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Stochastic and Convex Optimization in Statistical Estimation

Abstract

This dissertation is an exploration at the interface of optimization and statistics. It focuses on four spe-

cific applications. We begin by considering nonparametric density estimation, and formulate a new estimator

by applying a fusion penalty to a maximum log-likelihood objective. We place particular emphasis on the

computation of these estimators, because ease of calculation is essential to density estimation techniques

being useful in practice. This leads us naturally into convex optimization, as we compare and contrast the

performance of different algorithms on this problem. From density estimation, we move next into Bayesian

point estimation. We consider the relationship between Bayes estimators and Maximum-a-Posteriori (MAP)

estimators. It is commonly accepted that one of these estimators is a limiting case of the other. In fact, this

is not the case without some additional assumptions. We correct this inaccuracy and then provide conditions

for the traditional results to hold. Because both estimators are defined in terms of optimization problems, we

use the theory of variational analysis–a convergence theory with origin in the optimization community–as

a foundation for these corrections. The Bayesian point-estimation theme continues in our next application:

MAP estimation in a dynamical system with log-concave noise. We formulate this problem as a convex

program, and show that its convex-analytic dual can be interpreted as an problem of optimal control. This

connection relates to the celebrated Kalman filter, where a “duality” between the solutions of optimal control

and estimation problems was an essential component of its original derivation. We continue with the theme

of convex-analytic duality in our final application: set-valued portfolio optimization. Set-valued portfolio

optimization is natural when modeling an uncertain financial exchange where there is no clear notion of a

numeraire, or universal measure of value. We show that multistage portfolio optimization in a set-valued

conic market model has a set-valued dual. This dual can be interpreted as one of finding a consistent pricing

system, analogous to historical portfolio duality results. Furthermore, we prove that strong duality holds

between these two set-valued problems. These four applications demonstrate the value of research at the

-iv-



intersection of statistics and optimization. Taken together, the applications in this dissertation make the case

for unifying statistical estimation and optimization in order to further research in both fields.
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CHAPTER 1

Introduction

Decision-making under uncertain conditions is a universal experience, and because of this universality,

there has been an enormous amount of scientific effort devoted to the topic. From the ancient Greeks’ con-

sideration of the arithmetic mean, to modern methods in machine learning, each generation has found ways

to cope with this issue. The process of decision-making in the face of uncertainty can be roughly divided

into two steps: defining and then computing an appropriate decision. Statistical estimation is the theory of

defining decisions in the presence of uncertainty–often by minimizing or maximizing a context-dependent

function. Mathematical optimization, on the other hand, is concerned with computation: constructing ef-

ficient methods to minimize or maximize objective functions. Mathematical optimization and statistical

estimation were rightfully acknowledged as important subdisciplines of applied mathematics in the early

and mid 20th century, through the creation of distinct statistics and operations research departments at many

universities. Though these research areas are natural partners in progress for making decisions under uncer-

tainty, their establishment as separate disciplines can make communication between the fields difficult.

This dissertation is one attempt to unify the research efforts of these communities, towards the goal of

establihing new theory and methods for decision-making under uncertainty. It is divided into five chapters,

where we consider four different projects which rely jointly on contributions from statistical estimation and

optimization. In the remainder of this introduction, we outline the remaining chapters and highlight our

contributions to each area. In each of the next chapters, we present a project and derive our results. The

second chapter considers a problem in nonparametric density estimation, where sparse quadratic program-

ming plays an important role in our ability to compute solutions. The third chapter is an application of tools

from variational analysis–a mathematical theory developed for optimization problems–to the convergence

of Bayesian point estimators. In the fourth chapter we consider a data-driven estimation problem, and then

apply convex duality to connect it to the theory of optimal control. In the fifth and final chapter, we consider

a set-valued portfolio optimization problem, and derive a duality result in that setting.
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1.1. FUSED DENSITY ESTIMATION

1.1. Fused Density Estimation

In chapter 2 we define a new piecewise constant density estimator, called the fused density estimator

(FDE). We show that fused density estimation, though originally formulated as a variational problem, has

a finite-dimensional representation as the solution to a sparse quadratic program. We also give rates of

convergence for this estimator. The rate we derive achieves the minimax rate (in Hellinger distance) over all

densities with logarithm of bounded variation. The FDE formulation has a natural extension to geometric

networks, a network model useful in infrastructure applications, so we also extend our computational and

theoretical results to this setting.

The definition of a fused density estimator is motivated by the success of total variation penalties for

image denoising [ROF92] and fusion penalties for model-selection and regularization [TSR`05]. In both

of these examples, a quadratic term, with minimum that fits the observed data, is added to a total variation,

or fusion penalty term, to form an objective function. The result is an estimator that balances data fidelity

and “simple” solution structure. We leverage this same intuition in the FDE definition: a maximum log-

likelihood term is added to the total variation of the logarithm of the density. The resulting objective is then

minimized over all densities for which the penalty term is finite. Though this nonparametric problem is

formulated as an optimization problem over an infinite-dimensional function space, we reduce it to a finite-

dimensional sparse quadratic program, thus gaining all of the computational tractability of that problem

class.

Though this work is not the first to consider total variation penalized maximum likelihood density es-

timation [ST10, KM06], our penalization of the log-density is a new contribution. This choice of penalty

is computationally justified by the QP reformulation outlined in the previous paragraph. It is theoretically

justified by the rate of convergence we derive: a fused density estimator has squared-Hellinger rate of n´2{3.

To our knowledge, this is the first result of its kind for nonparametric total-variation penalized density es-

timation. Furthermore, this rate achieves the minimax rate over all densities for which the penalty is finite,

which provides strong theoretical support for the use of FDEs.

Total-variation penalties can be naturally extended to settings involving networks [WSST16]. We lever-

age this strength to extend FDEs to the setting of geometric networks–networks where edges are identified

with compact intervals. Geometric network models have extensive applications to infrastructure networks,

in areas such as transportation studies, water resource management, and national defense. In this framework,
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1.2. MAP ESTIMATORS AS A LIMIT OF BAYES ESTIMATORS

observations occur along the edges of a geometric network, and densities are defined along these edges as

well. FDEs can then be used to find densities from data on a geometric network–such as traffic accidents

on a road network or contaminant detection in a water network. This extension of FDEs to the setting of

geometric networks makes them applicable to a variety of application areas, where a network-valued density

estimate can be a qualitative tool to benefit decision makers.

1.2. MAP Estimators as a Limit of Bayes Estimators

In chapter 3, we investigate a folklore theorem relating two methods of Bayesian point estimation. We

provide a counterexample to this theorem, even though it commonly appears in Bayesian statistics literature.

The issue with the theorem is subtle, yet cannot be overlooked. Both estimators are defined in terms of op-

timization problems–one in terms of maximizing a posterior likelihood and another as minimizing posterior

risk. The relationship between them is claimed to be one of limits, but in order for limits of functions to

imply limits of their maximizers we must use an appropriate topology for convergence of functions. These

topological considerations lead us into the theory of variational analysis, which we use to correct the theorem

and specify the additional assumptions required.

The estimators we consider are the Maximum-a-Posteriori estimator (MAP) estimator, and the Bayes

estimator with shrinking 0-1 loss. Minimizing Bayes risk under 0-1 loss corresponds to choosing an esti-

mator with high posterior likelihood averaged value over a small neighborhood. MAP estimators, on the

other hand, are simply maximizers of the posterior distribution. The folklore theorem is as follows: when

the size of the neighborhood over which the average value is taken shrinks to zero, the corresponding Bayes

estimators converge to a MAP estimator. This statement seems intuitive, which contributes to its widespread

acceptance. An argument which is sometimes used to justify the theorem is that convergence of local av-

eraging to the posterior density gives continuous convergence [Gew05], but in fact this is not enough to

guarantee that the limit of maximizers is itself a maximizer [RW09]. We provide a counterexample which

serves to make this point.

The notion of function convergence required to guarantee convergence of maximizers is hypo-convergence,

which can be interpreted as set convergence of the functions’ hypographs [RW09]. Hypo-convergence is

an important component in the theory of variational analysis: a mathematical framework for approximating

optimization problems. Though many statistical estimators are defined in terms of optimization problems,
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1.3. LOG-CONCAVE DUALITY IN ESTIMATION AND CONTROL

variational analysis is not often used by statisticians. We use this theory to prove hypo-convergence of the

sequence of mollifying approximates which define Bayes estimators. We then provide a very mild level-set

condition on the posterior density for the folklore theorem to hold. The level-set condition covers all distri-

butions of practical interest, including quasi-concave and log-concave families. In correcting this theorem,

we hope to demonstrate the value of applying variational-analytic tools to problems in statistical estimation.

1.3. Log-Concave Duality in Estimation and Control

In chapter 4, we consider the problem of estimating the state of a dynamical system. The system is

in discrete time, with linear, possibly time-dependent dynamics, and an initial condition and additive noise

that are generated according to a (possibly time-dependent) log-concave density. We assume, furthermore,

that we receive a noisy linear measurement of the system at each time step, again corrupted by additive

log-concave noise. Our goal is to reconstruct the past and present states of the system. We formulate this

as a Maximum-a-Posteriori (MAP) estimation problem. In his seminal paper [Kal60], Kalman considered

an online version of this problem, where each noise term was restricted to be Gaussian, a special case of

the log-concave setting proposed here. In order to derive his solution, the celebrated Kalman filter, he relied

on a notion of “duality” between this estimation problem and the Linear-Quadratic Regulator from optimal

control. Taking inspiration from Kalman, we investigate the duality structure in our log-concave estimation

problem.

Kalman’s duality referred to an duality of solutions to equations: solutions to the algebraic Ricatti equa-

tions of the control problem are in one-to-one correspondence with the solutions to the system of equations

governing covariance propagation. Instead, we consider convex-analytic duality. Solution-duality can often

be derived as a result of convex-analytic duality, whenever one is able to prove strong duality between the

primal and dual problems. We derive a dual problem for our log-concave estimation problem. This dual

corresponds to an optimal control problem. We prove that strong-duality holds between the problems under

a mild constraint qualification (as in [Roc97]), yielding a bijection between solutions to the estimation and

optimal control problems.

We also consider the special case that the noise terms are log-piecewise linear quadratic. This is a

special case of the more general log-concave noise, when the dynamical system, measurement, and initial-

ization noise each have densities of the form e´ρU,M , where ρU,M is a piecewise-linear quadratic function in
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1.4. DUALITY IN SET-VALUED CONIC MARKET MODELS

the sense of [RW09]. In this case, the dual optimal control problem has a simple closed-form expression.

We also show that strong duality holds between the estimation and control problems without any additional

constraint qualification. We hope that this result serves to motivate researchers in estimation and control to

unify their efforts–our work indicates that researchers specializing in the computation for optimal control

problems can use their expertise to solve problems in estimation, and vice versa. Though the log-concave

case is quite general, this project provides inspiration for further investigation of the setting where noise is

not log-concave, in order to extend these theoretical and computational insights to more general noise terms.

1.4. Duality in Set-Valued Conic Market Models

In chapter 5, we consider a multi-stage portfolio optimization problem in a financial market with pro-

portional transaction costs. The financial market is described by Kabanov’s model of foreign exchange

markets [Kab99], formulated over a finite probability space, and in discrete time steps with a finite horizon.

We assume proportional transaction costs, so that exchanging between assets is penalized proportional to

the size of the transaction. Furthermore, our framework allows us to consider vector-valued portfolios under

a partial ordering. The primary advantage of this model is that it allows us to directly compare portfolios

based on their number of assets, without having to translate into currency for the sake of comparison. In the

context of international exchange markets, a model that requires liquidation into some numeraire at termi-

nal time can be a significant burden, particularly when modeling transaction costs. Treating one currency

as metric of comparison places portfolios dominated by foreign assets at a disadvantage. However, the

generality of this model comes with additional complexity in its analysis.

We embed this problem in a set-optimization framework [HHL`ng], bypassing a purely vector-valued

model for the sake of additional generality and mathematical novelty. An agent’s utility function is then a

convex, set-valued function, as opposed to a strict ordering in the traditional setting. In set-optimization, one

attempts to optimize over sets, where the ordering is a cone-induced partial ordering. This setting can be

seen as a direct extension of traditional convex optimization over the extended real numbers. The drawback

of a set-optimization framework is that it requires additional mathematical subtlety. As an example, defining

appropriate notions of minimum and minimizer requires is not a direct extension of the real-valued setting

[HL14]–these pave the way for the definitions of a solution and a full solution (one which contains all other
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1.4. DUALITY IN SET-VALUED CONIC MARKET MODELS

solutions). The drawback of constructing new mathematical theory is compensated by the additional realism

the complexity allows us to incorporate into our model.

Our contribution is the formulation of a set-valued dual to the portfolio optimization problem. The dual

solutions can be interpreted as consistent pricing systems, analogous to the interpretation of dual vectors as

prices in traditional portfolio optimization. We prove that strong duality holds between the two problems,

under a suitable extension of the Slater condition to the set-valued framework. Lastly, we include an illus-

trative example, working out the dual problem in detail. This example serves to provide tangibility to the

mathematical abstraction presented in this chapter.
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CHAPTER 2

Fused Density Estimation: Theory and Methods

2.1. Introduction

In the pantheon of statistical tools, the histogram remains the primary way to explore univariate empir-

ical distributions. Since its introduction by Karl Pearson in the late 19th century, the form of the histogram

has remained largely unchanged. In practice, the regular histogram, with its equal bin widths chosen by

simple heuristic formulas, remains one of the most ubiquitous statistical methods. Most methodological im-

provements on the regular histogram have come from the selection of bin widths—this includes varying bin

widths to construct irregular histograms—motivated by thinking of the histogram as a piecewise constant

density estimate. In this work, we study a piecewise constant density estimation technique based on total

variation penalized maximum likelihood. We call this method fused density estimation (FDE). We extend

FDE from irregular histogram selection to density estimation over geometric networks, which can be used

to model observations on infrastructure networks like road systems and water supply networks. The use

of fusion penalties for density estimation is inspired by recent advances in theory and algorithms for the

fused lasso over graphs [PSST16,WSST16]. Our thesis, that FDE is an important algorithmic primitive for

statistical modeling, compression, and exploration of stochastic processes, is supported by our development

of fast implementations, minimax statistical theory, and experimental results.

In 1926, [Stu26] provided a heuristic for regular histogram selection where, naturally, the bin width

increases with the range and decreases with the number of points. The regular histogram is an efficient

density estimate when the underlying density is uniformly smooth, but irregular histograms can ‘zoom in’

to regions where there is more data and better capture the local smoothness of the density. A simple irregular

histogram, known as the equal-area histogram, is constructed by partitioning the domain so that each bin has

the same number of points. [DM09] noted that the equal-area histogram can often split bins unnecessarily

This chapter is based on joint work with James Sharpnack.
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2.1. INTRODUCTION

when the density is smooth and merge bins when the density is variable, and proposed a heuristic method

to correct this oversight. Recently, [LMSW16] proposed the essential histogram, an irregular histogram

constructed such that it has the fewest number of bins and lies within a confidence band of the empirical

distribution. While theoretically attractive, in practice its complex formulation is intractable and requires

approximation. If the underlying density is nearly constant over a region, then the empirical distribution is

well approximated locally by a constant, and hence the essential histogram will tend to not split this region

into multiple bins. Such a method is called locally adaptive, because it adapts to the local smoothness of the

underlying density.

In Figure 2.1, we compare FDE to the regular histogram, both of which have 70 bins. Because FDE

can be thought of as a bin selection procedure, in this example, we recompute the restricted MLE after the

bin selection, which is common practice for model selection with lasso-type methods. We see that with

70 bins the regular histogram can capture the variability in the left-most region of the domain but under-

smooths in the right-most region. We can compare this to FDE which adapts to the local smoothness of

the true density. As a natural extension of 1-dimensional data, we will consider distributions that lie on

geometric networks—graphs where the edges are continuous line segments—such as is common in many

infrastructure networks. Another motivation to use total variation penalties is that they are easily defined

over any geometric network, in contrast to other methods, such as the essential histogram and multiscale

methods. Figure 2.2 depicts the FDE for data in downtown San Diego. The geometric network is generated

from the road network in the area, and observations on the geometric network are the locations of eateries

(data extracted from the OpenStreetMap database [Ope17]).

Without any constraints, maximum likelihood will select histograms that have high variation (as in

Figure 2.1), so to regularize the problem, we bias the solution to have low total variation. Total variation pe-

nalization is a popular method for denoising images because solutions tend to identify homogeneous regions

in the underying image. This procedure, also known as the 2-D fused lasso, [TSR`05], is a least-squares

method with a fusion penalty that pulls adjacent pixels toward one another. Fast optimization methods,

such as alternating direction method of multipliers, projected Newton methods, and split Bregman iteration,

have been developed for total variation denoising [ROF92, BT09]. Total variation penalized methods like

the 2-D fused lasso can be naturally extended to signal processing over graphs by thinking of vertices as

pixels [WSST16]. Signal processing over graphs refers to methods that denoise and infer signal within

8



2.1. INTRODUCTION

FIGURE 2.1. A comparison of FDE (left) and the regular histogram (right) of 10,000 data
points from a density (red) with varying smoothness—both have 70 bins.
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FIGURE 2.2. FDE for the location of eateries in downtown San Diego.

noisy observations over vertices of a general graph [SNF`13]. In general, sensor networks can be viewed as

graphs where the vertices, the sensors, produce observations. Distributions over geometric networks, which

we consider here, are distinguished from this literature by the fact that observations can occur at any point

along an edge of the network. This leads to a variational density estimation problem, which we reduce to a

finite dimensional formulation.

9



2.1. INTRODUCTION

Contribution 1. We show that the FDE is equivalent to a total variation penalized weighted

least squares problem, conferring fast optimization tools to the density estimation setting.

In order to justify the use of FDE, we will analyze the statistical performance of FDE for densities of

log-bounded variation over geometric networks. The majority of statistical guarantees for density estimates

control some notion of divergence between the estimate and the true underlying density. Several authors

have used the L2 loss (mean integrated square error) to evaluate their methods for tuning the bin width

for the regular histogram [Sco79, FD81, BM97]. While it is appealing to use L2 loss, it is not invariant to

choice of base measure, and divergence measures such as L1, Hellinger loss, and the Kullback-Leibler (KL)

divergence are preferred for maximum likelihood—an idea pioneered by Le Cam [LCY12] and furthered

by [DG85, HW88]. By appealing to Hellinger loss, [BR06] proposed a method for optimal choice of the

number of bins in a regular histogram, and we will similarly focus on Hellinger loss.

Contribution 2. We provide a non-parametric Hellinger distance rate guarantee for FDE

in the univariate case, over densities of log-bounded variation, which achieves the mini-

max lower bound rate.

When the log-density lies in a Sobolev space, an appropriate non-parametric approach to density es-

timation is maximum likelihood with a smoothing splines penalty [Sil82]. The smoothing spline method

is not locally adaptive because it does not adjust to the local smoothness of the density or log-density.

Epi-splines, [RW13a], are density estimates formed by maximizing the likelihood such that the density, or

log-density, has a representation in a local basis and lies in a prespecified constraint set. [DJKP96] studied

wavelet thresholding for density estimation and proved Lp rate guarantees. [KK96] studied maximum like-

lihood with a log-density wavelet estimator and showed that it achieves minimax rates for KL-divergence

when the log-density is in a Besov space. In a related work, [KK00] considered log-spline density esti-

mation from binned data with stepwise knot selection. FDE differs from this work because we minimize

a variational objective directly, through a representer theorem, and this can be solved via a weighted fused

lasso, as opposed to a stepwise selection procedure. [WN07] used a recursive partitioning approach to form

adaptive polynomial estimates of the density, a similar approach to wavelet decomposition. Such multiscale

methods have well known local adaptivity properties, but extending wavelets to geometric networks is a

cumbersome task, while total variation penalties extends very naturally to the geometric network setting.

10



2.1. INTRODUCTION

Contribution 3. We prove that the same Hellinger distance rate guarantee for the univari-

ate case also holds for any connected geometric network.

So, it also turns out that the theoretical results in the univariate setting can be extended to the geometric

network case. Before we can consider the theoretical performance of FDE, we will define the setting and

methodology in more detail.

2.1.1. Problem Statement. When considering road systems and water networks, we observe that indi-

vidual roads or pipes can be modeled as line segments, and the entire network constructed by joining these

segments at nodes of intersection. Mathematically, we model this as a geometric network G, a finite collec-

tion of nodes V and edges E, where each edge is identified with a closed and bounded interval of the real

line. Each edge in the network has a well-defined notion of length, inherited from the length of the closed

interval. We fix an orientation of G by assigning, for each edge e“ tvi,v ju, a bijection between tvi,v ju and

the endpoints of the closed interval associated with e. This corresponds to the intuitive notion of “gluing”

edges together to form a geometric network. A point in a geometric network G is an element of one of the

closed intervals identified with edges in G, modulo the equivalence of endpoints corresponding to the same

node. Because we only discuss geometric networks in this chapter, we will often refer to them as networks.

