


2 N



2
  j r1 sin  2 k  1


2 N




2
 , k  0, ..., N  1

The poles in the s-plane are shown below. Notice the two different scales for the Real and Imaginary 
axis
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The plot of the frequency response is shown below. If you compare it with the Butterworth filter in 
Problem 4.14, notice that you obtain the same attenuation with a lower complexity (N  12 for Cheby-
shev and N  38  for Butterworth).
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à Problem 4.17

We want to implement the analog filter with transfer function 

 Hs  2s1s2s1

by a discrete time approximation, using the Bilinear Transformation.  Let Fs  10Hz be the sampling 
frequency.

a) Determine zeros and poles of both the analog filter Hs and the discrete time implementation  
Hz;

b) Determine the Linear Difference Equation of the discrete time implementation;

c) Plot the frequency responses of the digital filter H  and the analog filter H . Verify that you 
can obtain one from the other by the appropriate frequency transformation. 

Solution

a) The zeros of the analog system are s  12 , and s    (yes this is a zero too!). The poles are 
the solution of  s2  s  1  0  which yields s  ej23

Applying the mapping sØz 

 z  
s 2Ts
s 2Ts

we can verify that the zeros are mapped as

 s  12  z  0.9512
s    z  1

and the poles

s  ej23  z  0.947743  j 0.0822827  

b) Since we know the zeros and the poles we can write the transfer function to be

 Hz  K z1z0.9512z0.947743j 0.0822827z0.947743j 0.0822827
with the constant K  to be determined. Combining terms we obtain

 Hz  K z2 0.0488z0.9512z21.8955z 0.9050

We can determine K  by matching the value at one frequency component, say at s  0  z  1:

 Hs s0  2s1s2s1  1  Hz z1  K z2 0.0488z0.9512z21.8955z 0.9050 z1  10.2737 K

Equating the two we obtain K  110.2737  0.0973361. Finally the transfer function

Solutions_Chapter4[1].nb 21



 Hz  0.0973361 z2 0.0488z0.9512z21.8955z 0.9050

and the difference equation

 yn  1.8955yn  1  0.9050yn  2 
0.09763361 xn  0.0488xn  1  0.9512xn  2

à Problem 4.18

An integrator has transfer function

 Hs  1s

a) Determine a discrete time implementation using Euler's approximation, with sampling frequency 
Fs  10Hz . Sketch the frequency response, and verify that it approximates the integrator for low 
frequencies;

b) Same as a), using the Bilinear Transformation. 

Solution

a) By the Euler approximation

 s  1z1
Ts

we obtain

 Hz  0.1 zz1

The frequency response is

 H  0.1 ej
ej1  0.1 ej

2j ej2sin2
For   small, we can approximate ej  1  and sin2   2 , and therefore we see that, for 
small   the discrete time system behaves like an integrator with frequency response

 H  1j Fs
 1j2F FFs2

The following plot compares the frequency response  H   with the ideal integrator. We can see 
that in this case the Euler approximation gives a good approximation.
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b) With the Bilinear Transformation we have

 Hz  Ts2
1z1
1z1

and the frequency response is

 H  0.12  cos 2 j sin 2 

The following plot compares the frequency response  H   with the ideal integrator. Even here 
we can see that in this case the Euler approximation gives a good approximation. Notice that at 
z  1  (ie   ), the frequency response is zero, and in the dB plot it goes to  .
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à Problem 4.19

You want to design an analog Band Pass Filter which passes the frequencies in the interval

 5kHz  F  6kHz
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with 1dB ripple in the passband. Let the the filter be Butterworth with order N  4 . 

a) Determine the frequency transformation Low Pass to Band Pass you would use;

b) Determine the frequency response of the corresponding Low Pass Filter, together with its zeros and 
poles;

c) Determine the zeros and poles of the Band Pass Filter and its transfer function.

