
A Survey of Tools for Writing Faster Programs in
Python

Robert Bassett

Naval Postgraduate School
OR Dept Seminar

March 10 2022

1 / 44

Motivation

Why should writing fast code should be prioritized?

First point: Faster code permits scaling to larger, DoD-sized
problems. Especially relevant in optimization.

Example: The algorithmic foundation for solving mixed integer
linear programs quickly is...

The (dual) simplex method. Used for repeated solves of the
relaxations in branch and bound.

Pop Quiz: Which solvers are fastest for LPs via simplex? Any in
the top 2 counts as a correct answer.

2 / 44

Motivation

Why should writing fast code should be prioritized?

First point: Faster code permits scaling to larger, DoD-sized
problems. Especially relevant in optimization.

Example: The algorithmic foundation for solving mixed integer
linear programs quickly is...

The (dual) simplex method. Used for repeated solves of the
relaxations in branch and bound.

Pop Quiz: Which solvers are fastest for LPs via simplex? Any in
the top 2 counts as a correct answer.

2 / 44

Motivation

Why should writing fast code should be prioritized?

First point: Faster code permits scaling to larger, DoD-sized
problems. Especially relevant in optimization.

Example: The algorithmic foundation for solving mixed integer
linear programs quickly is...

The (dual) simplex method. Used for repeated solves of the
relaxations in branch and bound.

Pop Quiz: Which solvers are fastest for LPs via simplex? Any in
the top 2 counts as a correct answer.

2 / 44

Motivation

Why should writing fast code should be prioritized?

First point: Faster code permits scaling to larger, DoD-sized
problems. Especially relevant in optimization.

Example: The algorithmic foundation for solving mixed integer
linear programs quickly is...

The (dual) simplex method. Used for repeated solves of the
relaxations in branch and bound.

Pop Quiz: Which solvers are fastest for LPs via simplex? Any in
the top 2 counts as a correct answer.

2 / 44

Answer1

No, it’s not CPLEX or Gurobi.

Since 2018 the top 3 have been:
1. MindOpt (by Alibaba, a Chinese company).

2. COPT (by Cardinal Operations, a Chinese company).

3. Gurobi (the best among U.S. entries).

Newsflash: American dominance in optimization software is over.
It is not going to be regained by writing software that doesn’t scale.

1Source: Mittleman Benchmarks, from Hans Mittleman of ASU Math Dept.
Accessed March 4 2022.

3 / 44

http://plato.asu.edu/ftp/lpsimp.html

Benchmark Details

Figure: Gurobi-9.5.0 time
MindOpt-0.17.0 time for problems in test suite.

4 / 44

More Motivation

Why should writing fast code should be prioritized?

Second point: Releasing2 research code increases our impact. It
lowers the barrier to other researchers actually using our work.

i.e. you can post it on Github.

Example: How many of us have used an R package without
reading the white paper on which it was based?

You don’t have to be a software engineer to identify low hanging
fruit that makes your code run faster. This is important polish for
a final product.

2to project sponsors or publicly, when appropriate
5 / 44

https://github.com/rbassett3/Color-and-Edge-Aware-Perturbations

More Motivation

Why should writing fast code should be prioritized?

Second point: Releasing2 research code increases our impact. It
lowers the barrier to other researchers actually using our work.

i.e. you can post it on Github.

Example: How many of us have used an R package without
reading the white paper on which it was based?

You don’t have to be a software engineer to identify low hanging
fruit that makes your code run faster. This is important polish for
a final product.

2to project sponsors or publicly, when appropriate
5 / 44

https://github.com/rbassett3/Color-and-Edge-Aware-Perturbations

More Motivation

Why should writing fast code should be prioritized?

Second point: Releasing2 research code increases our impact. It
lowers the barrier to other researchers actually using our work.

i.e. you can post it on Github.

Example: How many of us have used an R package without
reading the white paper on which it was based?

You don’t have to be a software engineer to identify low hanging
fruit that makes your code run faster. This is important polish for
a final product.

2to project sponsors or publicly, when appropriate
5 / 44

https://github.com/rbassett3/Color-and-Edge-Aware-Perturbations

Python is Great
Python is a wonderful scripting language.

I Python is easy to learn.

I Python is fast to write.

I Python handles many low-level details (i.e. memory
management) automatically.

I Python has numerous modules available to extend the
language’s functionality.