A real-valued function g, defined on a geometric network G, is a collection of univariate functions

tg|euePE , defined on the edges of G. We require that the function respects the network structure, by which

we mean that for any two edges e1 and e2 which are incident at a node v, g|e1pvq “ g|e2pvq. We abuse

notation slightly–by referring to g|epvq, we mean g evaluated at the endpoint of the interval identified to

v. A geometric network G inherits a measure from its univariate segments in a natural way, as the sum of

the Lebesgue measure along each segment. With this measure we have a straight-forward extension of the

Lebesgue measure to G, making G a measurable space.

For any random variable taking values on the network G, we will assume that the measure induced by

the random variable is absolutely continuous with respect to the base measure, dx, and so has density f . We

will abuse notation by using dx to refer to both the Lebesgue measure and the base measure on a geometric

graph; which of these we mean will be clear from its context. Furthermore, we assume that the density is

non-zero everywhere, so that its logarithm is well defined. Moreover, we will assume the log-density is not

arbitrarily variable, and for this purpose we will use the notion of total variation. Let B Ď R. The total

11



2.1. INTRODUCTION

variation of a function g : BÑ R is defined as

TVpgq “ sup
PĂB

ÿ

ziPP

|gpziq´gpzi`1q| .

The supremum is over all partitions, or finite point-subsets P, of B. For a real-valued function g defined on

a network G, we extend the univariate definition to

TVpgq “
ÿ

ePE

TVpg|eq.

One advantage of the use of the TV penalty is that is it invariant to the choice of the segment length in the

geometric network, so scaling the edge by a constant multiplier leaves the total variation unchanged. As a

consequence fused density estimation will be invariant to the choice of edge length.

Let f0 be a density on a geometric network G, and x1, ...,xn an independent sample identically distributed

according to f0. Let Pn “
1
n

ř

δxi be the empirical measure associated to the sample. We let Pn act on a

function, by which we mean that we take the expectation of that function with respect to Pn. So for any

function f ,

Pnp f q “
ż

f dPn “
1
n

n
ÿ

i“1

f pxiq.

We will also use Pp f q to denote
ş

f dP for non-empirical measures P.

Fix λ P R`. A fused density estimator (FDE) of f0 is a density f̂ “ exppĝq, such that the log-density ĝ

is minimizer or the following program,

(2.1) min ´Pnpgq`λ TVpgq s.t.
ż

eg dx“ 1

where the minimum is taken over all functions g : GÑR for which the expression is finite and the resulting

f is a valid density. That is, f PF and g P G where

F “ teg : g P G u, G “

"

g : TVpgq ă 8,

ż

G
eg dx“ 1

*

.

The set F will be referred as the set of densities with log-bounded variation. Indeed, the integration

constraint on elements of G makes them log-densities. Note that densities in F are necessarily bounded

above and away from zero, as a result of the total variation condition.
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2.2. COMPUTATION

The program in (2.1) is variational, because it is a minimizer over an infinite dimensional function

space. It is quite common for variational problems in non-parametric statistics to involve a reproducing

kernel Hilbert space (RKHS) penalty, as opposed to a total variation penalty [Wah90]. In the RKHS setting

setting, the Hilbert space allows us to establish representer theorems, which reduce the variational program

to an equivalent finite dimensional one, so that it can be solved numerically. Functions of bounded variation,

on the other hand, is an example of a more general Banach space, so RKHS results cannot be applied to this

setting. In the next section, we discuss representer theorems for (2.1), and further show that it can be solved

using a sparse quadratic program.

2.2. Computation

In this section we provide results toward the computation of fused density estimators. The key challenge

is the variational formulation of the Fused Density Estimator (2.1). To this end, we prove that solutions to

the variational problem can be finitely parametrized. Moreover, we show that after applying this representer

theorem, the finite-dimensional analog of (2.1) has an equivalent formulation as a total variation penalized

least-squares problem. Our main theorem of this section, which reduces the computation of a fused density

estimator to a weighted fused-lasso problem, follows.

THEOREM 2.2.1. Fix λ P R`. The corresponding FDE f̂ can be finitely represented as vectors ẑ and

ĥ. Furthermore, there is a diagonal, data-dependent matrix S with nonnegative entries, sparse matrices D1

and D2 depending on both the graph structure and choice of λ , and a vector w such that ẑ and p̂ are given

as the minimizer of the following sparse, total variation regularized quadratic program.

min
z,h

1
2

zJSz`wJz`||D1z`D2h||1 .

The details of this theorem, by which we mean the constructions of S, D1, D2, and w, and the connection

between ẑ, ĥ and f̂ , will be given later in this section.

Theorem 2.2.1 demonstrates that the FDE (2.1) can be solved as a specific incarnation of the generalized

lasso, for which there are well known fast implementations [AT16]. In practice we will solve the dual to

this problem, which we discuss in Theorem 2.2.5. Theorem 2.2.4 is a precise restatement of Theorem

2.2.1. In order to prove it, we proceed through a series of important lemmas. Lemma 2.2.2 transforms the
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FDE problem from a constrained to unconstrained one by removing the integration constraint. From this

new formulation, Lemma 2.2.3 shows that the search space for the fused density estimator problem can be

reduced from functions of bounded variation to an equivalent, finite-dimensional version. Theorem 2.2.4

performs the final step in the proof–demonstrating that the previously derived finite-dimensional problem

can be solved using a `1 penalized quadratic program. The last subsection in this section is tangential, but

sheds further light on the structure of fused density estimators. Proposition 2.2.6, which we refer to as

the Ordering Property, qualifies the local-adaptivity of fused density estimators by describing their local

structure. Omitted proofs can be found in Appendix 2.6.

2.2.1. Main Computational Results. Our first lemma reduces the fused density estimator problem,

(2.1), to an unconstrained program where the integral constraint is incorporated into the objective. This

result is originally due to Silverman [Sil82], who proved the result in the context of univariate density

estimation and Sobolev-norm penalties. Minor modifications allow us to extend it to geometric networks

and the non-Sobolev total variation penalty.

LEMMA 2.2.2. Let ĝ be a solution to

(2.2) min´Pnpgq`λ TVpgq`
ż

G
eg dx

Then ĝ satisfies
ş

G eĝ dx“ 1.

We remark that the objective in Lemma 2.2.2 is equivalent to total variation penalized Poisson process

likelihood, where the log-intensity is g, so our computations also apply to that setting. Lemma 2.2.2 gives

that the fused density estimator definition (2.1) can instead be solved by the unconstrained problem 2.2 over

all functions g on G of bounded variation. An alternative interpretation of the lemma is that the Lagrange

multiplier associated to the constraint in (2.1) is 1. The next lemma reduces the unconstrained problem

(2.2) to an equivalent finite-dimensional version. The proof technique is analogous to similar results in

[MvdG`97]. In the context of Reproducing Kernel Hilbert Spaces, results that reduce variational problem

formulations to finite-dimensional analogs are referred to as representer theorems, eg. [Wah90]. We will

also use this language to describe our result, even though we are in a more general Banach space setting.

The result demonstrates that FDEs have large, piecewise constant regions, which is a well known property

of fusion penalties [TSR`05, KKBG09, WSST16].
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LEMMA 2.2.3 (Representer Theorem). A fused density estimator ĝ is piecewise constant. All disconti-

nuities are contained in the set tx1, ...,xnuYV , the observations and the points of G identified with nodes.

Using Lemma 2.2.3, we can parametrize fused density estimators with three finite-dimensional vectors:

the fused density estimator at the observation points, p, the fused density estimator at the vertices of G, k,

and the piecewise constant values of the fused density estimator, c. Furthermore, let s be a vector, of the

same length as c, such that si is the length of the segment corresponding to the value ci. For simplicity, we

will assume that no two observations occur at the same location, a condition that we can and will relax in

the remark following Theorem 2.2.4.

Let ne denote the number of observations along edge e. We will denote by pe,i the value, in the vector

p, at the ith observation along edge e. We adopt similar conventions for the vectors c and s. We denote by

kv the value in k at the vertex v. For a given node v, let incpvq denote the set of edges which are incident to v

and denote by ce,v the segment in c which is incident to v. The problem (2.2) becomes

min
p,c,k

ÿ

ePE

#

´
1
n

ne
ÿ

i“1

pe,i`λ

ne
ÿ

i“1

|pe,i´ ce,i|` |pe,i´ ce,i`1|`

ne`1
ÿ

i“1

se,iece,i

+

`λ

ÿ

vPV

ÿ

ePincpvq

|kv´ ce,v|

The first summand, over the edges in E, gives the log-likelihood term, the total variation along an edge, and

the integration term. The second summand gives the total variation at nodes of the geometric graph.

Let F denote the objective function in this optimization problem. Assume that an optimal solution p̂, ĉ, n̂

exists. Of course, p̂ P argminp Fpp, ĉ, k̂q. Define F̃ppq “ Fpp, ĉ, k̂q. Because the function P is convex, a

necessary and sufficient condition for optimality is that zero lies within the subdifferential of F̃ , BF̃ , which
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consists of all subgradients. The subdifferential can be computed exactly. By [Roc15, Theorem 23.8],

(2.3)
`

BF̃ppq
˘

e,i “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´1
n `2λ pi ą ce,i and pi ą ce,i`1

t´1
n `λ `λα : α P r´1,1su pi “ ce,i and pi ą ce,i`1

t´1
n `λ `λα : α P r´1,1su pi ą ce,i and pi “ ce,i`1

t´1
n `λα`λβ : α,β P r´1,1su pi “ ce,i “ ce,i`1

t´1
n ´λ `λα : α P r´1,1su pi ă ce,i and pi “ ce,i`1

t´1
n ´λ `λα : α P r´1,1su pi “ ce,i and pi ă ce,i`1

´1
n ´2λ pi ă ce,i and pi ă ce,i`1

For the zero subgradient condition to hold, we must have that 0 lies between the upper and lower bound

of the subdifferential, that is, the top and bottom lines of equation (2.3). This requires λ ě 1
2n , and in this

case, pe,i“maxtce,i,ce,i`1u is a solution for p. Indeed, if λ ă 1
2n , then 0 R BF̃ppq for any choice of p because

it is strictly less than the smallest possible value of the subdifferential. When λ ą 1
2n , pe,i “maxtce,i,ce,i`1u

gives a subdifferential that contains 0, and in this case it is the only solution. We therefore make the following

assumption that λ ą 1
2n , where n is number of observations on the geometric network.

Hence, we can reduce the program to

min
c,k

ÿ

ePE

#

´
1
n

ne
ÿ

i“1

maxtce,i,ce,i`1u`λ

ne
ÿ

i“1

|ce,i´ ce,i`1|`

ne`1
ÿ

i“1

se,iece,i

+

`λ

ÿ

vPV

ÿ

ePincpvq

|kv´ ce,v| .

Because 2 ¨maxtce,i,ce,i`1u “ ce,i` ce,i`1`|ce,i´ ce,i`1| , we have the further equivalence,

min
c,k

ÿ

ePE

#

´
1
2n

ne
ÿ

i“1

pce,i` ce,i`1q`pλ ´
1
2n
q

ne
ÿ

i“1

|ce,i´ ce,i`1|`

ne`1
ÿ

i“1

se,iece,i

+

`λ

ÿ

vPV

ÿ

ePincpvq

|kv´ ce,v| .

Again, by [Roc15, Theorem 23.8], a necessary and sufficient condition for ĉ, k̂ to solve this problem is

0 P
ÿ

ePE

#

´
1
2n

ne
ÿ

i“1

B pce,i` ce,i`1q`pλ ´
1
2n
q

ne
ÿ

i“1

B p|ce,i´ ce,i`1|q`

ne`1
ÿ

i“1

B pse,iece,iq

+

`λ

ÿ

vPV

ÿ

ePincpvq

B p|kv´ ce,v|q .
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Here we make an important point. The subdifferential of each pce,i` ce,i`1q term is constant. The

subdifferential of |ce,i´ ce,i`1| is piecewise constant, and depends only on the ordering of the terms ce,i and

ce,i`1. Similarly, the subdifferential of the |kv´ ce,v| term is piecewise constant and again only depends on

the ordering of its terms. Lastly, the subdifferential of se,iece,i is given by its gradient: the pe, iqth coordinate

of the subdifferential is se,iece,i .

Consider the transformation ẑ “ eĉ, ĥ “ ek̂. This transformation preserves ordering of elements of ĉ

and k̂, so the subdifferential of each absolute value term is invariant under this transformation. We can

use this invariance to establish an equivalence of optimality conditions for two different problems, under

an exponential transformation. Pursuing this line of reasoning gives the following theorem. In order to

facilitate its statement, we briefly establish some notation.

The total variation of a density f on G, which has been parametrized into vectors z and h, can be

expressed as a sum of pairwise distances between values in z and h. That is, there are sets J1 and J2 of index

pairs such that

TVp f q “
ÿ

pi, jqPJ1

|zi´ z j|`
ÿ

pi, jqPJ2

|zi´h j| .

This formulation depends on the underlying graph structure and the locations of the observations. The

right-hand side of this expression can be written as the `1 norm of a vector C1z`C2h, where C1 and C2 are

matrices with elements in t´1,0,1u, each having |J1|`|J2| rows. We will use the matrices C1 and C2, which

satisfy TVp f q “ ||C1z`C2h||1 and C2 is zero in its first |J1| rows, in the statement of the following theorem.

THEOREM 2.2.4. Let x1, ...,xn be distinct locations of observations on a geometric network G. Partition

these observations into the edges they occur on and the order in which they occur, so that xe,i denotes the ith

observation along edge e. Choose λ to satisfy λ ą 1
2n .

‚ Let z be a vector with indices enumerating the constant portions of the fused density estimator f̂ ,

such that ze,i denotes the value of the fused density estimator on the open interval between xe,i and

xe,i´1, or between an observation and the end of the edge if i“ 1 or ne`1.

‚ Let se,i be the length of the segment that determines ze,i and S“ diagpsq.

‚ Let h be a vector with indices enumerating the nodes in G, such that hv denotes the value of f̂ at

node v.
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‚ Let C1 and C2 be as defined above, and ni “ |Ji|. That is, C1 and C2 are matrices with n1`n2 rows

and elements in t´1,0,1u. We have that TVp f q “ ||C1z`C2h||1, and C2 is identically zero on its

first n1 rows while having a nonzero index in each of the remaining rows. Let

B“

¨

˝

pλ ´1{2nqIn1ˆn1 0n1ˆn2

0n2ˆn1 λ In2ˆn2

˛

‚.

‚ Let D1 and D2 denote the matrices BC1 and BC2, respectfully.

‚ Lastly, define the vector w such that

we,i “

$

’

&

’

%

´ 1
2n i“ 1 or i“ ne`1

´ 1
n otherwise.

.

Then the fused density estimator f̂ for this sample is the minimizer of

(2.4) min
z,h

1
2

zJSz`wJz`||D1z`D2h||1 .

PROOF. The proof follows directly from the line of reasoning before the theorem’s statement. Details

can be found in Appendix 2.6. �

Remark. With a slight modification of the assumption on λ , Theorem 2.2.4 can be extended to the

setting where multiple observations are allowed at a single location. This extension also allows observations

to occur at nodes of the geometric network. In practice, this extension may be useful when dealing with

imperfect data, though we will not focus on it here because it is a measure zero event in the density estimation

paradigm. For completeness, we include the extension in Theorem 2.6.1 of Appendix 2.6.

Methods for computing solutions to the objective in Theorem 2.2.4–a total-variation regularized qua-

dratic program–are well established. As in [KKBG09], we rely on solving the dual quadratic program.

PROPOSITION 2.2.5. The dual problem to (2.4) is

min
y

1
2

yJD1S´1DJ1 y`wJS´1DJ1 y

||y||8 ď 1(2.5)

DJ2 y“ 0.
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The primal solution ẑ can be recovered from the dual ŷ through the expression

ẑ“´S´1pDJ1 ŷ`wq.

A more general statement of Proposition 2.2.5 which suits the more general statement of Theorem 2.2.4,

can be found in Appendix 2.6. It is worth noting that strong duality between the primal and dual problems

in (2.4) and (2.5) follows immediately. Indeed, both are extended linear-quadratic programs in the sense

of [RW09]. By Theorem 11.42 in [RW09], strong duality holds, and in addition both the primal and dual

problem attain their minimum and maximum values, respectively, if and only if (2.4) is bounded. This is

guaranteed by the assumption on λ in Theorem 2.2.4.

2.2.2. Additional Properties of FDEs. In this section, we state a result on the local structure of an FDE

and provide additional comments on its implementation details. The result is intuitive: along an edge, the

value of piecewise constant segments is inversely related to the length of the segment, relative to adjacent

segments. Since smaller segments suggest higher probability in the corresponding region, this property

demonstrates local structure of the estimator which aligns with essential global behavior.

PROPOSITION 2.2.6 (Ordering Property). Let se,i and se,i`1 be the lengths of two segments interior to

an edge e, in the sense that 2 ď i ď n´ 1. Assume further that only one observation occurs at pe, j for

j “ i´2, ..., i`2. Then se,i ď se,i`1 implies that ẑe,i ě ẑe,i`1. Similarly, se,i ě se,i`1 implies ẑe,i ď ze,i`1.

PROOF. We will prove that se,i ď se,i`1 implies ze,i ě ze,i`1. The second claim follows symmetrically.

Assume, for contradiction, that se,i ď se,i`1 and ẑe,i ă ẑe,i`1.

The condition for optimality in (2.4) is

0 P B
ˆ

1
2

zJSz`wJz`||D1z`D2h||1

˙ˇ

ˇ

ˇ

ˇ

ẑ,ĥ
.

The value of the subdifferential in the index corresponding to ze,i is

B

ˆ

1
2

se,iz2
e,i`

1
n

ze,i`

ˆ

λ ´
1

2n

˙

p|ze,i´1´ ze,i|` |ze,i´ ze,i`1|q

˙

.

Under the assumption that ẑe,i ă ẑe,i`1, its evaluation at ẑ is

ẑe,ise,i`
1
n
´

ˆ

λ ´
1
2n

˙

`pλ ´
1
2n
qBp|ze,i´1´ ze,i|q|ẑ.
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Similarly, the e, i`1 index evaluates to

ẑe,i`1se,i`1`
1
n
`

ˆ

λ ´
1
2n

˙

`pλ ´
1
2n
qBp|ze,i`2´ ze,i`1|q|ẑ.

Since ´1ď B |¨| ď 1, we have that

ẑe,ise,i`
1
n
´2

ˆ

λ ´
1
2n

˙

ď ẑe,ise,i`
1
n
´

ˆ

λ ´
1
2n

˙

`pλ ´
1

2n
qBp|ze,i´1´ ze,i|q|ẑ

ď ẑe,ise,i`
1
n

and

ẑe,i`1se,i`1`
1
n
ď ẑe,i`1se,i`1`

1
n
`

ˆ

λ ´
1

2n

˙

`pλ ´
1
2n
qBp|ze,i´ ze,i`1|q|ẑ

ď ẑe,i`1se,i`1`
1
n
`2

ˆ

λ ´
1
2n

˙

.

Under the assumption that ẑ solves this problem, we have that 0 is in the pe, iq index of the subdifferential.

This implies

ẑe,ise,i`
1
n
´2

ˆ

λ ´
1
2n

˙

ď 0ď ẑe,ise,i`
1
n
.

But this inequality gives that 0 is not in the pe, i`1q index of the subdifferential, since

ẑe,ise,i`
1
n
ă ẑe,i`1se,i`1`

1
n
.

This contradicts ẑ as solving (2.4), so the result is proven. �

Up to this point in our analysis, we have discussed the computation of the FDE without consideration for

preprocessing the data or postprocessing our resulting FDE. Since the computation and rates of convergence

of the FDE represent the bulk of our contribution, we will maintain this perspective in the remainder of

the chapter. It is worth mentioning, however, that FDE is amenable to pre and postprocessing. Handling

multiple observations at a single location in Theorem 2.2.4 makes initial binning or minor discretizations of

data (such as projecting observations onto a geometric network) straightforward. Moreover, the FDE can be

viewed exclusively as a method for generating adaptive bin widths, where the resulting bins can then be fit

to the data as in a regular histogram. This approach performs model selection (via FDE) and model fit (via

a post-selection MLE) of the histogram separately, and is common practice in model selection using lasso
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and related methods [MD17,FST14]. When FDE is used exclusively to find bins, it becomes a change point

localization method, instead of a nonparametric density estimator as in its original formulation. Though FDE

is amenable to these examples of pre and postprocessing, we will examine the FDE as a density estimator

in the remaining sections.