Solution

From the specifications we determine the lower and upper frequencies as

L  2  5000
U  2  6000

Then we choose a prototype Butterworth filter of order N  4  and with arbitrary   cut off frequency, 
say

C  1  

which has poles at

pk  C 
 2 

 2 k1 2 4 , k  0, 1, 2, 3

In order  to apply the proper transformation (Low Pass to Band Pass)

qs  C s2  L U
s U  L

we compute the poles of the bandpass filter from the equations

qs  pk ,  k  0, 1, 2, 3

Each equation is quadratic and it yields two solutions. As a total we have 24  8  poles for the 
bandpass filter which are given by

 poles  1303.33  37418.3 , 1101.14  31613.4 ,
3004.15  35515.3 , 2800.76  33110.8 , 3004.15  35515.3 ,
2800.76  33110.8 , 1303.33  37418.3 , 1101.14  31613.4 

The filter has also four zeros at s  0 , due to the fact that q0   . From the zeros and the poles 
we determine the transfer function. The magnitude of the frequency response is shown below
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Problems Involving Material from Previous Chapters

à Problem 4.20

Recall that, when we apply a digital filter to a continuous time signal, we need two analog filters: 
Anti-Aliasing and Reconstruction.  Due to hardware constraints and cost, these two filters cannot have 
a very large order, and they represent a constraint in our design. Suppose we want to design a digital 
filter for a signal having bandwidth of 8kHz, and we have to use a 5 pole Butterworth filter 
(commercially available for low cost) for both antialiasing and reconstruction filters. Also we want 
1dB passband ripple and 50dB attenuation in the stopband.

a) What do you think would be the minimum sampling frequency we can have, with these two analog 
filters. (Hint: recall what is the passband and what is the stopband of the analog antialising and recon-
struction filters in terms of signal bandwidth and sampling frequency);

b) The 5 pole Butterworth filter you buy, often is based on switched capacitor technology. This allows 
to select the cut off frequency c  fairly easily, by adjusting the frequency of an oscillator. Given the 
sampling frequency you determined in question Q1, determine a suitable value for the cut off fre-
quency c  of the filter.
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Solution

a) From the specifications of the problem, we have to pass all frequencies up to 8kHz . This yields

 p  2 8000 rad/sec

We want 1dB ripple in the passband. This gives a value of   as

   0.509

Therefore the frequency response becomes

  H  1
12 p

10

with e and p  as given. Now we have to find the stopband frequency, from the requirement of 50dB 
attenuation. This leads to the equation

 H  1

1  2 p

10  105020

which we solve for W. This yields the stopband frequency

S 181950. rad/sec

or, in Hertz,

FS  S2  28958.2 Hz

Now the sampling frequency Fs  has to be such that

FS  Fs  8000 Hz

which yields a sampling frequency

 Fs  FS  8000  28958.2  8000  36.9582kHz

b) The cut-off frequency C  of the filter is obtained by solving

 H  1

1  2 p

10 
1

2
which yields C  57537.7 radsec. The figure below illustrates the problem.
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à Problem 4.21

In your CD the data is sampled at 44.1kHz (CD quality), and we want to have a good sound quality up 
to 21kHz. If you had a to use  an analog Butterworth filter as a reconstruction filter, what would be the 
order of your filter? Do you think you can reasonably build a filter with that complexity? (I do not 
think so either!) The chapter on Multi Rate DSP is going to show you how the CD technology solves 
this problem.

Solution

Since we want the filter to pass the signal and reject all frequencies above Fs 2 ,  we can see that 
passband and stopband frequencies become

 p  2 21000 radsec
S  244100 2  2 22050rad sec

Assuming a 1dB passband ripple and 40dB attenuation in the stopband, this would yield a frequency 
response of the form

  H  1
12  p

2 N

with e=0.509 and P   as given. For an attenuation of  40dB we obtain N  108 after solving

  HS  1
12  Sp

2 N  0.01

for the order N . 
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