I Python has an enormous user base.

I Python has a business friendly BSD license3.
3this is in contrast to R’s GPL license

6 / 44

But Python is Slow
But these advantages come at a cost. Python is not fast.4

In many applications this is OK. It’s often better to prioritize
I rapid prototyping

I readable code

I a developer’s time

over writing code which is fast.

“Premature optimization is the root of all evil.”

- Donald Knuth, author of The Art of Computer Programming and
creator of TeX.

4Disclaimer: I mean native Python, not when used as a interface to fast
code written in other languages, e.g. NumPy

7 / 44

But Python is Slow

The Computer Language Benchmarks Game is a database for
comparing language performance.

Here is one numerics-heavy example problem, computing the
largest absolute singular value of a matrix.

Timings of two programs on the same task.

Fortran: 0.72 seconds

Python: 112.97 seconds

Python is ≈ 156 times slower than Fortran for this task.

8 / 44

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/spectralnorm.html

But Python is Slow
Python is slow because it is an interpreted language, not a
compiled language.

I Interpreted languages use an interpreter to translate source
code to CPU instructions at run time.

I Compiled languages use a compiler to translate source code
into CPU instructions at compile time (i.e. before run time).

CPU instructions are not human readable but are very fast.

Also, the Python interpreter does not support parallel
execution.

Analogy: You must travel from Monterey to Santa Cruz.

Compiled languages are like programming a route into GPS.

Interpreted languages are like asking for directions at each leg of
the journey.

9 / 44

But Python is Slow
Python is slow because it is an interpreted language, not a
compiled language.

I Interpreted languages use an interpreter to translate source
code to CPU instructions at run time.

I Compiled languages use a compiler to translate source code
into CPU instructions at compile time (i.e. before run time).

CPU instructions are not human readable but are very fast.

Also, the Python interpreter does not support parallel
execution.

Analogy: You must travel from Monterey to Santa Cruz.

Compiled languages are like programming a route into GPS.

Interpreted languages are like asking for directions at each leg of
the journey.

9 / 44

Outline

Getting to compiled code is the key to making it fast.

We will look at three ways to do it.
1. Numba: A just-in-time (JIT) compiler for Python. JIT

compilers assess the input variables and compile the code
during/after its first run.

2. Cython: An extension of the Python language. Developer
provides additional information to Python syntax. Cython
translates this into compiled code.

3. f2py: An extension of NumPy for calling Fortran functions
from Python. Sounds daunting but isn’t. Fortran is very easy
to learn and quickly write fast code.

10 / 44

A Running Example
Swap the location of minimal and maximal elements in an array.
Here’s a Python implementation.
def swap_min_max(arr):

max_val = arr[0]
max_ind = 0
min_val = arr[0]
min_ind = 0
for i in range(1, len(arr)):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[min_ind] = arr[max_ind]
arr[max_ind] = min_val

Note: you may be tempted to compute the min and max
separately using built-in Python functions. But doing so loops
through the array twice, whereas this only loops through once.

11 / 44

Python Timings

In [1]: X = np.array(range(int(1e8))) #100 million numbers

In [2]: %timeit python_version.swap_min_max(X)
20.7 s +/- 3.29 s per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

12 / 44

Numba Version
from numba import jit

@jit(nopython=True)
def swap_min_max(arr):

max_val = arr[0]
max_ind = 0
min_val = arr[0]
min_ind = 0
for i in range(1, len(arr)):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[min_ind] = max_val
arr[max_ind] = min_val

It really is that easy. In Numba, decorators are used to identify
functions that should be JIT compiled.

13 / 44

Numba Timings

First run (longer because it includes compilation):
In [1]: X = np.array(range(int(1e8))) #100 million numbers
In [2]: start = time.time(); numba_version.swap_min_max(X);

print(time.time() - start)
0.3200979232788086 (seconds)

Additional runs:
In [3]: %timeit numba_version.swap_min_max(X)
182 ms +/- 3.95 ms per loop

(mean +/- std. dev. of 7 runs, 1 loops each)

Numba runtime is 113.7x faster than Python runtime.

14 / 44

Parallel Numba Example

By modifying our decorator, we can also parallelize loops when
appropriate.

Our example doesn’t permit easy parallelization, because max val
and min val can’t be updated independently within each loop
iteration.

But we can parallelize a big sum.