We also make some suggestions into the selection of λ . The choice of λ leads to a fixed number of

piecewise constant portions of the fused density estimator. In this sense, the choice of the λ parameter

is analogous to choosing the number of bins in histogram estimation. One can tune this selection with

information-criteria (IC) such as AIC or BIC by selecting the FDE over a grid of λ values that minimizes the

IC. Each of these ICs requires the specification of the degrees of freedom, which can be set to the number

of selected piecewise constant regions in the graph, as is done in the Gaussian case [WSST16, TT`12].

Alternatively, one could use cross-validation as a selection criterion. Implementing cross-validation is often

practical for large problems because the sparse QP in (2.5) can be very quickly, as we will see in the next

section.

2.3. Experiments

We have established a tractable formulation of the fused density estimator in (2.5). Quadratic program-

ming is a mature technology, so computing FDEs via quadratic programming dramatically improves its

computation. Quadratic program solvers designed to leverage sparsity in the D1 and D2 matrices allow the

optimization portion of fused density estimation to scale to large networks and many observations.

In this section we compute FDEs on a number of synthetic and real-world examples.1 We evaluate the

performance of different optimization methods and provide recommendations for solvers which implement

those methods. To facilitate accessibility and customization of these tools, each of the solvers we consider

is open source and compare favorably with commercial alternatives.

2.3.1. Univariate Examples. We first evaluate fused density estimators in the context of univariate

density estimation–where the geometric network G is simply a single edge connecting two nodes. The

operator D1`D2 is especially simple in this setting, corresponding to an oriented edge-incidence matrix of

a chain graph.

1These examples can be found at github.com/rbassett3/FDE-Tools, which also includes a Python package for fused density estima-
tion on geometric networks.
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Figure 2.3 contains fused density estimators of the standard normal, exponential, and uniform densities,

each derived from 100 sample points. The λ parameter in these experiments was selected by 20 fold cross-

validation.
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FIGURE 2.3. Univariate densities and fused density estimators

2.3.2. Geometric Network Examples. We next evaluate FDEs on geometric networks. For each

of these examples, the underlying geometric network is extracted from OpenStreetMap (OSM) database

[Ope17].

Figure 2.4 is a fused density estimator with domain taken to be the road network in a region of the

city of Baghdad. Observations are the locations of terrorist incidents which occurred in this region from

2013 to 2016, according to the Global Terrorism Database [LD07]. The density we attempt to infer is the

distribution for the location of terrorist attacks in this region of the city.

Figure 2.5 is an FDE on the road network in Monterey, California. The observations were generated ac-

cording to a multivariate normal distribution, and projected onto the nearest waypoint in the OpenStreetMap

dataset.

Figure 2.6 is the largest example we consider–a fused density estimator run on the entire city of Davis,

California. The observations on the network are restaurants and cafes in the town. The corresponding

optimization problem has 19000 variables and 25000 constraints (corresponding to the dual formulation in

(2.5)). The region with elevated density value is the downtown region of Davis, which was automatically

detected by the FDE. Despite its size, the dual quadratic problem was solved in 1.14 seconds in our FDE

implementation.

These examples of FDEs on geometric networks illustrate some important properties of the estimator.

The FDEs clearly respect the network topology. This is most obviously demonstrated in the Monterey
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FIGURE 2.4. An FDE for the location of terrorist attacks in Baghdad
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FIGURE 2.5. A fused density estimator for artificial observations on Monterey’s road network

example, where the red and light green regions, which correspond to elevated portions of the density, are

chosen to be sparsely connected regions of the network. This is intuitive because the sparsely connected

regions impact the fusion penalty less severely than a highly connected region, but it is one way that FDEs
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FIGURE 2.6. A fused density estimator on the entire city of Davis, California

reflect the underlying network structure. The Baghdad and Davis examples demonstrate that FDEs can

also be used for hot spot localization, and especially in low-data circumstances. Lastly, we note that FDEs

partition the geometric network into level sets, thereby forming various regions of the network into clusters.

This clustering is an interesting aspect of FDEs, and suggests they could be used to classify regions into

areas of high and low priority.

2.3.3. Algorithmic Concerns. The two most prevalent methods for solving sparse quadratic programs

are interior point algorithms and the alternating direction method of multipliers. Interior point methods

to solve problems of the form (2.4) were introduced by [KKBG09]. Interior point approaches have the

benefit of requiring few iterations for convergence. The cost per iteration, however, depends crucially on

the structure of D1 and D2 when performing a Newton step on the relaxed KKT system. In the case of

univariate fused density estimators, the Newton step requires inversion of a banded matrix, one which has

its nonzero elements concentrated along the diagonal. Leveraging the banded structure allows inversion to

be performed in linear time, which is crucial to the performance of the algorithm. For further details of

interior point methods, we refer the reader to [Wri97, BV04, NN94].
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The alternating direction method of multipliers proceeds by forming an augmented lagrangian function

and updating the primal and dual variables sequentially. More details can be found in [BPC`11, Ber14].

Compared to interior point methods, convergence of ADMM usually requires more iterations of a less-

expensive update, whereas interior point methods converge in fewer iterations but require a more expensive

update.

In this section, we compare the performance of these algorithms on fused density estimation problems.

A comparison between the methods on the related problem of trend-filtering can be found in [WSST16],

where the algorithmic preferences pertained only to the 2x2 grid graph setting. Their results favor the

ADMM approach, though the regularity of this graph structure makes generalizing to general graphs diffi-

cult.

For software, we use the Operator Splitting Quadratic Program (OSQP) solver and CVXOPT. These are

mature sparse QP solvers that use ADMM and interior point algorithms, respectively. They are both open

source, and compare favorably to commercial solvers [SBG`17, Car18]. Our choice to use these solvers

instead of custom implementations reflects that (i) these tools are representative of what is available in prac-

tice (ii) outsourcing this portion to other solvers reduces the ability for subtle differences in implementation

to favor one method over the other (iii) these projects are production-quality, so their implementations are

likely to be of higher quality than custom implementations.

We first compare ADMM and interior point methods on univariate fused density estimator problems.

We perform 200 simulations, sampling 100 data points from each distribution. We let λ range from 0.006 to

0.1. These choices correspond to the lower bound on the λ parameter in Theorem 2.2.4 and an upper bound

which selects a constant or near-constant density. We report in-solver time, in seconds, and do not include

the time required to convert to the sparse formats required for each solver.

TABLE 2.1. Mean and standard deviation of run time (s) for univariate OSQP experiments

λ

Density 0.006 0.05 0.1

Exponential 0.0361˘0.1310 0.0051˘0.0043 0.0045˘0.0045
Normal 0.0209˘0.0912 0.0112˘0.0569 0.0052˘0.0046
Uniform 0.0269˘0.1077 0.0769˘0.0565 0.0074˘0.0412
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TABLE 2.2. Mean and standard deviation of run time (s) for univariate CVXOPT experiments

λ

Density 0.006 0.05 0.1

Exponential 0.0087˘0.0012 0.0069˘0.0008 0.0078˘0.0011
Normal 0.0086˘0.0012 0.0071˘0.0009 0.0076˘0.0010
Uniform 0.0087˘0.0010 0.0065˘0.0008 0.0061˘0.0008

In these experiments, interior point terminated in around 10 iterations. The number of iterations in

ADMM were less consistent, ranging from a few hundred to a few thousand.

For the geometric network case, we performed experiments using four examples: the San Diego and

Baghdad datasets from figures 2.2 and 2.4, in addition to similar datasets in Davis, California. One of

these is a fused density estimator with domain as the road network in downtown Davis, and the other is on

the entire city of Davis–our largest example in this chapter. We choose λ in a range that progresses from

overfitting to underfitting the data. By overfit, we mean that we choose λ as small as possible to make the

fused density estimator problem still feasible. By underfit, we mean that the fused density estimator is a

constant function. We record ‘-’ when a solver does not run to successful completion. All experiments were

run on a computer with 8 GB of memory, an intel processor with four cores at 2.50 GHz, and a 64-bit linux

operating system.

TABLE 2.3. OSQP run times (s) for geometric network examples

λ parameter

Example Overfit Middle Underfit

Baghdad 0.1086 0.0686 0.0639
San Diego 0.0920 0.0961 0.0628
Downtown Davis 0.0269 0.0769 0.0074
Davis 12.0698 0.8539 0.6052

From these experiments we see that the augmented lagrangian method outperforms interior point on

the geometric network examples. The lack of regularity in the matrices D1 and D2, and the large-scale

matrix factorizations associated with Newton limits this method in comparison to ADMM. On smaller,

well-structured problems, like in the univariate examples, interior point methods are often faster. On these

well-structured problems, however, the gain in performance is negligible (on the order of a tenth of a second).

On the other hand, the speed and versatility of OSQP, especially in the context of large, irregular network
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TABLE 2.4. CVXOPT run times (s) for geometric network examples

λ parameter

Example Overfit Middle Underfit

Baghdad 1.5493 1.2813 1.1268
San Diego 0.5507 0.4956 0.3256
Downtown Davis 0.0812 0.5615 0.4864
Davis - 13.4456 13.3911

structure, leads us to recommend ADMM as the method to solve the fused density estimator problem in

(2.5). This supports the suggestion of using ADMM for trend-filtering in [WSST16], and extends their

recommendation beyond the 2ˆ2 grid graph.

2.4. Statistical Rates

In this section we prove a squared Hellinger rate of convergence for fused density estimation when the

true log-density is of bounded variation. Hellinger distance is defined as

h2p f , f0q “
1
2

ż

G
p
a

f ´
a

f0q
2 dx,

where dx is the base measure over the edges in the geometric network G; in the univariate setting, this

is just the Lebesgue measure. The factor of 1
2 is a convention that ensures that the Hellinger distance

is bounded above by 1. The Hellinger distance is a natural choice for quantifying rates of convergence

for density estimators because it is tractable for product measures and provides bounds for rates in other

metrics [LeC73, LC12, GS02]. The squared Hellinger risk of an estimator f̃ for f0 is Erh2p f̃ , f0qs. The

minimax squared Hellinger risk over a set of densities H is

min
f̃

max
fPH

E f rh2p f̃ , f qs.

We find fused density estimation achieves a rate of convergence in squared Hellinger risk which matches

the minimax rate over all univariate densities in F–densities of log-bounded variation where the underlying

geometric network is simply a compact interval. In this sense, univariate FDE has the best possible squared

Hellinger rate of convergence over this function class. The rate we attain is n´2{3, and the equivalence of

rates is asymptotic. On an arbitrary connected geometric network, minimax rates for density estimation can
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depend on the network, but our results demonstrate that FDE on a geometric network has squared Hellinger

rate at most the univariate minimax rate.

We begin by establishing the minimax rate over the class F , which gives a lower bound on the squared

Hellinger rate for fused density estimation. To establish the lower bound, it is sufficient to examine the

minimax rate of convergence over a set of densities contained in F . Fixing a constant C and compact

interval I, we consider the set of functions g : I Ñ R

BVpCq :“ tg : TVpgq ďC, ||g||8 ăCu.

Because BVpCq is bounded below, the packing entropy of BVpCq and ĂBVpCq :“ texppgq : g P BVpCqu are

of the same order. From Example 6.4 in [YB99], we have that BVpCq has L2 packing entropy of order

1
ε
. Applying Theorem 5 from [YB99] gives the minimax squared Hellinger rate over densities t f

ş

f : f P

ĂBVpCqu as n´2{3. In Theorem 2.4.2, we show that the FDE attains the rate of n´2{3 over the larger class

F . Therefore, the minimax squared Hellinger rate over F must also equal n´2{3, so we have proven the

following theorem. For sequences an and bn, we write an — bn if an “ Opbnq and bn “ Opanq.

THEOREM 2.4.1. The minimax squared Hellinger rate over F , the set of densities f with log f of

bounded variation, is n´2{3. That is,

min
f̃

max
fPF

E f rh2p f̃ , f qs — n´2{3.

To prove the FDE rate of convergence for univariate density estimation, we extend techniques devel-

oped for the theory of M-estimators, [Gee00], and locally-adaptive regression splines in Gaussian mod-

els, [MvdG`97]. A detailed proof of our main result can be found in Appendix 2.6. This rate bound for

FDE is based on novel empirical process bounds for log-densities of bounded variation, and these are used

in conjunction with peeling arguments to provide a uniform bound on the Hellinger error. The empirical

process bounds in 2.6.3 rely on new Bernstein difference metric covering number bounds for functions of

bounded variation, which can be found in Appendix 2.7. We extend the FDE rates for the univariate setting

to arbitrary geometric networks in section 2.4.2; this requires embedding the geometric network onto the

real line. This embedding is constructed from the depth-first search algorithm, a technique used in [PSST16]

for regression over graphs, and is described in Appendix 2.6.
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The subsections in this section follow this outline: In subsection 2.4.1, we provide a proof sketch of

the squared Hellinger rate of convergence for the univariate FDE. In subsection 2.6.3, we detail the lemmas

used to prove the main result. In subsection 2.4.2, we extend these rate results from the univariate setting to

arbitrary geometric networks.

2.4.1. Upper Bounds for Rate of Univariate FDE. In this subsection we prove a squared Hellinger

rate of n´2{3 for univariate fused density estimation. Let the geometric network G be a closed interval ra,bs

(a single edge connecting nodes a and b). Recall the definition of F as the set of densities f with log f of

bounded variation. Let f0 PF be a fixed density on G, so that the total variation TVplog f0q is constant as n

increases.

THEOREM 2.4.2. Let f̂n be the fused density estimator of an iid sample of n points drawn from a

univariate density f0. There is a choice of λn such that λn “ OPpn´2{3q, the FDE is well defined, and

E f0rh
2p f̂n, f0qs “ Opn´2{3q.

Combined with the lower bound in Theorem 2.4.1, this gives that univariate fused density estimation attains

the minimax rate over densities in F .

Proof Sketch (Detailed proof in Appendix 2.6).

In order to control the Hellinger error for FDE, we rely on the fact that the FDE is the minimizer of (2.1).

We derive an inequality involving the squared Hellinger distance, an empirical process, and fusion-penalty

terms. This inequality (and in general inequalities serving this purpose; see [Gee00]) is referred to as a

basic inequality. To reduce notation, we introduce the shorthand ĥ“ hp f̂n, f0q, Ip f q “ TVplog f q, Î “ Ip f̂nq,

I0 “ Ip f0q, and p f “
1
2 log f` f0

2 f0
.

We arrive at the following basic inequality by manipulating the optimality condition, ´Pnplog f̂nq `

λnÎď´Pnplog f0q`λnI0. In fact, from the definition of the FDE we have the stronger condition´Pnplog f̂nq`

λnÎ ď´Pnplog f q`λnIp f q for all f PF , but the weaker condition will suffice.

LEMMA 2.4.3 (Basic Inequality).

ĥ2 ď 16pPn´Pqpp f̂n
q`4λnpI0´ Îq.
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Squared Hellinger rates now follow from controlling the right hand side. We do so by considering two

cases. When ĥ is small, we show that

pPn´Pqpp f̂n
q “ OP

´

n´2{3p1` I0` Îq
¯

.

From the basic inequality, this gives

ĥ2 “ OP

´

16n´2{3p1` I0` Îq`4λnpI0´ Îq
¯

“ OP

´

4p4n´2{3´λnqÎ`4p4n´2{3`λnqI0`16n´2{3
¯

.(2.6)

Excluding details, when λn is chosen to dominate 4n´2{3, the first term in (2.6) is negative, so we conclude

that ĥ2 “ OP
`

maxtn´2{3,λnu
˘

.

The condition “when ĥ is small”, and the corresponding control on pPn´Pqpp f̂n
q can be formalized in

the following theorem.

THEOREM 2.4.4.

sup
hp f , f0qďn´1{3p1`Ip f q`I0q

n2{3 |pPn´Pqpp f q|

1` Ip f q` I0
“ OPp1q,

where the supremum is taken over all f PF .

When ĥ is large, on the other hand, we show that pPn´Pqpp f̂n
q “OP

`

n´1{2 ¨ ĥ1{2 ¨ p1` Î` I0q
1{2

˘

. From

the basic inequality, this gives

?
nĥ2 “ OP

´

16ĥ1{2p1` I0` Îq1{2`4
?

nλnpI0´ Îq
¯

.

Whence we conclude that ĥ2 “ OP
`

maxtn´2{3,λnu
˘

. This follows from the analogue to (2.4.4) when ĥ is

large.

THEOREM 2.4.5.

sup
hąn´1{3p1`Ip f q`I0q

n1{2 |pPn´Pqpp f q|

h1{2p f , f0qp1` Ip f q` I0q
1{2 “ OPp1q,

where the supremum is taken over all f PF .

30



2.4. STATISTICAL RATES

To summarize our conclusions so far: the squared Hellinger rate is maxtn2{3,λnu when λn balances the

competing terms in (2.6). By choosing

λn “max

#

sup
hp f , f0qďn´1{3p1`Ip f q`I0q

4 |pPn´Pqpp f q|

1` Ip f q` I0
,n´2{3

+

,

we have a minimal λn which dominates in (2.6). Furthermore, this choice of λn satisfies λn “ OPpn´2{3q by

Theorem 2.4.4. We have established a squared Hellinger rate of n´2{3 for both the cases of ĥ considered.

Furthermore, this choice of λn satisfies the condition on λ in Theorem 2.2.4, so the FDE is well-defined.

Theorems 2.4.4 and 2.4.5 are essential components of the proof outlined above. Both of these results

are new and of independent interest. Their derivation requires the following lemma.

LEMMA 2.4.6. Let M P R and PM “ tp f : 1` Ip f q` I0 ďMu. There is a constant C and choice of c1

such that for all C1 ě c1 and δ ě M
2 ¨n

´1{3

P

˜

sup
p f PPM ,hp f , f0qďδ

ˇ

ˇ

?
npPn´Pqpp f q

ˇ

ˇě 2C1
?

Mδ
1{2

¸

ďC exp
„

´
C1Mδ´1

4C2



Lemma 2.4.6 can be used to prove Theorems 2.4.4 and 2.4.5 by applying the peeling device twice, once

each for the parameters M and δ .

The proof of Lemma 2.4.6 requires three basic ingredients: control of the bracketing entropy of PM,

a uniform bound on PM, and a relationship dictating how M scales with control of the Hellinger distance.

These ingredients have the same motivation as in [MvdG`97], where the authors use a total variation penalty

to construct adaptive estimators in the context of regression. In that work, the authors assume subgaussian

errors and prove bounds on metric entropy for functions of bounded variation. The subgaussian assumption

provides local error bounds, and the metric entropy condition bounds the number of sets on which we must

control that error. Though similarly motivated, our context is more complicated. In order to control the M

in PM with the Hellinger distance, we consider coverings in the Bernstein difference metric instead of the

L2pPq metric. Using the Bernstein difference allows us to achieve the results in Lemma 2.4.6, but its use

requires control of generalized bracketing entropy–bracketing with the Bernstein difference–instead of the

usual bracketing entropy with the L2pPq metric. In addition, the uniform bound we require is now on the

Bernstein difference over PM.
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In Appendix 2.7, we show that the bracketing entropy of PM, with bracketing radius δ , is of order M
δ

.

This bracketing entropy results implies generalized bracketing entropy bounds, and can be proved similarly

to results in monotonic shape-constrained estimation [VDVW96]. In order to achieve the finite sample

bounds necessary to achieve these rates, Bernstein’s inequality is used to provide concentration inequalities

that are critical to bounding the basic inequality. With this combination of local error bounds and bracketing

rates, we can apply results in the spirit of generic chaining [Tal06] to obtain Lemma 2.4.6.

Lastly, we translate the probabilistic results into bounds on Hellinger risk. In general, one cannot prove

expected risk rates from convergence in probability because the tails may not decay quickly enough to give a

finite expectation. But out of the proofs of Theorems 2.4.4 and 2.4.5, we can derive exponential tail bounds

for h2p f̂n, f0q. This allows us to translate our probabilistic rates into rates on the Hellinger risk; doing so

requires some care to simultaneously apply the rates in Theorems 2.4.4 and 2.4.5. These details are provided

in the expanded proof in Appendix 2.6.

2.4.2. Guarantees for Connected Geometric Networks. In the previous sections we proved an n´2{3

rate of convergence for univariate fused density estimators. In this section we extend that result to arbitrary

connected geometric networks. Recall that the total-variation on a geometric network G is the sum of the

total variation over the edges. In this section only, we denote the graph-induced total variation by TVG

and univariate total variation TV, because both will be used in similar contexts. Let IGp f q “ TVGplog f q,

ÎG “ IGp f̂nq, and I0,G “ TVGplog f0q.

The previous section derived rate of convergence results for the case of univariate data. In this section

we define a depth-first embedding of a geometric network onto the real line. The idea is simple. We perform

depth-first search on the geometric network, G, and lay out the edges of the network on the real line as

we visit them. This map that takes the geometric network to the real line preserves the base measure on

G, so inferring a density on G is equivalent to inferring the analogous one on R. Equally important is that

the univariate total variation of a function which has been mapped onto R can be bounded above by the

graph-induced total variation of the function. We use this fact to show that squared Hellinger rate for FDE

on graphs convergence is bounded above by the univariate squared Hellinger rate.

