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Outline

Problem
I Should simultaneously focus on both numerical and statistical

accuracy.
I Statistical accuracy: How well do the data capture the

problem we want to solve?
I Numerical accuracy: How quickly can we can compute an

estimator to (insert number) of digits?

Contributions

I We make a small contribution in this direction using proximal
methods.

I We provide theoretical support for early stopping of scaled
proximal methods.
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Parametric Estimation

I We have a parametric family of densities
{p(·|θ) : θ ∈ Θ ⊆ Rd}.

I Observe n independent copies X1, ...,Xn of a random vector
X ∼ p(·|θ0).

I Do not know θ0 and want to use X1, ...,Xn to estimate it.

Theorem (Cramer-Rao Bound)

Assume that the Fisher Information exists.

Iθ0 := Var

[
∂

∂θ
log p(X |θ)

∣∣∣∣
θ0

]
.

Then any unbiased estimator θ̂ of θ0 satisfies

Var
[
θ̂
]
� (nIθ0)−1.
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Parametric Estimation

We define the Maximum Likelihood Estimator as

θ̂MLE ∈ argmaxθ∈Θ
1

n
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i=1

log p(Xi |θ).
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Parametric Estimation

We define the Maximum Likelihood Estimator as

θ̂MLE ∈ argminθ∈Θ Fn(θ).

Theorem (Fisher 1920s, Cramer 1946)

As the sample size n→∞, the maximum likelihood estimator is
unbiased. Its variance matches the Cramer-Rao bound. More
precisely,

θ̂MLE →D N(θ0, (nIθ0)−1)

where →D denotes convergence in distribution.

We can rewrite the conclusion of the theorem

√
n(θ̂MLE − θ0)→D N(0, I−1

θ0
)
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Parametric Estimation

“The justification through asymptotics appears to be the only
general justification of the method of maximum likelihood”
- A. W. van der Vaart, Asymptotic Statistics.

I In “perfect data” regime, MLE has strong supporting theory.

I But these results were developed in the 1920s and 1940s!

I No computers ⇒ limited ability to compute MLE.

I How was a respectable statistician supposed to use this
insight?



Enter Le Cam

Lucien Le Cam (1924-2000)



One Step Estimators

Theorem (Le Cam, 1956)

I Let θ̃init be an initial estimator of θ0, such that∗

√
n‖θ̃init − θ0‖ < M

for some M and n large enough.

I Some mild regularity conditions hold.

Then performing a single Newton step on the objective function
Fn, from starting point θ̃init , yields an estimator θ̂ose which is
asymptotically equivalent to θ̂MLE .

This estimator

θ̂ose := θ̃init −∇2Fn(θ̃init)
−1∇F (θ̃init)

is called the one step estimator.



With Great Power...

I Starting within M · n−1/2 of θ̂MLE , for some constant M
satisfies the condition on θ̃init in the theorem.

I This gives us “wiggle room” in the optimization of n−1/2,
where n is the sample size.

I One step of Newton’s method is sufficient for an
asymptotically optimal estimator (unbiased with variance
equal to Cramer-Rao).

In practice this gave statisticians license to optimize poorly.

1. Choose starting point

2. Run a few iterations of Newton’s method (by hand!?)

3. Cite Le Cam’s theory suggesting this is good enough.
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Only Newton’s Method?

You may want to scale this beyond Newton’s method.

Can we use gradient descent in Le Cam’s theory?

Answer: No.
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Counterexample

We estimate the population mean from multivariate normal
observations

X ∼ N

((
0
0

)
,

(
100 0

0 1

))
.

Take starting point θ̃ ∼ U
(
[−n−1/2, 0]× [−n−1/2, 0]

)
The one step gradient descent estimator is biased.

Independent of n, this estimator underestimates the first
coordinate of the mean
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Composite Model & Proximal Methods

min
θ∈Θ

F (θ) + G (θ)

is often solved with the following, called proximal gradient descent

Initiate θ0 and iterate the following for appropriate step lengths γk .

1. φk = θk − γk∇F (θk)

2. θk+1 ∈ argminθ∈Θ G (θ) + 1
2γk
‖θ − φk‖2

2.

The proximal operator of G with parameter γ is

proxG ,γ(y) = argminθ∈Θ G (θ) +
1

2γ
‖θ − y‖2

2.

So the proximal gradient method consists of applying a
gradient step (in F ) and proximal step (in G ) for each iteration.
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Scaled Proximal Gradient

Proximal gradient has an extension called Scaled Proximal
Gradient for scaling matrices Ck � 0.

Prox Gradient
Iterate the following:

1. Gradient Step

φk = θk − γk∇F (θk)

2. Proximal Step

θk+1 ∈ argminθ∈Θ

G (θ) +
1

2γk
‖θ − φk‖2

2

Prox Newton
Iterate the following:

1. Newton Step

φk = θk − C−1
k ∇F (θk)

2. Scaled Proximal Step

θk+1 ∈ argminθ∈Θ

G (θ) +
1

2
‖θ − φk‖2

Ck

Recall that ‖y‖2
C = yTCy is the weighted euclidean norm



Prox Gradient vs Scaled Prox Gradient

Prox Gradient

I (Often) Closed form prox

I Linear convergence rate

Scaled Prox Gradient

I Rarely closed form prox

I Superlinear convergence rate

Scaled Prox Gradient is used by reputable packages such as
glmnet, newglmnet, QUIC (QUadratic Inverse Covariance
estimation).

see Lee, Sun & Saunders, 2014



Main Contribution

Theorem (Bassett & Deride, ‘21)

Assume we have the composite model, and form estimator

θ̂M = argminθ∈Θ Fn(θ) + G (θ)

where Fn is negative log likelihood and G is a regularizer. If

I θ̃init is an initial estimator within∗ M · n−1/2 of θ̂M .

I G (θ) is convex.

I The scaling Cn is � 0 and C−1
n Iθ0 →n→∞ I.

I Some mild regularity conditions hold.

Then θ̂, the one-step estimator with scaled proximal gradient, is
asymptotically equivalent to θ̂M .

That is,
√
n(θ̂ − θ̂M)→ 0 in probability.
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Interpretation

When solving penalized log-likelihood with scaled proximal
gradient,

Numerical error should scale like n−1/2

in order to respect the statistical nature of the problem



Interpretation as a Smoother

I The (scaled) proximal operator has a well known interpretation
as a smoother, via the infimal convolution of epigraphs.

I Therefore our results provide theoretical justification for
smoothing of a statistical objective using infimal convolution.



Example: Cauchy Likelihood with Laplacian Prior
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Proximal Descent and Scaled Proximal Descent

We have a similar result for scaled proximal descent, where we
have the estimator

θ̂M = argminθ∈Θ Fn(θ)

and we iterate the scaled proximal operator:

θn+1 ∈ argminθ∈Θ Fn(θ) +
1

2
‖θ − θk‖2

Cn

Theorem (Bassett & Deride, ‘21)

If Cn → 0, ‖θ̃init − θ̂M‖ ≤ M/
√
n, and the scaled prox is Lipschitz

continuous, then argminθ∈Θ Fn(θ) + 1
2‖θ − θ̃init‖

2
Cn

is

asymptotically equivalent to θ̂M .



Summary

I Le Cam worked on early stopping results for Newton’s method
applied to MLE.

I We extend this insight to penalized and constrained problems
by considering Scaled Proximal Methods.

I Scaled Proximal Methods work similarly to Newton–a
one-step estimator from a starting point within n−1/2 of the
minimum behaves like the minimum.

I Applies to many problems where we want to build structured
estimates from data.