15 / 44

Parallel Numba Example

from numba import jit, prange

@jit(nopython=True, parallel=True)
def parallel_sum(arr):

total = 0
for i in prange(0, len(arr)):

total += arr[i]
return total

@jit(nopython=True)
def numba_sum(arr):

total = 0
for i in range(0, len(arr)):

total += arr[i]
return total

16 / 44

Eye Candy: Utilize your CPUs

17 / 44

Parallel Numba Timings

In [1]: np.random.seed(0)

In [2]: X = np.random.normal(size=int(1e9)) #1 billion numbers

In [3]: %timeit sum(X)
1min +/- 618 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [4]: %timeit numba_sum(X)
1.04 s +/- 36.2 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [5]: %timeit parallel_sum(X)
272 ms +/- 2.14 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

Parallelized Numba is 220x faster than sum in Python.

18 / 44

Downsides to Numba

The benefits of Numba are obvious: Much faster execution with
minimal effort.

But there are some limitations.

I Numba only plays well with NumPy arrays and other
elementary data types.

I JIT compiler means slow first-time execution.

I Wider Python ecosystem (SciPy, Pandas, etc) cannot be JIT
compiled.

19 / 44

Introducing Cython

Cython is an extension of Python that provides enough additional
information for the code to be compiled.

Compilation usually occurs when installing package, i.e. via pip or
conda.

Cython code can also be compiled directly in a Jupyter notebook.
Code should be developed but not distributed this way.

Good news: All valid Python code is valid Cython code. But
providing additional information via Cython’s unique syntax is
what gives you speed improvements.

20 / 44

Cython Version (No Change From Python)

def swap_min_max_cython(arr, n):
max_val = arr[0]
max_ind = 0
min_val = arr[0]
min_ind = 0
for i in range(1, n):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[max_ind] = min_val
arr[min_ind] = max_val

14.5 s runtime compared to 20.7 s in original. 1.43x Faster.

21 / 44

Cython Version: Typing all the Variables

cimport numpy as np

def swap_min_max_cython(np.ndarray[ndim=1, dtype=np.int64_t] arr, int n):
cdef int max_val = arr[0]
cdef int max_ind = 0
cdef int min_val = arr[0]
cdef int min_ind = 0
cdef int i
for i in range(1, n):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[max_ind] = min_val
arr[min_ind] = max_val

150 ms runtime compared to 20.7 s in original. 138.0x Faster.

22 / 44

Cython Version: Ints (32 bit) vs Longs (64 bit)

cimport numpy as np

def swap_min_max_cython(np.ndarray[ndim=1, dtype=np.int64_t] arr, int n):
cdef long max_val = arr[0]
cdef int max_ind = 0
cdef long min_val = arr[0]
cdef int min_ind = 0
cdef int i
for i in range(1, n):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[max_ind] = min_val
arr[min_ind] = max_val

125 ms runtime compared to 20.7 s in original. 165.6x Faster.

23 / 44

Cython Version: Drop NumPy Dependency

#dtype[::1] means a contiguous chunk of memory dtype
def swap_min_max_cython(long[::1] arr, int n):

cdef long max_val = arr[0]
cdef int max_ind = 0
cdef long min_val = arr[0]
cdef int min_ind = 0
cdef int i
for i in range(1, n):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[max_ind] = min_val
arr[min_ind] = max_val

86.3 ms runtime compared to 20.7 s in original. 239.9x Faster.

24 / 44

Cython Version: Tricks with Indices

cimport cython

@cython.boundscheck(False) #disable index checking
@cython.wraparound(False) #forbid negative indices
def swap_min_max_cython(long[::1] arr, int n):

cdef long max_val = arr[0]
cdef int max_ind = 0
cdef long min_val = arr[0]
cdef int min_ind = 0
cdef Py_ssize_t i #special type for indexing Python arrays
for i in range(1, n):

if arr[i] > max_val:
max_val = arr[i]
max_ind = i

if arr[i] < min_val:
min_val = arr[i]
min_ind = i

arr[max_ind] = min_val
arr[min_ind] = max_val

77.3 ms runtime compared to 20.7 s in original. 267.8x Faster.

25 / 44

Cython Timings

In [1]: X = np.array(range(int(1e8))) #100 million numbers

In [2]: %timeit python_version.swap_min_max(X)
20.7 s +/- 3.16 s per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [3]: %timeit swap_min_max_cython(X, len(X))
77.3 ms +/- 487 µs per loop

(mean +/- std. dev. of 7 runs, 10 loops each)

Cython is 267.8x times faster than Python at 20.7 seconds.