This technique is inspired by [PSST16], where the authors apply a similar technique to prove a rate of

convergence for the fused lasso estimator on graphs. In that article, the rate of convergence and the total
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variation bound immediately imply the same rate of convergence in the general case. The situation is more

subtle in this setting, because the peeling arguments we use complicate the situation.

In Lemma 2.6.11, we show that for any fixed geometric network G, there is a measure-preserving

embedding γ of G into R that preserves densities and Hellinger distance. Furthermore, for any function g on

G, the (univariate) total-variation of the embedded function g ˝ γ´1 never exceeds twice that of the graph-

values total variation. For notational convenience, we will refer to the univariate total variation TVpg˝ γ´1q

as TVpgq. This embedding allows us to extend the univariate squared Hellinger rates to geometric networks.

THEOREM 2.4.7. Let f̂n be the FDE of an iid sample over a connected geometric network with true

density f0. Then there exists a choice of λn such that λn “ OPpn´2{3q and

E f0

“

h2p f̂n, f0q
2‰“ Opn´2{3q.

PROOF. From the previous section, we have that

(2.7) sup
hp f , f0qąn´1{3p1`Ip f q`I0q

n1{2 |pPn´Pqpp f q|

h1{2p f , f0qp1` Ip f q` I0q
1{2 “ OPp1q

and

(2.8) sup
hp f , f0qďn´1{3p1`Ip f q`I0q

n2{3 |pPn´Pqpp f q|

1` Ip f q` I0
“ OPp1q.

We proceed analogously to Theorem 2.4.2. Take

λn “max

#

sup
hp f , f0qďn´1{3p1`Ip f q`I0q

8pPn´Pqpp f q

1` Ip f q` I0
,n´2{3

+

.

From the Basic Inequality, Lemma 2.4.3, we have

ĥ2 ďmax
!

1ĥąn´1{3p1`Î`I0q

´

16pPn´Pqpp f̂n
q`4λnpI0,G´ ÎGq

¯

(2.9)

1ĥďn´1{3p1`Î`I0q

´

16pPn´Pqpp f̂n
q`4λnpI0,G´ ÎGq

¯)

(2.10)

First, consider the case ĥą n´1{3p1` Î` I0q. Define subsets of the probability space

BL “

!?
n
ˇ

ˇ

ˇ
pPn´Pqpp f̂ q

ˇ

ˇ

ˇ
ą L ¨ ĥ1{2 ¨ p1` Î` I0q

1{2
)

33



2.4. STATISTICAL RATES

and

CM “ tÎ ąM ě 2I0,Gu.

Because Î ď 2ÎG (Lemma 2.6.11), on CM we have I0,G´ ÎG ă 0 on CM. Proceeding as in the proof of

Theorem 2.4.2, the fact that λnn´2{3 is bounded below by 1 gives that on Bc
L

?
nh3{2 ď 16 ¨L ¨ p1` Î` I0q

1{2`
4pI0,G´ ÎGq

`

16 ¨L ¨ p1` Î` I0q
1{2

˘1{3 .

As M gets large, this inequality and the fact that 2ÎG dominates Î gives that Bc
LXCM “H. So on Bc

L, for

large enough M,

?
nĥ2 ď 16 ¨L ¨ ĥ1{2p1` I0` Îq1{2`4λn

?
npI0,G´ ÎGq

ď 2max
!

16 ¨L ¨ ĥ1{2p1` I0`Mq1{2,2λn
?

nI0,G

)

.

This holds with probability 1´ε if we choose L so that BL holds with probability less than ε–the fact that we

can do so is guaranteed by (2.7). We conclude that when ĥą n´1{3p1` Î` I0q, ĥ2 “ OP
`

maxtλn,n´2{3u
˘

.

Next consider the case ĥď n´1{3p1` Î` I0q. Mirroring equations (2.24)-(2.27), we have

ĥ2 ď 4p1` I0,G` ÎGq

˜

sup
hp f , f0qďn´1{3p1`I`I0q

4pPn´Pqpp f q

1` I0,G` IG
´λn

¸

`4λnp1`2I0,Gq

ď 4p1` I0,G` ÎGq

˜

sup
hp f , f0qďn´1{3p1`I`I0q

8pPn´Pqpp f q

1` I0` I
´λn

¸

`4λnp1`2I0,Gq

The last inequality again comes from 1` I0` I ď 2p1` I0,G` IGq. By our choice of λn we have that

ĥ2 ď 4λnp1`2I0,Gq.

Because λn “ OPpn´2{3q, we have that when ĥ ď n´1{3p1` Î` I0q, ĥ2 “ OP
`

n´2{3
˘

. Having established

probabilistic the rate for both cases of ĥ, we must now translate these into rates for the squared Hellinger

risk. In the unvariate case, we use the probabilistic bounds just derived–for the cases ĥ ď n´1{3p1` Î` I0q

and ĥą n´1{3p1` Î` I0q–to prove an equivalent rate in Hellinger risk. This part of the proof follows exactly

as in the analogous result for the univariate case, and as such is omitted. �
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This result demonstrates that univariate density estimation is the hardest type of connected geometric

network for estimating log-densities of bounded variation. This is consistent with the results from [PSST16]

in the regression setting. While there may be networks for which the squared Hellinger error may decrease

more quickly than the n´2{3, we reserve that study to future work.

2.5. Discussion

In this work, we introduced the fused density estimator, a nonparametric density estimator derived

from total variation penalized maximum likelihood. The result is a piecewise constant density function,

similar to a histogram, with bin widths that adapt to the local smoothness of the underlying density. The

univariate problem formulation has a straightforward extension to geometric networks, which leads fused

density estimators to have many potential applications in infrastructure networks. We have shown that the

computation of fused density estimators can be reduced to a sparse QP, which makes fused density estimators

tractable on large scale problems.

Our theoretical analysis provides a foundation for a more substantial understanding of the FDE. In

particular, we show that univariate fused density estimation achieves the minimax squared Hellinger rate

for densities of bounded variation. This serves as important validation for the method of fused density

estimation. We reserve for future work the study of specific network structures and fused density estimation

over higher dimensional manifolds.
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2.6. Appendix: Proofs

2.6.1. Proofs from Section 2.2. Proof of Lemma 2.2.2.

Let ĝ be any function of bounded variation. Set ḡ“ ĝ´ lnp
ş

G eĝ dx, so that
ş

eḡ dx“ 1. The value of

(2.11) ´Pnpgq`λ TVpgq`
ż

G
eg dx
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evaluated at ĝ is

(2.12) ´Pnpĝq`λ TVpĝq`
ż

G
eĝ dx.

Whereas (2.11) evaluated at ḡ is

(2.13) ´Pnpĝq` lnp
ż

G
eĝqdx`TVpĝq`1.

Here we have used that TVpĝq “ TVpḡq, which follows from shift-invariance of total variation. That is,

TVpgq “ TVpg`aq for any function g and constant a. Subtracting (2.13) from (2.12) gives

ż

G
eĝ dx´ lnp

ż

G
eĝ dxq´1.

Recall that x´ lnpxq ď 1 for all x ą 0, with equality attained if and only if x “ 1. This proves our result,

since we have shown that ĝ cannot be a minimizer of (2.11) unless ĝ“ ḡ, in which case
ş

G eĝ dx“ 1. �

It is worth noting that, in the proof of Lemma 2.2.2, we only require that total variation is shift invariant.

A similar result holds with any shift invariant penalty substituted for TV.

Proof of Representer Theorem, Lemma 2.2.3.

Let e PE. Consider any subinterval pa,bq of e which does not intersect tx1, ...,xnuYV . Assume, towards

a contradiction, that ĝ is a function which is not constant on pa,bq. We will show that ĝ cannot minimize

(2.2).

Define

ḡ“

$

’

&

’

%

mintĝpaq, ĝpbqu for x P pa,bq

ĝpxq otherwise.

We next consider the effect of this change on the objective in (2.2). Since no xi P pa,bq, the Pn term is

unaltered by changing ĝ to ḡ. Let era,bs be the subset of e corresponding to ra,bs and e
ra,bsA the closure of its

complement within e. The interval pa,bq is contained in e, so we have

TVpg|eq “ TVpg|era,bsq`TVpg|e
ra,bsA

q

for every real-valued function g on G. From the definitions of ĝ and ḡ,

TVpḡ|ra,bsq “ |ĝpaq´ ĝpbq| ď TVpĝ|era,bsq.

36



2.6. APPENDIX: PROOFS

This equality is attained if and only if ĝ is monotonic on ra,bs. We have established that TVpḡq ď TVpĝq.

The integral term in (2.2) is less at ḡ than its evaluation at g̃, since ḡ ď g̃. Equality holds when tx :

g̃pxq ‰ ḡpxqu has measure zero on pa,bq. Hence,

´Pnpĝq`λ TVpĝq`
ż

G
eĝ dxď´Pnpḡq`λ TVpḡq`

ż

G
eḡ dx.

We cannot have that ĝ|ra,bs is monotonic and satisfies tx P pa,bq : g̃pxq ‰ ḡpxqu has measure zero, unless ĝ is

constant on pa,bq. By assumption it is not, so we conclude that ĝ cannot satisfy (2.2) since its evaluation at

the objective is strictly greater than at ḡ. Therefore, any ĝ that satisfies (2.2) must be constant on pa,bq. �

Proof of Theorem 2.2.4.

We pick up from the discussion preceding the theorem’s statement. Recall that the subdifferentials of

the fusion penalty terms are preserved by the exponential transformation. This allows to conclude that there

is a ĉ, k̂ satisfying

0 PB

˜

ÿ

ePE

#

´
1
2n

ne
ÿ

i“1

pce,i` ce,i`1q`

ˆ

λ ´
1

2n

˙ ne
ÿ

i“1

|ce,i´ ce,i`1|`

ne`1
ÿ

i“1

se,iece,i

+

` λ

ÿ

vPV

ÿ

ePincpvq

|kv´ ce,v|

˛

‚

pĉ,k̂q

,

if and only if ẑ“ eĉ and ĥ“ ek̂ satisfies

0 PB

˜

ÿ

ePE

#

´
1
2n

ne
ÿ

i“1

pze,i` ze,i`1q`

ˆ

λ ´
1
2n

˙ ne
ÿ

i“1

|ze,i´ ze,i`1|`

ne`1
ÿ

i“1

se,i

2
¨ z2

e,i

+

(2.14)

` λ

ÿ

vPV

ÿ

ePincpvq

|hv´ ze,v|

˛

‚

pẑ,ĥq

.

The above subdifferentials are taken with respect to pc,kq and pz,hq, respectfully. The problem that generates

the optimality condition (2.14) is

min
z,h

ÿ

ePE

#

´
1
2n

ne
ÿ

i“1

pze,i` ze,i`1q`

ˆ

λ ´
1
2n

˙ ne
ÿ

i“1

|ze,i´ ze,i`1|`

ne`1
ÿ

i“1

se,i

2
¨ z2

e,i

+

`λ

ÿ

vPV

ÿ

ePincpvq

|hv´ ze,v| .
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By solving this new problem, and then applying a log-transformation, we solve the original FDE problem.

Recall that the original formulation of the problem (2.1) was formulated in terms of the log-density g. Hence

a solution to (2.14) gives the values of density instead of the log-density.

By construction w satisfies

we,i “

$

’

&

’

%

´ 1
2n i“ 1 or i“ ne

´ 1
n otherwise.

By construction, we also have that

||D1z`D2h||1 “
ˆ

λ ´
1

2n

˙

ÿ

ePE

ne
ÿ

i“1

|ze,i´ ze,i`1|`λ

ÿ

vPV

ÿ

ePincpvq

|hv´ ze,v| .

Letting S“ diagpsq, we conclude that we can solve the fused density estimator problem by solving

min
z,h

1
2

zJSz`wJ`||D1z`D2h||1

because we have translated the optimality conditions in (2.14) to the problem above. The FDE f̂ is found

by taking the piecewise constant portion of f̂e,i to be ẑe,i and the value of f̂ at node v to be ĥv. �

THEOREM 2.6.1 (Extension of Theorem 2.2.4). Let x1, ...,xn be the distinct locations of observations

on a geometric network G. Partition these locations into the edges they occur on and the order in which

they occur, so that xe,i denotes the ith observation along edge e. Let qe,i denote the number of observations

which occur at location xe,i, and assume the penalty parameter λ satisfies λ ąmaxe,i

!

qe,i
n¨degpxe,iq

)

.

‚ Let z be a vector with indices enumerating the constant portions of the fused density estimator f̂ ,

such that ze,i denotes the value of the fused density estimator on the open interval between xe,i and

xe,i´1, or between an observation and the end of the edge if i“ 1 or ne`1.

‚ Let se,i be the length of the segment that determines ze,i and S“ diagpsq.

‚ Let h be a vector with indices enumerating the nodes in G, such that hv denotes the value of the

fused density estimator at node v.

‚ Using the convention that qe,0 “ 0 and qe,ne`1 “ 0. Define q̄ such that q̄e,i “
qe,i`qe,i´1

2 , for each

e P E and i P t1, ...,ne`1u.

‚ Let r be a vector whose indices enumerate the vertices of G, such that rv denotes the number of

observations that occur at node v.
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‚ Let C1 and C2 be as in Theorem 2.2.4. That is, C1 and C2 are matrices with n1` n2 rows and

elements in t´1,0,1u. We have that TVp f q “ ||C1z`C2h||1, and C2 is identically zero on its first

n1 rows while having a nonzero element in each of the remaining rows. Let

B“

¨

˝

diagpλ ´q{2nq 0n1ˆn2

0n2ˆn1 λ In2ˆn2

˛

‚.

‚ Let D1 and D2 denote the matrices BC1 and BC2, respectfully.

‚ Lastly, let u“´r{n and w“´q̄{n.

Then one can compute the fused density estimator f̂ for this sample by solving

(2.15) min
z,h

1
2

zJSz`wJz`uJh`||D1z`D2h||1 .

PROOF. The proof of this theorem follows exactly as in the proof of Theorem 2.2.4, with slightly more

cumbersome notation. �

The following is a more general statement of Proposition 2.2.5, and provides the dual of the more general

primal problem, (2.15).

PROPOSITION 2.6.2 (Extension of Proposition 2.2.5). The dual problem to (2.15) is

min
y

1
2

yJD1S´1DJ1 y`wJS´1DJ1 y

||y||8 ď 1(2.16)

DJ2 y“´u.

The primal solution ẑ can be recovered from the dual ŷ through the expression

ẑ“´S´1pDJ1 ŷ`wq.

PROOF. Write (2.4) as

min
z,h,l

1
2

zJSz`wJz`uJh`||l||1

s. t. l “ D1z`D2h
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Introducing the dual variable y, this problem has Lagrangian

(2.17)
1
2

zJSz`wJz`uJh`||l||1` yJpD1z`D2h´ lq.

To find the dual problem, we minimize in the primal variables. This gives

(2.18) min
l
´yJl`||l||1 “

$

’

&

’

%

0 if ||y||8 ď 1

´8 otherwise.
.

In addition, we have the terms

(2.19) min
z

1
2

zJSz`wJz` yJD1z

and

(2.20) min
h

uJh` yJD2h.

For (2.19), we have the optimality condition

(2.21) Sz`w`DJ1 y“ 0.

For (2.20), we require DJ2 y“´u. Substituting (2.18)-(2.20) into (2.17), we arrive at the dual problem

max
y

´
1
2

yJD1S´1DJ1 y´wJS´1DJ1 y

||y||8 ď 1

DJ2 y“´u

Translating this maximum into a minimum, and using the optimality condition in (2.21), we have the result.

�

2.6.2. Proofs from Section 2.4. Proof of Theorem 2.4.2.

We first show that ĥ2 “ OPpn´2{3q. Fixing ε ą 0, we want to show there are M P R and N P N such that

ně N gives Ppn2{3ĥ2 ąMq ă ε .
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We will show momentarily that ĥ2 “ OPpn´2{3q in both the cases when ĥ ď n´1{3p1` Î` I0q and ĥ ą

n´1{3p1` Î` I0q. Once we have established that both cases are OPpn´2{3q, there exists M1,M2 PR, N1,N2 P

N such that ně N1 gives

P
´!

n2{3ĥ2 ěM1

)

č

!

ĥď n´1{3p1` Î` I0q

)¯

ă ε{2

and ně N2 gives

P
´!

n2{3ĥ2 ěM2

)

č

!

ĥą n´1{3p1` Î` I0q

)¯

ă ε{2.

Therefore, for N “maxtN1,N2u and M “maxtM1,M2u,

P
´

n2{3ĥ2 ąM
¯

“P
´!

n2{3ĥ2 ěM
)

č

!

ĥď n´1{3p1` Î` I0q

)¯

`P
´!

n2{3ĥ2 ěM
)

č

!

ĥą n´1{3p1` Î` I0q

)¯

ăε{2` ε{2“ ε.

This gives that ĥ2 “ OPpn´2{3q.

We turn next to showing that ĥ2 “ OPpn´2{3q in both of the cases indicated. From the basic inequality,

Theorem 2.4.3, we have

ĥ2 ď 16pPn´Pqpp f̂n
q`4λnpI0´ Îq.

Take

λn “max

#

sup
hp f , f0qďn´1{3p1`Ip f q`I0q

4 |pPn´Pqpp f q|

1` Ip f q` I0
,n´2{3

+

.

The maximum guarantees that λn satisfies the assumption on λ in Theorem 2.2.4 for n large enough, so that

f̂n is well-defined.

We prove in Theorems 2.6.10 and 2.6.9 that

(2.22) sup
hp f , f0qąn´1{3p1`Ip f q`I0q

n1{2 |pPn´Pqpp f q|

h1{2p f , f0qp1` Ip f q` I0q
1{2 “ OPp1q

and

(2.23) sup
hp f , f0qďn´1{3p1`Ip f q`I0q

n2{3 |pPn´Pqpp f q|

1` Ip f q` I0
“ OPp1q.
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Equation (2.23) gives that λn “ OPpn´2{3q.

First, assume that hp f̂n, f0q ď n´1{3p1` I` I0q,

ĥ2 ď 16pPn´Pqpp f̂n
q`4λnpI0´ Îq(2.24)

“ pPn´Pqpp f̂n
q`4λnp1`2I0q´4λnp1` I0` Îq(2.25)

“ 4p1` I0` Îq

˜

4pPn´Pqpp f̂n
q

1` I0` Î
´λn

¸

`4λnp1`2I0q(2.26)

ď 4p1` I0` Îq

˜

sup
hp f , f0qďn´1{3p1`Ip f q`I0q

4pPn´Pqpp f q

1` I0` Ip f q
´λn

¸

`4λnp1`2I0q(2.27)

Our choice of λn gives that the left term in this expression is less than or equal to zero. We conclude that

(2.28) ĥ2 ď 4λnp1`2I0q.

And finally
ĥ
?

λn
ď 2

a

1`2I0.

By our choice of λn, this bound gives that ĥ2 “ OPpn´2{3q.

Assume next that ĥą n´1{3p1` Î` I0q. Define subsets of the probability space

(2.29) BL “

!?
n
ˇ

ˇ

ˇ
pPn´Pqpp f̂ q

ˇ

ˇ

ˇ
ą L ¨ ĥ1{2 ¨ p1` Î` I0q

1{2
)

and

(2.30) CM “ tÎ ąM ě I0u.

By (2.22), for each ε there is a corresponding L such that PpBLq ă ε .

On Bc
LXCM, pI0´ Îq ă 0, so from (2.4.3)

?
nĥ2 ď 16 ¨L ¨ ĥ1{2p1` Î` I0q

1{2`4λn
?

npI0´ Îq ď 16 ¨L ¨ ĥ1{2p1` Î` I0q
1{2.

Therefore,

ĥ1{2 ď n´1{6
´

16 ¨L ¨ p1` Î` I0q
1{2

¯1{3
.
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Again using (2.4.3), we have

?
nĥ3{2 ď 16 ¨L ¨ p1` Î` I0q

1{2`
4λn
?

npI0´ Îq
ĥ1{2

ď 16 ¨L ¨ p1` Î` I0q
1{2`

4λn
?

npI0´ Îq

n´1{6
`

16 ¨L ¨ p1` Î` I0q
1{2

˘1{3

“ 16 ¨L ¨ p1` Î` I0q
1{2`

4λnn2{3pI0´ Îq
`

16 ¨L ¨ p1` Î` I0q
1{2

˘1{3 .

The second inequality follows because I0´ Î ă 0 on CM. The definition of λn gives that λnn2{3 ě 1. Hence,

ď 16 ¨L ¨ p1` Î` I0q
1{2`

4pI0´ Îq
`

16 ¨L ¨ p1` Î` I0q
1{2

˘1{3 .

The order of the left term is
?

Î, whereas the order of the right is Î5{6. This gives that for M large enough
?

nĥ3{2 ă 0. Of course this is not possible, so we conclude that for any fixed L, there is M large enough so

that Bc
LXCM “H.

Choose L such that PpBLq ă ε{2. That fact that we can do so is guaranteed by (2.22). Choose M such

that Bc
LXCM “H on this set.

We then have, on Bc
L “ Bc

LXCc
M,

?
nĥ2 ď 16 ¨L ¨ ĥ1{2p1` I0` Îq1{2`4λn

?
npI0´ Îq

ď 16 ¨L ¨ ĥ1{2p1` I0`Mq1{2`4λn
?

nI0(2.31)

ď 2max
!

16 ¨L ¨ ĥ1{2p1` I0`Mq1{2,4λn
?

nI0

)

.

From this, we conclude

ĥďmaxtn´1{3 ¨ p32Lq2{3 ¨ p1` I0`Mq1{3,
a

λn ¨8 ¨ I0u

on Bc
L. Choose K so that Ppλn2{3 ą Kq ă ε{2, which is permitted because λ “ OPpn´2{3q. We have

(2.32) ĥ ¨n1{3 ďmaxtp32Lq2{3p1` I0`Mq1{3,
a

8 ¨K ¨ I0u.

The right hand side is constant, depending on the choice of ε . The set on which this bound does not

hold has probability less than ε , by the choice of BL and K.
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Having examined probabilistic rates for both cases ĥ ď n´1{3p1` Î` I0q and ĥ ą n´1{3p1` Î` I0q, we

turn next to proving the same rate for squared Hellinger risk. This requires a more refined application of

Theorems 2.6.10 and 2.6.9.

We will show that there exist n0 P N and cě 0 such that ně n0 implies E f0rĥ
2n2{3s ď c. We have

(2.33) E f0rĥ
2n2{3s “ E f0rĥ

2n2{3p1ĥďn´1{3p1`Î`I0q
`1ĥąn´1{3p1`Î`I0q

qs.

We will consider both terms in this summand individually. First, we have

E f0rĥ
2n2{3

1ĥďn´1{3p1`Î`I0q
s “

ż 8

0
Ppĥ2n2{3

1ĥďn´1{3p1`Î`I0q
ě uqdu.

From (2.28),

(2.34)
ż 8

0
Ppĥ2n2{3

1ĥďn´1{3p1`Î`I0q
ě uqduď

ż 8

0
Pp4λnp1`2I0qn2{3 ě uqdu.

From the definition of λn and Theorem 2.6.10,

Pp4λnp1`2I0qn2{3 ě uq ď c0 exp
„

´
u

4p1`2I0qc2
0



for n and u large. This allows us to integrate the right-hand side of (2.34), which gives that E f0

”

ĥ2n2{3
1ĥďn´1{3p1`Î`I0q

ı

is finite.

On the other hand, consider the second expectation E
”

ĥ2n2{3
1ĥąn´1{3p1`Î`I0q

ı

. Again we have

(2.35) E f0

”

ĥ2n2{3
1ĥąn´1{3p1`Î`I0q

ı

“

ż 8

0
Ppĥ2n2{3

1ĥąn´1{3p1`Î`I0q
ě uqdu.

Denote by Au the event that tĥ2n2{3
1ĥąn´1{3p1`Î`I0q

ě uu. Let BL and CM be as in (2.29)-(2.30), and denote

by ΛK the event tλnn2{3 ą Ku. Choosing L “
´

u3

3¨322

¯1{7
, M “ L5, and K “ u2

8I0
gives (2.31) for large

enough u. Furthermore, both of the arguments in the maximum of (2.32) are less than u. Recalling that
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Bc
LXCM “ Bc

L, this gives

PpAuq ď PpAuXBLq`PpAuXBc
LXΛ

c
Kq`PpAuXBc

LXΛKq

ď PpBLq`0`PpΛKq

ď cexp
„

´
L
c2



` c0 exp
„

´
K
c2

0



.

This last inequality follows from Theorems 2.6.10 and 2.6.9. The fact that PpAuXBc
LXΛKq equals zero

follows from (2.32) and our choice of L, M, and K. Therefore the expectation in (2.35) is finite. Since we

have shown that both of the expectations in (2.33) are bounded by constants for n0 large enough, the result

is proven. �

Proof of the Basic Inequality, Lemma 2.4.3.

We have

4Pnpp f̂n
q´λnÎ “ 2

ż

log
ˆ

f̂n` f0

2 f0

˙

dPn´λnI0

ě

ż

log
ˆ

f̂n

f0

˙

dPn´λnÎ

ě´λ I0

The first inequality comes from the concavity of log. The second is from the definition of f̂n as the minimizer

of
ş

log f dPn`λnIp f q, which implies
ş

log f̂n dPn`λnÎ ď
ş

log f0 dPn`λnI0.

We also have that

´16
ż

p f̂n
dPě 16h2

ˆ

f̂n` f0

2
, f0

˙

ě h2p f̂n, f0q,

by Lemmas 4.1 and 4.2 in [Gee00].
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Therefore,

16
ż

p f̂n
dpPn´Pq´4λnÎ ě´16

ż

p f̂n
dP´4λnI0

ě 16h2
ˆ

f̂n` f0

2
, f0

˙

´4λnI0

ě h2p f̂n, f0q´4λnI0

This proves the result. �

2.6.3. Empirical Process Results. The goal of this section is to prove the following statements, Theo-

rems 2.4.4 and 2.4.5, which were used in the proof of Theorem 2.4.2.

(2.36) sup
hp f , f0qďn´1{3p1`Ip f q`I0q

n2{3 |pPn´Pqpp f q|

1` Ip f q` I0
“ OPp1q

(2.37) sup
hp f , f0qąn´1{3p1`Ip f q`I0q

n1{2 |pPn´Pqpp f q|

h1{2p f , f0qp1` Ip f q` I0q
1{2 “ OPp1q

These are the simplifications of the results of Theorems 2.6.10 and 2.6.9, respectively. We begin by intro-

ducing notation and relevant definitions.

The Bernstein Difference for a parameter K P N, is given by ρK , where

ρ
2
Kpgq “ 2K2

ż

´

e|g|{K´1´|g| {K
¯

dP

Generalized entropy with bracketing, denoted HB,K is entropy with bracketing, where the L2pPq metric

is replaced by the Bernstein difference ρK . That is, HB,Kpε,G ,Pq is the logarithm of minimal number of

ε-brackets needed to cover G. The bracket for a pair of functions pgl,guq is the set of functions g with

gl ď g ď gu. An ε-bracket (with respect to ρK) adds the further condition that ρKpgl,guq ă ε . A collection

of ε-bracket covers G if each g P G belongs to one of the ε-brackets. We denote by HB the typical entropy

with bracketing; that is, with brackets formed in the L2pPq metric.

The following theorem is an important tool at our disposal.
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THEOREM 2.6.3 ( [Gee00], 5.11). Let G be a function class which satisfies

sup
gPG

ρKpgq ď R.

Then there is a universal constant C such that for any a, C0, C1 which satisfy

aďC1
?

nR2{K,(2.38)

aěC0

ˆ

max
"
ż R

0
H

1{2
B,K pu,G ,Pqdu, R

*˙

,(2.39)

C2
0 ěC2pC1`1q,(2.40)

we have

P

˜

sup
gPG

ˇ

ˇ

?
npPn´Pqpgq

ˇ

ˇě a

¸

ďC exp
„

´
a2

C2pC1`1qR2



.

Our statement of Theorem 2.6.3 is a simplification of the full statement in the listed reference. Because

we only work with bracketing entropy integrals which are convergent, we simplify according to the author’s

comments following the theorem, omitting the second condition in the full statement and taking the lower

bound in the bracketing entropy integral in (2.39) to be zero.

The following lemmas will also be required.

LEMMA 2.6.4 ( [Gee00], 5.8). Suppose that

||g||8 ď K

and

||g||2 ď R.

Then

ρ2Kpgq ď
?

2R.

LEMMA 2.6.5 ( [Gee00], 5.10). Suppose G is a set of functions such that

sup
gPG
||g||8 ď K.

47



2.6. APPENDIX: PROOFS

Then

HB,4Kp
?

2δ ,G ,Pq ď HBpδ ,G ,Pq for all δ ą 0.

LEMMA 2.6.6 ( [Gee00], 7.2 & 4.2). Let p f be of the form p f “
1
2 log f` f0

2 f0
, as occurred in Lemma 2.4.3.

Then

ρ1pp f q ď 4h
ˆ

f ` f0

2
, f0

˙

ď
4hp f , f0q
?

2

LEMMA 2.6.7. Let L and K be natural numbers such that LąK. Then for any function g, ρKpgqě ρLpgq.

PROOF. From the Taylor series expansion of ex,

ρ
2
Kpgq “ 2K2

ż

´

e|g|{K´1´|g| {K
¯

dP

“ 2
ż

K2
8
ÿ

m“2

|g|m

m! ¨Km dP

“ 2
ż 8
ÿ

m“2

|g|m

m! ¨Km´2 dP

ě 2
ż 8
ÿ

m“2

|g|m

m! ¨Lm´2 dP

“ ρ
2
Lpgq

�

This last lemma is a culmination of new results on bracketing entropy. Its proof can be found in Appen-

dix 2.7, along with other contributions on bracketing entropy of function classes with uniformly bounded

variation. We denote the quantity 1` Ip f q` I0 by Jp f q.

LEMMA 2.6.8. The set of functions PM “ tp f : Jp f q ďMu satisfies, for some constant A,

HBpδ ,PM,Pq ď A ¨
M
δ
, @δ ą 0.

Furthermore, p f PPM implies ||p f ||8 ăM.

With these lemmas in hand, we are ready to state and prove our main results. We will prove a sequence

of constrained results, and then use a peeling device to obtain the concentration inequalities. The method

of proof, and particularly our use of the peeling device, is interesting in its own right. Our first result is
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Lemma 2.4.6, which establishes bounds for the supremum of the empirical process indexed by t f : Jp f q ď

M and hp f , f0q ď δu for constants δ and M.

Proof of Lemma 2.4.6.

By Lemma 2.6.6, hp f , f0q ď δ gives that ρ1pp f q ď
4?
2
δ “ 23{2δ .

By Lemma 2.6.7, ρ1pp f q ď 23{2δ gives that ρ4Mpp f q ď 23{2δ for all M ě 1.

By Lemma 2.6.8, p f PPM gives that ||p f ||8 ďM. From Lemmas 2.6.5 and 2.6.8.

HB,4Mpδ ,PM,Pq ď HBpδ{
?

2,PM,Pq ď
A
?

2M
δ

.

Collecting these facts, we seek to apply Theorem 2.6.3. We have ρ4Mpp f q ď 23{2δ . From the conditions

in the theorem (with R“ 23{2δ , K “ 4M and a“ 2´1{2C1
?

Mδ 1{2), it suffices to choose δ ,C0, C1 such that

aďC1
?

n
23δ 2

4M
“

2C1
?

nδ 2

M
(2.41)

aěC0

ż R

0
H1{2

B pu{
?

2,PM,Pq “ 2C0
?

AMδ(2.42)

C2
0 ěC2pC1`1q(2.43)

Choose C1 “ 2C0
?

2A. Then (2.41) is satisfied for δ ě M
2 ¨n

´1{3, (2.42) is satisfied by the choice of a,

and (2.43) is satisfied for large enough C0. By Theorem 2.6.3 we have for all δ ě M
2 ¨n

´1{3 (if C1 ě 1)

P

˜

sup
p f PPM ,hp f , f0qďδ

ˇ

ˇ

?
npPn´Pqpp f q

ˇ

ˇě 2C1
?

Mδ
1{2

¸

ďC exp
„

´
4C2

1Mδ

C2pC1`1q23δ 2



ďC exp
„

´
C1Mδ´1

4C2



�

THEOREM 2.6.9. There are constants c, n0 and t0 so that when ně n0 and T ě t0

P

˜

sup
p f PP,hp f , f0qąn´1{3Jp f q

|
?

npPn´Pqpp f q|

h1{2p f , f0qJ1{2p f q
ě T

¸

ď cexp
„

´
T
c2



.
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PROOF. We first prove the following: there are constants n0, t0 and c0 such that for all n ě n0, T ě t0,

and M ě 1

(2.44) P

˜

sup
p f PPM ,hp f , f0qą

M
2 n´1{3

|
?

npPn´Pqpp f q|

h1{2p f , f0q
ě T

c

M
2

¸

ď c1 exp
„

´
T M
c2

1



.

The proof of this claim is an application of the peeling device [Gee00][Section 5.3] to Lemma 2.4.6.

Let S “ mints P N : 2´s ă M
2 n´1{3u. We will form a union bound by partitioning into sets with t2´s´1 ă

hp f , f0qď 2´su for integer-valued s. Because Hellinger distance is bounded above by 1, we need not consider

negative values of s. Let T “ 4C1. Applying this union bound, we have

P

˜

sup
p f PPM ,hp f , f0qą

M
2 n´1{3

|
?

npPn´Pqpp f q|

h1{2p f , f0q
ě T

c

M
2

¸

ď

S
ÿ

s“1

P

˜

sup
p f PPM ,2´săhp f , f0qď2´s`1

|
?

npPn´Pqpp f q|

h1{2p f , f0q
ě T

c

M
2

¸

ď

S
ÿ

s“1

P

˜

sup
p f PPM ,hp f , f0qď2´s`1

ˇ

ˇ

?
npPn´Pqpp f q

ˇ

ˇě 2
´s`1

2 ¨2C1
?

M

¸

We have 2´s`1 ě M
2 n´1{3 for sď S, so applying Lemma 2.4.6 gives the further bound

ď

S
ÿ

s“1

C ¨ exp
„

´
C1 ¨M ¨ p2´s`1q´1

4C2



“

S
ÿ

s“1

C ¨ exp
„

´
C1 ¨M ¨2s´1

4C2



ď

S
ÿ

s“1

C ¨ exp
„

´
C1M
8C2 ´

2s´2

4C2



(2.45)

ď exp
„

´
C1M
8C2

 S
ÿ

s“1

C exp
„

´
2s´2

4C2



“ c1 exp
„

´
T M
c2

1



.

Here, c1 is some constant, since the final summation is convergent as S approaches infinity. The third

inequality in this chain follows from C1M2s´1 ě MC1
2 `MC12s´2, so that when M ě 1 and C1 ě 1,

C1M2s´1 ě
MC1

2
`2s´2.
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Of course, it suffices to consider M ě 1 because Jp f q ě 1. This proves the claim.

We use the claim to prove the result by again applying the peeling device, but this time with respect to

Jp f q. Because Jp f q ě 1, we need only peel in sets t2s ď Jp f q ď 2s`1u for sě 0. This gives

P

˜

sup
p f PP,hp f , f0qąn´1{3Jp f q

|
?

npPn´Pqpp f q|

h1{2p f , f0qJ1{2p f q
ě T

¸

ď

8
ÿ

s“0

P

˜

sup
p f PP,Jp f qď2s`1,hp f , f0qąn´1{32s

|
?

npPn´Pqpp f q|

h1{2p f , f0q
ě T 2s{2

¸

.

Applying the claim and manipulating as in (2.45), there is a constant c which permits the following bound.

ď

8
ÿ

s“0

c1 exp
„

´
T 2s`1

c2
1



ďexp
„

´
T

2c2
1

 8
ÿ

s“0

c1 exp
„

´
2s

c2
1



ďcexp
„

´
T
c2



.

�

THEOREM 2.6.10. There are constants n0, t0, and c such that for all ně n0 and T ě t0

P

˜

sup
p f PP,hp f , f0qďn´1{3Jp f q

ˇ

ˇn2{3pPn´Pqpp f q
ˇ

ˇ

Jp f q
ě T

¸

ď c0 exp
„

´
T
c2

0



PROOF. First we apply the peeling device to the quantity Jp f q. We partition into sets with 2s ă Jp f q ď

2s`1. Since Jp f q ě 1, it suffices to take sě 0. We have

P

˜

sup
p f PP,hp f , f0qďn´1{3Jp f q

|
?

npPn´Pqpp f q|

Jp f qn´1{6 ě T

¸

“P

˜

sup
p f PP,hp f , f0qďn´1{3Jp f q

|
?

npPn´Pqpp f q|
a

Jp f q
a

Jp f qn´1{3
ě T

¸

ď

S
ÿ

s“0

P

˜

sup
p f PP,hp f , f0qďn´1{3Jp f q,2sďJp f qď2s`1

|
?

npPn´Pqpp f q|
a

Jp f q
a

Jp f qn´1{3
ě T

¸

We peel this expression in hp f , f0q. For s P N, let Rs “maxtr P N : 2´r ě n´1{32s`1u. Let

Ns,r “ tp f PP, 2´r´1 ă hp f , f0q ď 2´r, 2s ď Jp f q ď 2s`1, hp f , f0q ď n´1{3Jp f qu
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for r “ 0, ...,Rs´1 and

Ns,Rs “ tp f PP, hp f , f0q ď 2s`1n´1{3 ď 2´Rs , 2s ď Jp f q ď 2s`1, hp f , f0q ď n´1{3Jp f qu.

Applying the peeling device gives the further bound.

ď

8
ÿ

s“0

#

Rs´1
ÿ

r“0

P

˜

sup
Ns,r

|
?

npPn´Pqpp f q|
a

Jp f q
a

Jp f qn´1{3
ě T

¸

`P

˜

sup
Ns,Rs

|
?

npPn´Pqpp f q|
a

Jp f q
a

Jp f qn´1{3
ě T

¸+

.(2.46)

In this last term, Jp f qn´1{3 and Jp f q can be bounded below on Ns,Rs . Indeed, Jp f q ą 2s and

Jp f qn´1{3 ą 2sn´1{3 ą 2´Rs´2.

Inserting these bounds gives

P

˜

sup
Ns,Rs

|
?

npPn´Pqpp f q|
a

Jp f q
a

Jp f qn´1{3
ě T

¸

ďP

˜

sup
p f PP2s`1 ,hp f , f0qď2´Rs

|
?

npPn´Pqpp f q|

2s{22´pRs`2q{2 ě T

¸

.

Applying Lemma 2.4.6 (with T “ 4
?

2C1) bounds this term by an expression of the form c1 exp
”

´T 2s`12Rs

c2
1

ı

,

for some constant c1. For r ă Rs, we have the following chain of inequalities

P

˜

sup
Ns,r

|
?

npPn´Pqpp f q|
a

Jp f q
a

Jp f qn´1{3
ě T

¸

ďP

˜

sup
p f PP2s`1 ,2´r´1ăhp f , f0qď2´r

|
?

npPn´Pqpp f q|

2s{2h1{2p f , f0q
ě T

¸

ďP

˜

sup
p f PP2s`1 ,hp f , f0qď2´r

|
?

npPn´Pqpp f q|

2s{22´pr`1q{2 ě T

¸

.

According to the definition of Rs, 2´r ě 2s`1n´1{3, so Lemma 2.4.6 (with T “ 4C1) allows us to bound this

probability by c2 exp
”

´T 2s`12r

c2
2

ı

.

The double summand (2.46) is thus bounded by

8
ÿ

s“0

#

Rs´1
ÿ

r“0

c1 exp
„

´
T 2s`12r

c2
1



` c2 exp
„

´
T 2s`12Rs

c2
2



+

.

52



2.6. APPENDIX: PROOFS

Reducing twice according to the manipulation in (2.45), this expression can be bounded by a term of

the form c0 exp
”

´ T
c2

0

ı

. �

2.6.4. Depth-First Embedding a Geometric Network into R. The goal of this section is to define an

embedding γ , of a fixed geometric network G into R, which approximately preserves total variation. Let g

be a function of bounded variation on G. On each edge e“ rae,bes,

(2.47) TVGpg|eq “
ˇ

ˇ

ˇ

ˇ

gpaeq´ lim
xŒae

gpxq
ˇ

ˇ

ˇ

ˇ

`TVpg|pae,beqq`

ˇ

ˇ

ˇ

ˇ

gpbeq´ lim
xÕbe

gpxq
ˇ

ˇ

ˇ

ˇ

.

Define

g̃pxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

limzŒae gpxq if x“ ae

gpxq if x P pae,beq

limzÕbe gpxq if x“ be

.

The fact that g is of bounded variation gives that these limits exist. Furthermore,

TVGpg|pae,beqq “ TVGpg̃|rae,besq.

We can therefore rewrite (2.47) as

TVGpg|eq “ |gpaeq´ g̃paeq|`TVpg̃|eq` |gpbeq´ g̃pbeq| .

From this equation we conclude

(2.48) TVG “
ÿ

ePE

|gpaeq´ g̃paeq|`TVpg̃|eq` |gpbeq´ g̃pbeq| .