26 / 44

Cython Annotation

What if we miss adding some important Cython syntax?

Using Jupyter magic %%cython -a can help us find it.

Hypothetical: We forget to type max ind in our running example.

27 / 44

Cython Annotation: Missed Type

28 / 44

Cython Annotation: Fixed

29 / 44

Cython: Parallelism

Parallelizing code is also extremely easy in Cython.

A serialized sum:
cimport cython

@cython.boundscheck(False)
@cython.wraparound(False)
def sum_cython(double[::1] arr, int n):

cdef double total = 0.0
cdef Py_ssize_t i
for i in range(n):

total += arr[i]
return total

30 / 44

Cython: Parallelism

Parallelizing code is also extremely easy in Cython.

A parallelized version:5
cimport cython
from cython.parallel import prange, parallel

@cython.boundscheck(False)
@cython.wraparound(False)
def parallel_sum_cython(double[::1] arr, int n):

cdef double total = 0.0
cdef Py_ssize_t i
for i in prange(n, nogil=True):

total += arr[i]
return total

5You must add openmp to Jupyter magic syntax to parallelize in a notebook,
i.e. %%cython --compile-args=-fopenmp --link-args=-fopenmp --force

31 / 44

Cython Parallel Performance

In [1]: np.random.seed(0)

In [2]: X = np.random.normal(size=int(1e9)) #1 billion numbers

In [3]: %timeit sum(X)
1min +/- 618 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [4]: %timeit sum_cython(X, len(X))
998 ms +/- 4.63 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [5]: %timeit parallel_sum_cython(X, len(X))
264 ms +/- 3.37 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

Parallelized Cython is 227x faster than Python.

32 / 44

Pros and Cons of Cython

Pros of Cython
I Fast. No drawbacks of JIT compiler.
I Portable. Pip and Conda installations will compile Cython.
I Versatile. Easily connect Python to C/C++ libraries.

Cons of Cython
I Often assumes developer understands conventions of C/C++.
I Cython only plays well with NumPy arrays and other

elementary data types.
I Wider Python ecosystem (SciPy, Pandas, etc) can be included

in Cython code, but you won’t see speed gains.6

6Exception: SciPy provides alternative lapack & blas functions directly for
Cython.

33 / 44

Introducing f2py
I f2py is an extension of NumPy that allows convenient calling

of Fortran code from Python.

I Fortran isn’t as widely used as C/C++ today. Perceived as
primarily used in legacy code.

I Fortran is amazing for simple programs which are heavy on
numerics. It is a domain-specific language for numerical
computation, like R is a domain-specific language for
statistics.

I Fortran can be an great resource for eliminating bottlenecks in
Python code.

I It’s easy to learn, and easy to write fast code.

I f2py makes linking Fortran functions to Python extremely
easy.

34 / 44

Return to Running Example
! file: fortran_version.f90
subroutine swap_min_max(arr, n)

implicit none !don't use default variable definitions
integer n, min_ind, max_ind, i
integer*8 max_val, min_val
!f2py integer intent(hide) depend(arr):: n = shape(arr,0)
integer*8 arr(n) !integer*8 gives 64 bit integer i.e. long
min_ind = 1 !fortran is 1-indexed instead of 0-indexed like Python
max_ind = 1
max_val = arr(1) !fortran uses () instead of [] to index arrays
min_val = arr(1)
do i=1,n !indents don't matter in Fortran, but help readability

if (arr(i) > max_val) then
max_val = arr(i)
max_ind = i

end if
if (arr(i) < min_val) then

min_val = arr(i)
min_ind = i

end if
end do
arr(min_ind) = max_val
arr(max_ind) = min_val

end

35 / 44

Compiling and Running
[me@computer]$ f2py -c -m fortran_version fortran_version.f90

[me@computer]$ ipython
In [1]: import numpy as np; import python_version

In [2]: import fortran_version

In [3]: X = np.array(range(int(1e8)))

In [4]: %timeit python_version.swap_min_max(X)
20.7 s +/- 3.16 s per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [5]: %timeit fortran_version.swap_min_max(X)
95.5 ms +/- 391 µs per loop

(mean +/- std. dev. of 7 runs, 10 loops each)

Fortran with f2py is 216.8x faster than Python.