Equation (2.48) gives us the following insight: the total variation of a function on a network can be decom-

posed into jumps at nodes and total variation along an open intervals. By separating limit nodes from the

true value at the node, we can create an expanded network that represents this decomposition. For each

node, and each edge incident to that node, define a limit node as the limit approaching the node along the

incident edge. Similarly, define a value node as the true value at a node. The expanded graph is the defined

on the limit and value nodes, with the inherited connectivity. Open intervals corresponding to the original

edges in the geometric graph are edges between two limit nodes, and value nodes are only connected to limit
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nodes. We perform this expansion in order to guarantee that each edge in the original network is traversed

by a depth-first search.

FIGURE 2.7. A geometric network on the left, and its expansion on the right. In the ex-
pansion, red edges represent edges between limit nodes and value nodes. Black edges
correspond to open intervals in the original geometric network.

In order to perform the embedding of G into R, we apply a slight modification of the technique in depth-

first search fused lasso [PSST16]. The idea is this: traverse the nodes of the expanded network according to

depth-first search, starting at some arbitrary root node. Glue edges together according to the order in which

they are visited in the depth-first search. Each of the intervals will be traversed, according to depth-first

search. For any function the total variation of the resulting univariate embedding never exceeds twice that

of the graph-induced total variation. We formalize this result in the following theorem.

THEOREM 2.6.11. Let G be a connected geometric network, and γ : GÑR be the embedding of G into

R according to depth-first search. Then

(i) Each edge of the original (non-expanded) graph is traversed.

(ii) TVpg˝ γ´1q ď 2TVGpgq for all g : GÑ R.

(iii) Because we use them simultaneously, we dnote µ and µG denote the Lebesgue and base measure

on R and G, respectively. For any function f : GÑ R and set AĎ R,

ż

γ´1pAq
f dµG “

ż

A
f ˝ γ

´1 dµ.
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It follows that for a random variable X on G with density f0, γpXq has density f ˝ γ´1. Further-

more, for any functions f and f0 on G, hp f , f0q “ hp f ˝ γ´1, f0 ˝ γ´1q.

PROOF. For (i), assume for contradiction that there is an open interval of the network G which is not

traversed in the depth-first search of the expanded network. Because the degree of a limit node is two, a

limit node must have been a leaf of the DFS spanning tree. But this cannot be. Indeed, one of the limit

nodes of the open interval must have been reached first in the depth-first search. Because limit nodes have

degree two, when DFS reached that limit node it would proceed across the edge, contradicting that the open

interval was not traversed.

For (ii), consider two nodes visited consecutively in DFS of the expanded graph: τpiq and τpi`1q, the

ith and i` 1th nodes visited, respectfully. There are two cases to consider. First, assume that τpiq is not a

leaf of the DFS tree. This implies there is an edge e such that TVpg|τpi`1q
τpiq q “ TVpg|eq. For the other case,

assume that τpiq is a leaf of the DFS tree. From (i) we know that τpiq is not a limit node. And because

every limit node has degree two, we have that τpi` 1q is a limit node. Hence the univariate total variation

between τpiq and τpi`1q is |gpτpi`1qq´gpτpiqq|. Furthermore, there is a path π , traversed by DFS, such

that π starts at τpiq and ends at τpi`1q. This requires that the network G be connected, so that the path π is

a subset of the graph G. According to the triangle inequality,

TVpg|τpi`1q
τpiq q ď TVGpg|πq.

We next use the following fundamental property of DFS (see for example, [Cor09]): DFS visits each

edge exactly twice. In other words, each edge in G can occur as a member of π at most twice. This gives

that

TVpgq “
ÿ

i

TVpg|τpi`1q
τpiq q ď

ÿ

i

TVGpg|piq ď 2
ÿ

ePE

TVGpg|eq.

For (iii), let f : GÑ R, and AĎ γpGq Ă R. Then

ż

γ´1pAq
f dµG “

ÿ

ePE

ż

γ´1pAqXe
f dµG.

On each edge e, γ is the identity and µG “ µ . Therefore,

ÿ

ePE

ż

γ´1pAqXe
f dµG “

ÿ

ePE

ż

AXγpeq
f ˝ γ

´1 dµ “

ż

A
f ˝ γ

´1 dµ.
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The remaining claims follow from this result. For any random variable x on G,

Ppγpxq P Aq “ Ppx P γ
´1pAqq “

ż

γ´1pAq
f dµG “

ż

A
f ˝ γ

´1 dµ.

Therefore f ˝ γ´1 is the density of γpxq. Similarly, have that hp f , f0q “ hp f ˝ γ´1, f0 ˝ γ´1q because

ż

G
p
a

f ´
a

f0q
2 dµG “

ż

γ´1pγpGqq
p
a

f ´
a

f0q
2 dµG “

ż

γpGq
p
a

f ˝ γ´1´
a

f0 ˝ γ´1q2 dµ.

�

2.7. Appendix: Bracketing Entropy Results

The primary result in this appendix is the following.

THEOREM 2.7.1. Let PM be the set of functions tp f : f PF , Jp f q ď Mu. For some constant A, the

bracketing entropy of P satisfies

HBpδ ,PM,Pq ď A ¨
M
δ
, @δ ą 0.

The proof of this result is decomposed into the following lemmas. In Lemma 2.7.2 we show that PM is

uniformly bounded, has nonnegative and nonpositive values, and has uniformly bounded total variation. In

Lemma 2.7.6, we show that any set of functions satisfying these properties is sufficient for the conclusion in

Theorem 2.7.1. This gives the result for PM.

LEMMA 2.7.2. The set of functions tp f : Jp f q ď Mu has total variation uniformly bounded by M{2,

and each function in the set takes nonnegative and nonpositive values. Furthermore, Jp f q ď M gives that

||p f ||8 ďM{2.

PROOF. The assertion about total variation follows from Lemma 2.7.3. We also have that each function

takes both nonpositive and nonnegative values. Indeed, consider p f . From its definition

p f “
1
2

log
ˆ

f ` f0

2 f0

˙

.

For each f , the fact that both f and f0 integrate to 1 give that for some point x PX f pxq ď f0pxq. We then

have

p f pxq “
1
2

log
ˆ

f pxq` f0pxq
2 f0pxq

˙

ď 0.
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Similarly, there exists x̄ PX such that f px̄q ě f0px̄q. We then have that p f px̄q ě 0.

The last claim follows by combining both of the above: a function which takes both nonnegative and

nonpositive values and has total variation bounded by M{2, is bounded by M{2 itself. �

LEMMA 2.7.3. We have the following results.

(1) For any constant aě 0 and any function f , TVplogp f pxq`aqq ď TVplogp f pxqqq.

(2) Jpp f q ďM gives that TVpp f q ď
M
2 .

PROOF. The first claim is intuitive because the derivative of log is strictly decreasing. For the proof,

consider any two points x1,x2 in a compact interval I. Let f be a real-valued function on I. Consider

|logp f px2q`aq´ logp f px1q`aq| for some a ě 0. Without loss of generality, assume that f px2q ě f px1q.

Then

|logp f px2q`aq´ logp f px1q`aq| “ logp f px2q`aq´ logp f px1q`aq

“ log
ˆ

f px2q`a
f px1q`a

˙

ď log
ˆ

f px2q

f px1q

˙

.(2.49)

Total variation is defined as the supremum over all point partitions P, in the interval I, of the following sum

TVpgq “ sup
P

ÿ

xPP

|gpxi`1q´gpxiq| .

In computing TVplogp f pxq`aqq, we bound each of the terms in the summand with (2.49), to conclude that

TVplogp f pxq`aqq ď TVplogp f pxqqq. This gives us the first claim.
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For the second claim, we use the following facts about total variation: TVp f ` gq ď TVp f q`TVpgq,

TVp´ f q “ TVp f q, and TVpcq “ 0 for any constant c. Using these and the first claim, we have

TVpp f q “ TV
ˆ

1
2

log
ˆ

f ` f0

2 f0

˙˙

“ TV
ˆ

1
2

log
ˆ

f
2 f0

`
1
2

˙˙

so by the first claim

ď TV
ˆ

1
2

log
ˆ

f
2 f0

˙˙

TVp
1
2

logp f q´
1
2

logp2 f0qq

ď
1
2

TVplogp f qq`
1
2

TVplogp2 f0qq

ď
1
2

TVplogp f qq`
1
2

TVplogp f0q`
1
2

TVplogp2qq

ď
Jp f q

2
.

This gives the second claim. �

We next have a lemma for the bracketing entropy of monotone classes of functions, which we will relate

to functions of bounded variation. Denote the bracketing number of the function class F with bracketing

width ε and metric d : F ˆF Ñ R by Nrspε,F ,dq.

LEMMA 2.7.4 ( [VDVW96], Theorem 2.7.5). For every probability measure Q, there exists a constant

A such that the bracketing of monotone functions f : RÑ r0,1s satisfies

logNrspε,F ,L2pQqq ď K
ˆ

1
ε

˙

.

LEMMA 2.7.5. Let f : ra,bs ÑR be a function such that TVp f q ď k, and there are x̄ and x in ra,bs such

that f px̄q ě 0 and f pxq ď 0. Then f can be represented as the difference of two nondecreasing functions g,h

with TVpgq and TVphq bounded by k. Furthermore, for all x P ra,bs,

´k ď gpxq ď k and ´ k ď hpxq ď k.

PROOF. Denote by TVx2
x1 p f q the total variation of f on rx1,x2s. Define

gpxq :“
f pxq`TVx

ap f q
2

, hpxq :“
TVx

ap f q´ f pxq
2

.
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Of course, f “ g´h.

Let x2 ą x1. Then

(2.50) gpx2q´gpx1q “
f px2q´ f px1q`TVx2

a p f q´TVx1
a p f q

2

and

(2.51) hpx2q´hpx1q “
TVx2

a p f q´TVx1
a p f q´p f px2q´ f px1qq

2
.

We have that

TVx2
a p f q´TVx1

a p f q “ TVx2
x1 p f q ě

ˇ

ˇ f px2q´ f px1q
ˇ

ˇ

which allows us to conclude that (2.50) and (2.51) are positive. Hence g and h are nondecreasing. Lastly,

TVb
apgq “

f pbq`TVb
ap f q´ f paq`0

2
“

f pbq´ f paq`TVb
ap f q

2
ď TVb

ap f q ď k

and

TVb
aphq “

TVb
ap f q´ f pbq`p0´ f paqq

2
“

TVb
ap f q` f paq´ f pbq

2
ď TVb

ap f q ď k

We have shown the total variation bounds.

The inequality in the statement of the lemma follows from the nondecreasing nature of these functions.

From this property, we have

(2.52)
f paq

2
“ gpaq ď gpxq ď gpbq “

k´ f pbq
2

and

(2.53)
´ f paq

2
“ hpaq ď hpxq ď hpbq “

k´ f pbq
2

.

Because of the fact the assumptions on x̄ and x, | f paq| ď maxt| f paq´ f pxq| , | f paq´ f px̄q|u ď TVb
ap f q “

k. The same is true of f pbq. The conclusion follows by substituting these inequalities into (2.52) and

(2.53). �

LEMMA 2.7.6. Let G be a set of functions each of which has nonnegative and nonpositive values and

have total variation bounded by M. Let Q be a probability measure. The bracketing entropy of G grows like
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1
ε
. That is, for some constant K not depending on Q,

logNrspε,G ,L2pQqq ď Kp
M
ε
q

PROOF. Consider the set of functions Ḡ “ 1
M G . From Lemma 2.7.2, the set Ḡ maps from R to r´1,1s,

and has total variation bounded by 1. By Lemma 2.7.5, Ḡ Ď H ´F , where each H and F contain

monotone functions which map RÑ r´1,1s. By Lemma 2.7.4, the classes H̄ :“ 1
2H ` 1

2 and F̄ :“

1
2F ` 1

2 each have bracketing numbers of the form LC1{ε and LC2{ε for constants L,C1, and C2. We can form

an ε-bracket of G from all pairs of ε{4M brackets of H̄ and F̄ .

g“Mḡ“Mph´ f q “M2ph̄´
1
2
´p f̄ ´

1
2
qq “ 2Mph̄´ f̄ q.

Access to an ε{2M bracketing cover of H̄ and F̄ gives functions l,u,a,b such that

l ď hď u, aď f ď b

and both ||l´u||L2pQq and ||b´a||L2pQq are less than ε{4M. We then have

2Mpl´bq ď gď 2Mpu´aq.

We have formed a bracket in G of the form p2Mpl´bq,2Mpu´aqq. These form an ε bracket because

||2Mpl´bq´2Mpu´aq||L2pQq ď 2M ||l´u||`2M ||a´b|| ă ε.

There are L4MC1{ε ˆL4MC2{ε such brackets, so the bracketing entropy satisfies

logNrspε,G ,L2pQqq ď 4pC1`C2q logpLq
M
ε
.

This gives the result. �
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CHAPTER 3

Maximum a Posteriori Estimators as a Limit of Bayes Estimators

3.1. Introduction

The purpose of this chapter is to relate two point estimates in Bayesian estimation: the maximum a

posteriori (MAP) estimator and Bayes estimator. Both the MAP and Bayes estimator are defined in terms of

optimization problems, so that any connection between MAP and Bayes estimators can be extended to a con-

nection between corresponding optimization problems. It is commonly accepted ( [Rob07, §4.1.2] [Gew05,

Thm.2.4.3], [Lee12, §7.6.5]) that MAP estimation is the limit of Bayes estimation. This relationship is ap-

pealing from a theoretical perspective because it allows MAP estimators to be subsumed by the statistical

analysis and intuition of Bayes estimators. However, this assertion must be carefully studied, because it is

not true in the general setting proposed in much of the literature. We apply the theory of variational analysis,

a common tool used in the approximation of optimization problems, to investigate the relationship between

MAP and Bayes estimators.

This chapter revises the relationship between MAP and Bayes estimators, placing the theory on a solid

mathematical foundation. First, we provide a counterexample to the commonly accepted notion of MAP

estimators as a limit of Bayes estimators having 0-1 loss. We then provide additional conditions and resurrect

the limiting relationship between the estimators by relying on the theory of variational analysis. Because

each of the estimators is defined as the maximizer of a certain optimization problem, a natural setting for

the analysis of this problem is the space of upper semi-continuous functions, where we use the appropriate

topology for convergence of maximizers, namely hypo-convergence. In general, the approach in this chapter

is applicable to any estimator defined in terms of an optimization problem.

This chapter is not the first to apply variational analytic techniques to statistical estimation. One of

the earliest examples is the notion of epi-convergence in distribution, which was introduced in [SW86]

This chapter is based on joint work with Julio Deride [BD18].
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and developed further in [Pfl91] and [Kni99]. The majority of applications of epi-convergence in distribu-

tion [Pfl95, Kni01, KF00], and general applications of variational analytic theory to statistical estimation

problems [KW91,AW94,Sha91,DW88,KR93,Gey94], have focused on asymptotic consistency of estima-

tors: the notion of approximating a true optimization problem by one constructed from a finite sample, as

the size of the sample tends to infinity.

This chapter differs from the literature in a number of ways. First, we consider the limit of optimization

problems defined over the same measure space. Instead of contrasting the empirical solution to the true,

we instead assume that the function to be optimized is changing, but that the “true” underlying measure is

known a priori. In this sense, we focus more on the approximation of loss functions than on the measure

over which their expected value is taken. We also focus on almost-sure convergence results, as opposed to

the weaker notion of distributional convergence. Lastly, the convergence in this chapter deals explicitly with

the Bayesian framework and the relationship between MAP and Bayes estimators.

The rest of this chapter is organized as follows. In section 3.2, a mathematical formulation of the

Bayesian point estimation framework is reviewed, including the commonly-accepted argument of the rela-

tionship between MAP and Bayes estimators. Section 3.3 gives variational analytic background, introducing

the notion of an upper semi-continuous density and the main convergence results for the hypo-convergence

topology. Section 3.4 provides an example where a sequence of Bayes estimators corresponding to 0-1 loss

does not converge to a MAP estimator. In light of the counterexample, some condition is required for MAP

estimation to be a limiting case of Bayesian estimation. The informal arguments in the literature give the

misleading impression that no condition is needed. We provide a necessary condition in section 3.5, and use

it to prove positive results relating MAP and Bayes Estimators.

We conclude this section with a comment on our notation. Preserving the notation in [RW09], we use

Greek letters ν and η to denote sequence indices. We use superscript indexing, so that xν is an index of the

sequence x.

3.2. Bayesian Background

In this section we review necessary Bayesian preliminaries. In point estimation, we wish to infer the

value of an unknown parameter θ from an observation x.
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A parametric model is a family of distributions pp¨|θq : X Ñ R indexed by a set Θ Ď Rn. The set

Θ is referred to as the parameter space, and the measurable space X is the called the sample space. We

assume that each of these distributions is absolutely continuous with respect to Lebesgue measure; hence

each pp¨|θq is a probability density function.

A Bayesian model is a parametric model and a distribution π on Θ. The distribution π is called a prior

on the parameter space Θ. The Bayesian point estimation problem is the following: Given an observation x

of a random variable X on X , find θ̂ PΘ such that pp¨|θ̂q is a “best choice” for the distribution of X among

distributions in the parametric model. In this sense, a Bayesian point estimate is a function θ̂ : X Ñ Θ

which takes observations to parameter values. Because we only refer to Bayesian point estimates in this

chapter, we simply refer to them as estimators.

Given a Bayesian model and an observation x, we define a posterior distribution on the parameter space

Θ through Bayes’ rule

(3.1) πpθ |xq “
ppx|θqπpθq

ş

zPΘ
ppx|zqπpzqdz

We assume that for each x PX ,
ş

zPΘ
ppx|zqπpzqdz is finite and nonzero, so that (3.1) defines a density. By

taking πpθ |xq “ 0 outside of Θ, we extend the posterior density so that it is defined on all of Rn for each x.

Hence, without loss of generality, we assume that Θ“ Rn.

A common method of point estimation is through Bayes estimators. Given a loss function L : ΘˆΘÑ

r0,8q which quantifies cost for discrepancies in the true and estimated parameter value, a Bayes estimator

is an estimator θ̂B which minimizes posterior expected loss.

(3.2) θ̂Bpxq P argmin
θPΘ

Ez|x rLpθ ,zqs “ argmin
θPΘ

ż

zPΘ

Lpθ ,zqπpz|xqdz.

The flexibility and ubiquity of (3.2) should not be understated. With different choices of loss functions,

one can define the posterior mean, median and other quantiles [Rob07, 2.5], as well as a variety of robust

variants through expected loss minimization [FHT, 10.6]. For our purposes, we will focus on one particular

family of loss functions, the 0-1 loss functions. The 0-1 loss function Lc is defined for any cą 0 as
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3.2. BAYESIAN BACKGROUND

(3.3) Lcpθ ,zq “

$

’

&

’

%

0 for ||θ ´ z|| ă 1
c

1 otherwise.

In the above and what follows, ||¨|| denotes the standard Euclidean norm. Because of the topological nature

of the arguments of that follow, any equivalent norm could be used instead. We focus on standard Euclidean

for ease of exposition.

The rest of this chapter will deal almost exclusively with the 0-1 loss, so we emphasize our notation:

superscript L denotes the 0-1 loss function. We also denote by θ̂ c
B the Bayes estimator associated with the

0-1 loss function Lc.

Another popular estimation procedure maximizes the posterior density directly. This defines a maximum

a posteriori estimator, θ̂MAP, which is given by the set of modes of the posterior distribution

θ̂MAPpxq P argmax
θ

πpθ |xq.

This estimator can be interpreted as an analog of maximum likelihood for Bayesian estimation, where

the distribution has become a posterior. A number of sources ( [Rob07, §4.1.2] [Gew05, Thm.2.4.3], [Lee12,

§7.6.5], [HLD`13], [Fig04]) claim that maximum a posteriori estimators are limits of Bayes estimators, in

the following sense. Consider the sequence of 0-1 loss functions, tLν : IRnˆ IRn Ñ r0,`8quνPIN , defined as

(3.4) Lνpθ ,zq “

$

’

&

’

%

0 for}θ ´ z} ă 1
ν

1 otherwise
,

and define θ̂ ν
B as the Bayes estimator associated to the loss function Lν , for each ν , i.e.,

θ̂
ν
B pxq P argmin

θPΘ

IEz|x rLνpθ ,zqs .
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First we translate the Bayes estimator to a maximization problem.

θ̂
ν
B pxq P argmin

θPΘ

ż

zPΘ

Lνpθ ,zqπpz|xqdz

“ argmin
θPΘ

˜

1´
ż

}θ´z}ă 1
ν

πpz|xqdz

¸

“ argmax
θPΘ

ż

}θ´z}ă 1
ν

πpz|xqdz.(3.5)

The claim is that the sequence θ̂ ν
B converges to θ̂MAP. When the justification is provided, it proceeds as

follows. Taking the limit as ν Ñ8, we have

lim
νÑ8

θ̂
ν
B pxq P lim

νÑ8
argmax

θPΘ

ż

}θ´z}ă 1
ν

πpz|xqdz(3.6)

“ argmax
θPΘ

πpθ |xq

“ θ̂MAPpxq.

This justification does not hold in general, and in fact MAP estimators are not necessarily a limiting case

of Bayes estimators under the 0-1 loss indicated above. In section 3.4, we exhibit a continuous and unimodal

posterior density which is a counterexample to the claim. The problem lies in the limiting argument in (3.6)–

the limit of maximizers is not a maximizer without additional conditions, which we establish in section 3.5.

It is worthwhile to note what is correct about the argument in (3.6). Denoting by sn the volume of the

unit ball in Rn, we have that

lim
νÑ8

sn ¨ν
n ¨

ż

||θ´z||ă 1
ν

πpz|xqdz“ πpθ |xq

Θ-almost everywhere by the Lebesgue differentiation theorem. This gives that a scaled version of
ş

||θ´z||ă 1
ν

πpz|xqdz

converges pointwise a.e. to πpθ |xq. But pointwise convergence does not guarantee convergence of maxi-

mizers. This will require the notion of hypo-convergence of functions, which we introduce in the next

section.

65



3.3. CONVERGENCE OF MAXIMIZERS FOR NON-RANDOM FUNCTIONS

3.3. Convergence of maximizers for Non-Random Functions

3.3.1. General setting. This section summarizes the main results for convergence of optimization

problems. The more common approach in the optimization literature is that of minimization, rather than

maximization, where the theory of epi-convergence is developed for extended real-valued functions. Here,

an adaptation to the maximization setting is presented, which is more natural in our estimation setting.

A function f : IRn Ñ IR is said to be proper if f is not constantly ´8 and never takes the value 8. The

effective domain of the function f is the set

dom f “ tx P IRn| f pxq ą ´8u,

and its hypograph is the set in IRn`1

hypo f “ tpx,λ q|λ ď f pxqu.

The function f is called upper semi-continuous (usc) if its hypograph is a closed subset of IRn`1. An

equivalent condition is that for each α P R the upper level set of f

levěα f “ tx P IRn| f pxq ě αu

is closed. A sequential definition of upper semi-continuity can also be stated: for each x P IRn, and each

sequence xν converging to x,

limsup
xνÑx

f pxνq ď f pxq.

We say that a sequence of functions f ν hypo-converges to a function f if both of the following hold for

each x PX .

liminf
ν

f νpxνq ě f pxq for some xν Ñ x

limsup
ν

f νpxνq ď f pxq for every xν Ñ x,

The notion of hypo-convergence is well-developed because of its importance in proving properties about

sequences of optimization problems. An equivalent definition of hypo-convergence follows by identifying

each function with its hypograph, and applying the notion of set convergence à-la Painlevé-Kuratowski. Or,
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3.3. CONVERGENCE OF MAXIMIZERS FOR NON-RANDOM FUNCTIONS

one can characterize hypo-convergence via the Attouch-Wets topology on hypographs. We refer the reader

to [RW09, Ch.7] for details on the former and [Bee93, Ch.3] on the latter.

The following alternative characterization of hypo-convergence will be useful in the sections that follow.

PROPOSITION 3.3.1. [RW09, 7.29] f ν hypo
ÝÝÑ f with f usc if and only if the following two conditions

hold:

limsup
ν

ˆ

sup
B

f ν

˙

ď sup
B

f for every compact set BĎ Rn

liminf
ν

ˆ

sup
O

f ν

˙

ě sup
O

f for every open set OĎ Rn

A sequence of functions f ν is said to be eventually level-bounded if for each α P R the sequence of

upper level sets levěα f ν is eventually bounded. That is, there exists a bounded set M, α P R and m P N

such that for all ν ě m, levěα f ν ĎM.

The wide-spread adoption of hypo-convergence in optimization is largely due to the following theorem

and its related extensions

THEOREM 3.3.2. [RW09, 7.33] Assume f ν hypo
ÝÝÑ f , where f ν is eventually level-bounded and t f ν , f u

are usc and proper. Then

sup f ν Ñ sup f

and any point which is a limit of maximizers of f ν maximizes f .

This theorem is attractive because it effectively gives the convergence of maximizers for approximations

to optimization problems. In our application to Bayesian point estimation, we wish to establish a similar

theorem providing convergence of estimators for approximations to MAP and Bayes estimation. We do so

in section 3.5.

3.3.2. Upper Semi-Continuous Densities. Before proceeding, we list the primary assumption that we

use throughout this chapter.

ASSUMPTION 3.3.3. For each x PX , the random vector θ has a density πpθ |xq : Rn ÑR (with respect

to Lebesgue measure µ) which is continuous almost everywhere. In other words, for each x there is a set

C Ď Rn such that πpθ |xq is continuous at each point in C and µ pRnzCq “ 0.
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In this framework, we allow a density πpθ |xq to take8 as a value, so as not to rule out common densities

like the gamma distribution. Obviously a density cannot take8 as a value on a set of positive measure.

When dealing with arbitrary measurable functions, the notion of pointwise value is inherently ambigu-

ous because measurable functions are only unique up to alteration on sets of measure zero. The added

structure of continuity allows us to define the notion of pointwise value, by referring to the pointwise value

of the unique continuous representative of the measurable function. We would like to generalize this to a

broader class of functions.

Assumption 3.3.3 provides some minimalist structure for which we can also define an unambiguous

notion of pointwise value of a function. This is necessary because without some method of defining a

pointwise value of a density, the notion of maximizing the density (as required in MAP estimation) is

meaningless.

For each x, take πpθ |xq to be its continuous version on C. On RnzC, take πpθ |xq to be the upper

semi-continuous envelope of πpθ |xq|C. That is, for any θ P Rn

(3.7) πpθ |xq “ suptlimsupπpθ ν |xq : θ
ν Ñ θ ,θ ν ĂCu.

The set on the right side of (3.7) is nonempty because the complement of a measure zero set is dense. Fur-

thermore, because RnzC has measure zero, the integral of πpθ |xq over Rn is unchanged by taking the upper

semi-continuous envelope. We refer to densities which satisfy assumption 3.3.3 and (3.7) as upper semi-

continuous (usc) densities. In the remaining sections, densities are assumed to be upper semi-continuous.

Upper semi-continuous densities are a natural class of functions to consider because they provide a large

amount of flexibility while still retaining the notion of pointwise value. They contain continuous densities as

a special case, but also include intuitive concepts like histograms. Many nonparametric density estimation

procedures also produce functions in this family, e.g. [RW13b], [CDSS14], and kernel density estimates

with piecewise continuous kernels.

3.4. Counterexample

This section provides a counterexample to the following claim: Any limit of Bayes estimators θ̂ cν

B

having 0-1 loss Lcν

with cν Ñ8 is a MAP estimator. First, we provide the Bayesian model. Let Θ“R and

X “R. Take ppx|θq to be a standard normal distribution. In other words, the parameter θ has no influence
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FIGURE 3.1. Posterior Density π

on the distribution of X . While trivial in the fact that θ does not influence X , this example will facilitate

computation and illustrate the issue with the argument in (3.6). Consider a prior density π : IRÑ IR given by

πpθq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1´
a

|2θ | θ P
`

´1
2 , 1

2

˘

p2n´1q4npθ ` 1
8n ´nq θ P

“

n´ 1
8n ,n

‰

, n P N`

1´ 1
2n θ P rn,n` 1

2n ´
1
8n s, n P N`

p1´2nq4n
`

θ ´pn` 1
2n q

˘

θ P
“

n` 1
2n ´

1
8n ,n` 1

2n

‰

n P N`

0 otherwise

.

This density is depicted in Figure 3.1. One can easily check that π is indeed a continuous density function.

Because θ and X are independent in this Bayesian model, equation (3.1) gives that the posterior is equal to

the prior. Thus, for the remainder of this section, we will refer to π as the posterior distribution, and drop

the dependence on x in the notation. We also comment that any choice of parametric model where altering

θ does not change ppx|θq will give rise to the same posterior distribution–the standard normal assumption

is just for concreteness.
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Note that the posterior density π has a unique maximum, or posterior mode, at θ “ 0, where it takes the

value 1. Therefore, the MAP estimator of this Bayesian model is θ̂MAP “ 0. On the other hand, considering

the 0-1 loss function Lc, we recall the equivalent definition of the associated Bayes estimator from equation

(3.5)

(3.8) θ̂
c
B P argmax

θ

ż

||z´θ ||ă 1
c

πpzqdz.

We next analyze the limiting behavior of the sequence of Bayes Estimators θ̂ c
B when cÑ8.

Consider the sequence of scalars tcν “ 2 ¨4ν : ν P N`u, and the associated family of loss functions Lcν

.

We will prove that for the Bayesian model that we have constructed, θ̂ cν

B Ñ θ̂MAP. This will show that a limit

of Bayes estimators with 0-1 loss is not necessarily a MAP estimator. In order to find the maximum in (3.8),

we can consider the maximum on each nonzero piece of π . For the non-zero portion around the origin, the

integral in (3.8) is obviously maximized at 0. Furthermore, for each “bump” of π , the integral is maximized

(perhaps non-uniquely) at the midpoint of the interval where the density is constant. In order to show that

θ̂ cν

B Ñ θ̂MAP, it suffices to show that for each ν there is a θ R p´1{2,1{2q such that the evaluation of (3.8) at

θ is strictly greater than the evaluation at zero. This gives that θ̂ cν

B cannot have a limit point in p´1{2,1{2q,

and hence cannot have 0, the MAP estimator, as a limit point. We now perform the required calculations.

i. Evaluation of (3.8) at 0.

ż

|z|ă 1
2¨4ν

1´
a

|2z|dz“ 2
ż 1

2¨4ν

0
1´

?
2zdz“

1
4ν
´

4
?

2

3 ¨2
3
2
¨

1
8ν

(3.9)

ii. For each ν P N, evaluating (3.8) at θ “ 2ν` 1
22ν`1 gives

ż

ˇ

ˇ

ˇ
z´

´

2ν` 1
22ν`1

¯ˇ

ˇ

ˇ
ă 1

2¨4ν

πpzqdz“
ż

r2ν ,2ν` 1
22ν
´ 1

82ν
s

πpzqdz`
ż

r2ν` 1
2ν ´

1
82ν

,2ν` 1
22ν
s

πpzqdz,

The first part of this sum is an integral over a constant piece of π . The second is a linear piece of π .

Bounding the sum of the integrals below by the value of just the integral over the constant piece,

we have that

ż

ˇ

ˇ

ˇ
z´

´

2ν` 1
22ν`1

¯ˇ

ˇ

ˇ
ă 1

2¨4ν

πpzqdzě
ˆ

1´
1

22ν

˙ ˆ

1
22ν

´
1

82ν

˙

“
1
4ν
´

ˆ

2´
1

16ν

˙

1
16ν

.(3.10)
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Since (3.10) is strictly greater than (3.8) for all ν ě 1, we conclude that θ̂ cν

B R p´1
2 , 1

2q for all ν ě 1. Hence

the sequence of Bayes estimators θ̂ cν

B has cν Ñ8, but does not have a MAP estimator as a limit point. This

concludes the counterexample and shows that the claim is false.

3.5. Convergence results

In this section we provide conditions on posterior distributions which guarantee that a sequence of Bayes

Estimators with 0-1 loss has a MAP estimator as a limit point. In addition, we provide a partial converse by

showing that each MAP estimator is a limit of approximate Bayes estimators.

Define an estimator θ̂ of θ to be an ε-approximate Bayes estimator with respect to loss L if for each

x PX .
ż

zPΘ

Lpθ̂pxq,zqπpz|xqdzě sup
θPΘ

ż

zPΘ

Lpθ ,zqπpz|xqdz´ εpxq.

Here, ε is a function from X to R. We say that θ̂ is a limit of approximate Bayes estimators if there

are sequences V ν , θ̂ ν and εν such that θ̂ ν converges almost surely to θ̂ , θ̂ ν is an εν -approximate Bayes

estimator with respect to loss V ν for each ν , and εν converges X -almost surely to 0.

As discussed in the introduction, we assume that all densities are upper semi-continuous and satisfy

assumption 3.3.3.

We begin with a deterministic result. The proof of the next lemma, which is related to the epi-convergence

of mollifying approximates from [RW09], is included in the Appendix 3.6.

LEMMA 3.5.1. Assume f : ΘÑ R is an upper semi-continuous density. Let sn denote the volume of the

unit ball in Rn. Define

f νpθq :“ ν
n ¨ sn ¨

ż

||θ´z||ă 1
ν

f pzqdz.

Then f ν hypo-converges to f .

We note that even though upper semi-continuous densities may take 8 as a value, and hence need not

be proper, f ν must be proper because f integrates to one.

This lemma allows us to prove the following result.

THEOREM 3.5.2. If πpθ |xq is proper X almost surely, then any MAP estimator is a limit of approximate

Bayes estimators.
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PROOF. Let θ̂MAP be a maximum a posteriori estimator of θ . By definition, θ̂MAPpxq P argmaxπpθ |xq.

Let x be any element in X . For ease of notation, we will drop the explicit dependence on x by writing

θ̂MAP :“ θ̂MAPpxq and letting f pθq :“ πpθ |xq. By lemma 3.5.1, f ν hypo
ÝÝÑ f . From the definition of hypo-

convergence, there is a sequence θ νpxqÑ θ̂MAPpxq such that limsupν f νpθ νq ď f pθ̂MAPq. Also directly from

the definition, liminfν f νpθ νq ě f pθ̂MAPq. Hence limν f νpθ νq “ f pθ̂MAPq.

Repeating this construction pointwise for each x PX , we define a sequence of estimators with θ̂ νpxq

the θ ν sequence above. Define ενpxq as supθPΘ f νpθq ´ f νpθ νq. We claim that Lν , θ̂ ν , and εν satisfy

the conditions so that θ̂MAP is an approximate Bayes estimator. We must verify the three conditions in the

definition. The first two, that θ̂ ν converges almost surely to θ̂MAP and that θ̂ ν is an εν -approximate Bayes

estimator, are true by construction. Lastly, we must show that εν Ñ 0 almost surely. By monotonicity of the

integral, we know that

f νpθ νq ď sup
θ

f νpθq ď f pθ̂MAPq.

For each x PX with πpθ |xq proper, we combine this inequality with the fact that limν f νpθ νq “ f pθ̂MAPq

to arrive at the following

0ď ε
νpxq “ sup f ν ´ f νpθ νq ď f pθ̂MAPq´ f νpθ νq Ñ 0

Note that πpθ |xq must be proper for this to hold: it guarantees that f pθ̂MAPq ă 8, and hence f pθ̂MAPq “

limν f νpθ νq gives f pθ̂MAPq´ limν f νpθ νq “ 0.

We conclude that ενpxq Ñ 0 almost everywhere, since πpθ |xq is proper X almost everywhere. This

shows the third condition in the definition, so that θ̂MAP is a limit of approximate Bayes estimators. � �

The notion of an approximate Bayes estimator captures the idea that Bayes and MAP estimators are close

in terms of evaluation of the objective. They need not be close in distance to each other in Θ. This point

is subtle, and underlies the confusion in the incorrect claim in (3.6). In fact, as the counterexample in the

previous section shows, Theorem 3.5.2 cannot be strengthened from approximate to true Bayes estimators

without additional conditions.

We turn now to providing those conditions, in a sort of converse to Theorem 3.5.2. We turn our focus to

characterizing when a sequence of Bayes estimators converges to a MAP estimator. We again begin with a

deterministic result.
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THEOREM 3.5.3. Assume there exists α such that levěα f is bounded and has nonempty interior. Then

argmax f ν is eventually nonempty, and any sequence maximizers of f ν as ν Ñ8 has a maximizer of f as a

limit point.

PROOF. Let f be an usc density. Assume there is an α P R such that the upper level set levěα f is

bounded and has nonempty interior. Note that levěα is compact by the Heine-Borel Theorem because upper

level sets are closed when f is upper semicontinuous.

First, we show that there is an index ν0 such that argmax f ν is nonempty for each ν ą ν0. Then we show

that any sequence of maximizers of f ν , has as a limit point a maximizer of f .

To show the existence of a maximizer, we first show that f ν is upper semi-continuous with a bounded,

nonempty upper level set. That f ν attains its maximum then follows because an upper semi-continuous

function attains its maximum on a compact set. We recall from section 3.3 that our framework allows that

this maximum could be8.

Fix ν PN and θ PRn. Let tθ ηuηPN be any sequence that converges to θ . To show upper semicontinuity

we must have

limsup
η

f νpθ ηq ď f νpθq,

but this follows from the following chain of inequalities

limsup
η

f νpθ ηq “ limsup
η

sn ¨ν
n ¨

ż

||θ η´z||ă 1
ν

f pzqdz

“ limsup
η

sn ¨ν
n ¨

ż

||z||ă 1
ν

f pz`θ
ηqdz

ď sn ¨ν
n ¨

ż

||z||ă 1
ν

limsup
η

f pz`θ
ηqdz

ď sn ¨ν
n ¨

ż

||z||ă 1
ν

f pz`θqdz

“ f νpθq.

The first inequality follows from Fatou’s lemma, and the second from the upper semicontinuity of f . Hence

f ν is upper semicontinuous.

The family of functions f ν has a bounded upper level set because levěα f bounded with constant M

implies that levěα f ν is bounded with constant M` 1
ν

. Lastly, we show that the upper level set levěα f ν is
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nonempty. Let θ P int levěα f ν , and denote by δ radius such that Bpθ ,δ q Ď int levěα f ν . Choose ν0 ě
1
δ

.

Then for any ν ą ν0

f νpθq “ sn ¨ν
n
ż

||θ´z||ă 1
ν

f pzqdzě sn ¨ν
n ¨α ¨

1
νn ¨ sn “ α.

So θ P levěα f ν . We conclude that this level set is nonempty and bounded, so that f ν attains its maximum.

Now let θ̂ ν be any sequence of maximizers of f ν . For ν ą ν0, θ̂ ν P levěα f ν . From Lemma 3.5.1 and

Proposition 3.3.1

liminf
ν

f νpθ̂ ν
B q “ liminf

ν
sup
Rn

f ν ě sup
Rn

f ν

and

limsup
ν

f νpθ̂ νq

“ limsup
ν

psup
Rn

f νq

“ limsup
ν

˜

sup
Bp0,M`1q

f ν

¸

ď sup
Bp0,M`1q

f

“ sup
Rn

f .

So lim f νpθ̂ ν
B q “ supRn f .

Since θ̂ ν is eventually in Bp0,M`1q, which is compact, it has a convergent subsequence θ̂ νk Ñ θ̃ . By

upper semi-continuity

f pθ̃q ě limsup f pθ̂ νkq “ lim f pθ̂ νq.

Hence θ̃ maximizes f . Furthermore, by upper semi-continuity any limit point of θ̂ ν maximizes f . This

proves the theorem. � �

We now prove our main result about the relationship between estimators.

THEOREM 3.5.4. Suppose that for each x PX , πpθ |xq satisfies the following property: There exists α

such that

tθ : πpθ |xq ą αu
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is bounded and has nonempty interior. Then for any of sequence of Bayes estimators θ̂ ν
B with 0-1 loss Lν

(i) There is a MAP estimator θ̂MAP such that θ̂MAPpxq is a limit point of θ̂ ν
B pxq for each x.

(ii) Every limit point of θ̂ ν
B pxq defines a MAP estimator, in the sense that there is a MAP estimator

θ̂MAP with θ̂MAPpxq equal to that limit point.

PROOF. Fix x P X . By assumption, πpθ |xq has a bounded level set with nonempty interior. From

the deterministic result, Theorem 3.5.3, the sequence θ̂ ν
B pxq has a limit point θ̃pxq, and this limit point

maximizes πpθ |xq. Define a MAP estimator θ̂MAPpxq :“ θ̃pxq pointwise for each x PX . This proves (i).

For (ii), the result follows since the method of defining a MAP estimator in the previous paragraph is

valid for every limit point of θ̂ ν
B pxq. � �

As a consequence of the proof, we note the following: if θ̂ ν
B converges to some estimator θ̂ almost

surely, then θ̂ is a MAP estimator.

We next establish related results for various shape constrained densities. Recall that a function f : Rn Ñ

R is quasiconcave if for each x,y P Rn and λ P r0,1s

f pλx`p1´λ qyq ěmint f pxq, f pyqu.

For a quasiconcave function, local maximality implies global maximality. This shape constraint captures the

notion of a probability distribution having a “single peak”. It is also sometimes referred to as unimodality,

but we avoid this terminology because it has multiple meanings in the literature.

THEOREM 3.5.5. Assume that for each x PX , πpθ |xq is quasiconcave. Then the conclusion of Theorem

3.5.4 holds.

PROOF. For each x, since
ş

πpz|xqdz“ 1, there is an α ą 0 such that µptθ : πpθ |xq ě αuq has positive

measure. By quasiconvexity, levěα πpθ |xq “ tθ |πpθ |xq ě αu is convex.

Note levěα having an interior point is equivalent to the set containing n affinely independent points.