36 / 44

Parallel Computation with Fortran/f2py

Again, let’s parallelize a large sum. Serial version:

! file parallel_sum.f90
subroutine fortran_sum(arr, n, total)

implicit none
integer n, i
!f2py integer intent(hide) depend(arr):: n = shape(arr, 0)
real*8, intent(in):: arr(n) !fortran intents are parsed by f2py
real*8, intent(out):: total
total = 0d0
do i=1,n

total = total + arr(i)
end do

end

37 / 44

Parallel Computation with Fortran/f2py

Again, let’s parallelize a large sum. Parallel version:

! file parallel_sum.f90
subroutine fortran_sum(arr, n, total)

implicit none !don't use default variable definitions
integer n, i
!f2py integer intent(hide) depend(arr):: n = shape(arr, 0)
real*8, intent(in):: arr(n) !fortran intents are parsed by f2py
real*8, intent(out):: total
total = 0d0
!$omp parallel do reduction(+:total)
do i=1,n

total = total + arr(i)
end do
!$omp end parallel do

end

Fortran gives access to openmp, a powerful tool for parallelization.

38 / 44

f2py: Parallel Performance
[me@computer]$ f2py -c -m parallel_sum parallel_sum.f90

[me@computer]$ ipython
In [1]: import numpy as np; import parallel_sum

In [2]: np.random.seed(0); X = np.random.normal(size=int(1e9))

In [3]: %timeit sum(X)
1min +/- 618 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [4]: %timeit parallel_sum.fortran_sum(X)
1.03 s +/- 35.8 ms per loop

(mean +/- std. dev. of 7 runs, 1 loop each)

In [5]: %timeit parallel_sum.fortran_sum_parallel(X)
273 ms +/- 9.08 ms per loop

(mean +/- std. dev. of 7 runs, 10 loops each)

Parallel Fortran/f2py is 219.8x faster than Python.
39 / 44

Pros and Cons of f2py
Pros of f2py
I Easily call fast Fortran from Python. Eliminate bottlenecks.

I Compiling Fortran into a Python module is a single execution
of f2py.

I Fortran is easy to learn. Can also be ported to other
languages (R, Julia) easily.

I Fortran is a complete language, with its own fast libraries
(BLAS, LAPACK, ScaLAPACK, etc.)

Cons of f2py
I Requires learning some details of yet another language.

I Fortran/f2py only play well with NumPy arrays and other
elementary data types.

I Wider Python ecosystem (SciPy, Pandas, etc) cannot be
utilitzed within Fortran.

40 / 44

Other Tools
Natural question: What about tools for linking Python with
C/C++, similar to f2py’s use of Fortran?

These tools exist. Most popular is pybind11, with swig an older
alternative. Python packages like cppimport automate the
complilation step.

My opinion:
I These tools are not designed for Python developers looking to

eliminate bottlenecks.

I These tools are best used for C/C++ developers looking to
provide a Python interface.

I They are complicated, and require a lot of troubleshooting to
get them working.

I C/C++ have conventions which are (a) not geared towards
code performance (b) difficult if you primarily work in Python.

41 / 44

Conclusion
We’ve introduced three tools for writing faster Python programs.

1. Numba
I Low effort. Only requires function decorators.
I Must be JIT compiled, so first runs are not fast.
I Low amount of developer control, because entire process is

automated.
2. Cython

I Medium effort. Takes familiar Python syntax and modifies it
to produce very fast code.

I Portable and universal. Used in libraries like SciPy,
Scikit-learn, and Statsmodels.

I Medium amount of developer control. Flexible within
constraints of Cython and C/C++ interaction.

3. f2py
I Higher effort. Requires some familiarity with Fortran.
I Can be ported to other languages besides Python more easily.
I High amount of developer control, because you have all

Fortran syntax and libraries at your disposal.
42 / 44

For More Information

1. I’m always available to chat.

2. These slides and the source code for all examples are at my
website: faculty.nps.edu/rbassett

3. Documentation (these are links).
I Numba

I Cython

I f2py

43 / 44

https://faculty.nps.edu/rbassett/
https://numba.pydata.org/numba-doc/latest/index.html
https://cython.readthedocs.io/en/latest/
https://numpy.org/doc/stable/f2py/

Happy Coding!

Cartoon source: @code memez on twitter

44 / 44