Suppose, towards a contradiction, that levěα πpθ |xq does not contain any interior points, then its affine hull

lies in an n´ 1 dimensional plane. This contradicts the set having positive measure. Hence tθ : πpθ |xqu

must have an interior point.

In order to apply Theorem 3.5.4 we must also show that the level set levěα πpθ |xq is bounded. Fix B

to be any n-dimensional ball in levěα πpθ |xq. If θ ν were a sequence in levěα πpθ |xq such that ||θ ν || Ñ8,
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then
ż

zPΘ

πpz|xqdzě
ż

zPlevěα πpθ |xq
πpz|xqdzě µptconvpBYtθ νuquq ¨α

Here, µ denotes Lebesgue measure. One can easily show that µpconvpBYtθ νuqq Ñ 8 when θ ν Ñ8.

This contradicts that
ş

πpz|xqdz “ 1. Hence there cannot exist such a sequence, so the level set is bounded

and the result is proven. � �

The following corollary about log-concave densities follows immediately. Recall that a function f :

Rn Ñ R is log-concave if for all x,y P Rn and λ P r0,1s

f pλx`p1´λ qyq ě f pxqλ f pyq1´λ

Log-concave densities have appeared in recent work of [Ruf07], [DR`09] due to their attractive computa-

tional and theoretical properties in nonparametric density estimation.

COROLLARY 3.5.6. Assume that for each x PX , πpθ |xq is log-concave. Then the conclusion of theorem

3.5.4 holds.

PROOF. Log-concavity implies quasiconcavity, and the result follows immediately from the previous

theorem. � �

3.6. Proof of Lemma 1

In this appendix we provide the proof of Lemma 3.5.1.

PROOF. Let θ P Rn. To show hypo-convergence, we must show that for each sequence θ ν Ñ θ ,

limsupν f νpθ νq ď f pxq and that there exists a sequence θ ν Ñ θ with liminfν f νpθ νq ě f pθq.

Fix ε ą 0. Since f is upper semi-continuous at θ , there is a δ ą 0 such that ||z´θ || ă 2δ gives

f pzq´ f pθq ă ε .

Consider any sequence θ ν Ñ θ . We have that

f νpθ νq´ f pθq “ sn ¨ν
n ¨

ż

||θ ν´z||ą 1
ν

p f pzq´ f pθqqdz“ sn ¨ν
n ¨

ż

||z||ă 1
ν

p f pz`θ
νq´ f pθqqdz.

76



3.6. PROOF OF LEMMA 1

Choose ν0 P N so that ||θ ´θ ν || ă δ and 1
ν
ă δ for each ν ą ν0. Then for any ν ą ν0,

sn ¨ν
n ¨

ż

||z||ă 1
ν

p f pz`θ
νq´ f pθqq dzď sn ¨ν

n ¨ ε ¨

ż

||z||ă 1
ν

dz“ ε.

Thus limsupν f νpθ νq ď f pθq.

To establish the second part of the hypo-convergence definition, we focus our attention on constructing

a sequence that satisfies the required inequality.

Consider any η P N. Recall that f ν is an upper semi-continuous density. Let C be the set where f is

continuous. Because C is dense, for each ν P N, there is a yν P C such that ||yν ´ x|| ă 1
ν

. Furthermore,

yν PC means that there is a δ pyν ,ηq ą 0 such that any z PΘ which satisfies ||yν ´ z|| ă δ pyν ,ηq also has

| f pyνq´ f pzq| ă
1
η
.

Here we use function notation for δ to emphasize that δ depends on both yν and η .

For each η , define a sequence such that

zν ,η “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 when 1
ν
ą δ py1,ηq

y1 when δ py2,ηq ď 1
ν
ă δ py1,ηq

y2 when δ py3,ηq ď 1
ν
ămintδ py2,ηq,δ py1,ηqu

y3 when δ py4,ηq ď 1
ν
ăminiď4 δ pyi,ηq

...
...

Extracting a diagonal subsequence from the sequences generated according to this procedure gives a se-

quence θ ν such that θ ν Ñ θ and 1
ν
ă δ pθ ν ,νq. In particular, | f pθ νq´ f pzq| ă 1

ν
for z with ||θ ν ´ z|| ă 1

ν
.

Hence, for any ε ą 0, choosing ν ą 2
ε

gives

| f νpθ νq´ f pθq| ď | f νpθ νq´ f pθ νq|` | f pθ νq´ f pθq|

ď
ε

2
`

ε

2
“ ε

We conclude that limν f νpθ νq “ f pθq, so the result is proven. �

�
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CHAPTER 4

Log-Concave Duality in Estimation and Control

4.1. Introduction

We consider the problem of estimating the state of a noisy dynamical system based only on noisy

measurements of the system. In this chapter, we assume linear dynamics, so that the progression of state

variables is

Xt`1 “FtpXtq`Wt`1, t “ 0, ...,T ´1(4.1)

X0 “W0(4.2)

Xt is the state variable–a random vector indexed by a discrete time-step t which ranges from 0 to some final

time T . All of the results in this chapter still hold in the case that the dimension of Xt is time-dependent,

but for notational convenience we will assume that Xt P Rnx for t “ 0, ...,T . Ft is then a nxˆnx real-valued

matrix that, though it may vary with time, is known a priori. The Wt term is a random vector in Rnx that

represents noise in the system dynamics. Note that, in this formulation, the random vectors Wt are primitive,

in the sense that they generate all of the randomness associated with the problem. The state variables Xt are

secondary, being derived from applying dynamic equations to Wt terms.

In addition to the dynamics that govern the state progression, we also have a measurement process which

dictates the observable information at time t. We assume that the measurement process is linear.

(4.3) Zt “ HtpXtq`Vt

The vector Zt is a (secondary) random vector of dimension nz. Again, we can consider the case that the

dimension of Zt changes with time, but for notational convenience we will assume that the measurements

This chapter is based on joint work with Michael Casey and Roger J-B Wets [Wal09].
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have a fixed dimension. This gives that Ht is an nzˆnx matrix, which similar to Ft may vary with time but

is known in advance. Vt is a primitive random vector of dimension Rnz that represents measurement noise.

Different information structures in this setup correspond to different types of estimation problem. In

this chapter we consider the smoothing problem, which consists of estimating of X0, ...,XT after all mea-

surement variables Z0, ...ZT have been observed. In this sense, the information associated with the problem

is constant–the set of measurements which we use to estimate X0 is the same as the measurements with

which we estimate XT . This differs from the filtering problem, which is one of sequential state estimation.

In the filtering problem, the set of available measurements depends on the time of the state being estimated.

Of course, the difference between these problems can be formulated in terms of measurability with respect

to certain filtrations, but we avoid this language because we show momentarily that the main problem of

interest is deterministic.

Kalman, in his seminal paper [Kal60], assumed that there was no measurement noise associated with

the system, so that Vt ” 0. Motivated by minimizing mean-squared error, he sought to find the conditional

expectation of the states given the measurement. Under the assumption that the dynamic and measure-

ment noise are Gaussian, conditional expectation reduces to a deterministic maximum a posteriori (MAP)

problem, in which the optimal estimate is the mode of the conditional density

fXpX0, ...,XT |pZ0, ...,ZT q “ pz0, ...,zT qq

Assuming that Wt „N p0,Qtq and Vt ” 0, the problem can be derived explicitly, as in [Cox64]. We

are left with the following optimization problem:

min
x0,...,xT

T
ÿ

t“0

1
2

w1tQ
´1
t wt(PKal)

subject to xt`1 “ Ftxt `wt`1, t “ 0, ...,T ´1

x0 “ w0

zt “ Htxt , t “ 0, ...,T
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In this formulation, the variables xt and wt are estimates of the random variables Xt and Wt , respectively.

In this sense, wt is also a decision variable, but we prefer to write the problem in this reduced formulation

where a decision x0, ...,xT generates the variables w0, ...,wT .

Kalman observed that the Linear Quadratic Regulator problem

min
u0,...,uT

T
ÿ

t“0

1
2

y1tQtyt(DKal)

subject to yt`1 “ F 1t yt `H 1t ut`1

y0 “ H 10u0

over controls tutu
T
t“0 and states tytu

T
t“0, is dual to the estimation problem above. Kalman defined this duality

in terms of the equations that characterize their solutions: the algebraic Riccati equation which characterizes

the value function of (DKal) is the same equation that governs the propagation of the variance of the estimate

in (PKal), with a time reversal. Since the Linear Quadratic Regulator problem is one of optimal control,

the relationship between the problems is described as duality between estimation and control, in the Linear-

Quadratic Gaussian setting.

Compared to the equation-correspondence duality which is typical in the engineering literature [Tod08],

[Dav77] , we take a different approach by using the duality theory of convex programming. The allows us

to extend the duality of estimation and control to the more general setting where noise and measurement

noise have log-concave densities. This includes the Linear-Quadratic Gaussian framework, but by viewing

the duality in a convex-analytic framework we gain more insight into the relationship between estimation

and control. Previous literature has focused almost exclusively on either equation-correspondence duality

or convex analytic duality between estimation and control problems. We will focus this work on duality in

the convex-analytic sense.

The rest of this chapter is organized as follows. In section 2 we state and prove the main result of

the chapter: a duality result between estimation and optimal control when the noise terms in (4.3), (4.1)

are log-concave. Section 3 applies this result to the case where the noise terms have densities which are

exponentiated monitoring functions, so that no constraint qualification is required for strong duality. Section

4 contains a practical example, where the solution to the optimal control problem is used to generate an

optimal state estimate.
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We conclude this section by establishing some definitions and notations that we will use throughout the

rest of this chapter. Recall that a function is called lower semi-continuous (lsc) if for every x in its domain,

liminf
xνÑx

f pxνq ě f pxq

for every sequence xν Ñ x. In addition, recall that a convex function which takes extended real-values is

called proper if it is not identically 8 and never takes the value ´8 [RWW10]. In keeping with convex-

analytic literature, we refer to the domain of an extended-valued convex function as the set where it assumes

a finite value.

Lastly, given a convex function f : Rn Ñ p´8,8s, we denote by f ˚ the convex conjugate of f , which

is defined as

f ˚pyq “ sup
xPRn

txx,yy´ f pxqu .

Conjugation is ubiquitous in convex-analytic duality theory, and this chaper is no exception. For more

details and background on conjugation and its relation to duality, the reader should consult any of [Roc74]

[Roc97] [RWW10].

4.2. Estimation with Convex Penalties

In this section we consider the case where the the random vectors Wt and Vt in (4.1) and (4.3) have

log-concave density functions. Recall that a function φ : Rd Ñ R is log-concave if

φpxq “ exp´ f pxq

where f : Rd Ñ p´8,8s is a convex function. By convention, we adopt that e´8 “ 0.

The collection of random vectors with log-concave densities is broad enough to include many commonly

used distributions, such as the normal, Laplace, and exponential [BB05]. Moreover, it is closed with respect

to taking marginals, convolutions, and forming product measures [DJD88]. These characteristics make

MAP estimation in the presence of log-concave noise much more amenable to computation than the more

general unimodal class, because they guarantee that conditional expectations, sums of random variables,

and joint densities formed by independent log-concave random variables remain log-concave. These are

exactly the operations performed when considering MAP estimation in the presence of linear dynamics
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and measurements. The broader class of unimodal distributions, on the other hand, does not enjoy these

properties, making them much more difficult to work with in the context of discrete-time state estimation.

Nonparametric density estimation within the class of log-concave random vectors also has attractive

theoretical and computational properties. We will not review those results here (see, for example, [DR,

PWM07, Ruf]), but we do comment that the results in the later sections find rich applications in nonpara-

metric log-concave density estimation, particularly because of their non-smooth nature.

The maximum a posteriori estimation of the states, given measurements z0, ...,zT can be derived simi-

larly to the Gaussian case.

PROPOSITION 4.2.1. Assume that Wt and Vt are independent and have log-concave densities e´ ft and

e´gt , respectively, for t “ 0, ...,T . Then the maximum a posterior estimate of the states X0, ...,XT given

pZ0, ...,ZT q “ pz0, ...,zT q is given by the solution to the problem

min
x0,...,xT

T
ÿ

t“0

ftpwtq`

T
ÿ

t“0

gtpzt ´Htxtq(P)

subject to xt`1 “ Ftxt `wt`1, t “ 0, ...,T ´1

x0 “ w0

Equivalently, one can use an extended formulation, minimizing over wt and xt , or simply minimizing in wt .

PROOF. In maximum a posteriori estimation, we seek to maximize the density

pXpX0, ...,XT |pZ0, ...,ZT q “ pz0, ...,znqq.

By Bayes’ Theorem

pXppX0, ...,XT q “ px0, ...,xT q|pZ0, ...,ZT q “ pz0, ...,zT qq

“
pZppZ0, ...,ZT q “ pz0, ...,zT q|pX0, ...,XT q “ px0, ...,xT qqpXpX0, ...,XT q “ px0, ...,xT qq

pZppZ0, ...,ZT q “ pz0, ...,zT qq
.

By the independence of measurement noise,

pZppZ0, ...,ZT q “ pz0, ...,zT q|pX0, ...,XT q “ px0, ...,xT qq “

T
ź

t“0

pVt pzt ´Htxtq.
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Furthermore, since the process is Markov (by independence of dynamic noise)

pXppX0, ...,XT q “ px0, ...,xT qq “ pX0px0q ¨ pX1px1|x0q ¨ ... ¨ pXT pxT |xT´1q.

Our posterior becomes
śT

t“0 pVt pzt ´Htxtq ¨ pX0px0q ¨
śT

t“1 pXt pxt |xt´1q

pZppZ0, ...,ZT q “ pz0, ...,zT qq
.

By the assumptions on the distributions of Vt and Wt , this is

Cpz0, ...,zT q ¨ exp

#

´ f0px0q´

T´1
ÿ

t“0

ft`1pxt`1´Ftpxtqq´

T
ÿ

t“0

gtpzt ´Htxtq

+

where Cpz0, ...,znq is some term not depending on px0, ...,xT q. Maximizing this expression in px0, ...,xT q is

then equivalent to minimizing

f0px0q`

t´1
ÿ

t“0

ft`1pxt`1´Ftpxtqq`

T
ÿ

t“0

gtpzt ´Htpxtqq.

This gives us the problem in the statement of the proposition. The different formulations follow because

each choice of px0, , ,xT q generates a unique pw0, ...,wT q, according to the dynamics, and vice versa. �

The extension from the Gaussian noise to log-concave random vectors is signficant. The fact that the

functions ft and gt in P can take the value 8 permits a choice of densities which do not have full sup-

port. Correspondingly, the MAP problem then becomes one of traditional convex optimization [Roc97],

[RWW10], where constraints are built in to the objective function by allowing that function to take infinite

values.

The next lemma provides information about the function f used to define a log-concave density.

LEMMA 4.2.2. Assume that f : Rn Ñ R is a convex function which defines the density of a random

variable X„ e´ f pxq. Then

(a) If clp f q is the lower-semicontinuous hull of f , then eclp f q is also a density function for X.

(b) f is proper

(c) domp f q is full-dimensional

(d) f is level-bounded, so that the minimum of f over Rn is attained.

83



4.2. ESTIMATION WITH CONVEX PENALTIES

PROOF. First we prove (a). Since a convex function is continuous on the interior of its domain [Roc97][10.1],

the only points where f may fail to be lower semicontinuous is on the boundary of its domain. The domain

of a convex function is obviously convex, and since the boundary of a convex set has Lebesgue measure

zero [Jar15][Lemma 1.8.1], clp f q and f are equal almost everywhere. Hence eclp f q is also a density func-

tion for X , since it differs from the given density on a set of measure zero. This results allows us to refer to

pointwise values of f , by which we mean the values of the unique lower-semicontinuous extension clp f q.

(b) follows from (a) and the fact that
ş

e´ f pxqdx“ 1. Because an improper lower-semicontinuous convex

function can have no finite values [Roc97][Cor 7.2.1], f must be proper in order for e´ f pxq to integrate to

one.

For (c), if domp f q were not full dimensional then it is a subset of a proper affine subspace of Rn. This

set has measure zero, which violates the condition that e´ f pxq integrates to one.

Lastly, we prove (d). In order that
ş

e´ f pxqdx “ 1, we must have f pxq Ñ 8 as |x| Ñ 8. This means

that f is level bounded, which combined with the fact that we can without loss of generality take f to be

lower-semicontinuous, gives that f attains its minimum [RWW10][Thm 1.9] �

To simplify calculations in the results that follow, we will rewrite the problem P in a more compact

form. We borrow from Rockafellar [Roc99] the notion of a supervector, which is simply a concatenated

vector consisting of a variable at all time steps. Let w“ pw0, ...,wT q
1, z“ pz0, ...,zT q

1, x“ px0, ...,xT q
1 be the

supervectors corresponding MAP estimates of the dynamical noise, measurements, and states, respectively.

Define

f pwq “
T
ÿ

t“0

ftpwtq,

gpzq “
T
ÿ

t“0

gtpztq.

Note that each of these functions is separable with respect to the components of their respective supervectors.

Hence infimums and supremums can be performed with respect to each component.

Define
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A“

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

´F0 1 ¨ ¨ ¨ 0

0
. . . . . . 0

0 ¨ ¨ ¨ ´FT´1 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

so that the dynamical system constraint in P can be represented as

(4.4) Ax´w“ 0.

Similarly, let

H “

¨

˚

˚

˚

˚

˚

˚

˚

˝

H0 0 ¨ ¨ ¨ 0

0 H1 ¨ ¨ ¨

...
...

. . .
...

0 0 ¨ ¨ ¨ HT

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Then the measurement constraint can be rewritten in supervector notation as well, allowing us to rewrite

problem P

min
x,w

f pwq`gpz´Hxq(4.5)

s.t. Ax´w“ 0.

We now turn our attention to convex-analytic duality. For concreteness, we assume that C Ď Rn and

D Ď Rm. Recall that a convex problem minxPC hpxq is dual to a concave problem maxyPD kpyq if there is a

convex-concave function L : RnˆRm Ñ R such that

hpxq “ sup
yPD

Lpx;yq and kpyq “ inf
xPC

Lpx;yq.

This definition, from [Roc74], is equivalent to the notion of duality in which one perturbs constraints in

order to generate a saddle function L. Indeed, a perturbation function F can be generated from the equation

Fpx,uq “ sup
yPD

 

Kpx,yq´u1y
(

.
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Of course, this duality framework subsumes the familar Lagrangian duality, Fenchel duality, and various

other duality schemes. We refer the reader to [Roc74] for details and examples, and focus on applying this

theory to the problem at hand.

THEOREM 4.2.3. When f and g are convex, problem (P) is the primal problem associated with the

saddle function

Lpw,x;u,yq “ f pwq` z1u´g˚puq´u1Hx` y1pAx´wq

on C :“ RpT`1qˆnx ˆRpT`1qˆnx , D :“ RpT`1qˆnz ˆRpT`1qˆnx

PROOF. To prove that (P) is the primal problem for the saddle-function L, we will show that

(P)“ min
pw,xqPC

sup
pu,yqPD

Lpw,x;u,yq

which satisfies the definition in [Roc74]. For ease of notation, in what follows we omit the sets over which

we take the infimums and supremums. By the separability of L,

sup
u,y

Lpw,x;u,yq “ f pwq` sup
u

 

u1pz´Hxq´g˚puq
(

` sup
y

 

y1pAx´wq
(

Obviously the right-most supremum is 0 when Ax´w “ 0 and 8 otherwise. Furthermore, Lemma 4.2.2

gives that without loss of generality g is proper and lsc. Therefore the Fenchel-Moreau Theorem [RWW10,

Th 11.1] gives that

sup
u

 

u1pz´Hxq´g˚puq
(

“ g˚˚pz´Hxq “ gpz´Hxq.

Thus

min
w,x

sup
u,y

Lpw,x;u,yq

“min
w,x

f pwq`gpz´Hxq

s.t. Ax´w“ 0

�
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THEOREM 4.2.4. The dual problem associated with L on RpT`1qˆnxˆRpT`1qˆnx , RpT`1qˆnzˆRpT`1qˆnx

is

sup
y,u

z1u´ f ˚pyq´g˚puq(4.6)

s.t. A1y´H 1u“ 0

Furthermore, this problem has an equivalent reduced formulation where the supremum is taken over u.

PROOF. The dual problem associated with the triple L, RpT`1qˆnx ˆRpT`1qˆnx , RpT`1qˆnz ˆRpT`1qˆnx

is

sup
u,y

inf
w,x

Lpw,x;v,yq

“sup
u,y

inf
w,x

f pwq` z1u´g˚puq´u1Hx` y1pAx´wq

“sup
u,y

inf
w,x

f pwq´w1y` x1pA1y´H 1uq` z1u´g˚puq

“sup
u,y

z1u´g˚puq` inf
w

 

f pwq´w1y
(

` inf
x
tx1pA1y´H 1uqu

“ sup
u,y

z1u´g˚puq´ f ˚pyq

s.t. A1y´H 1u“ 0

Lastly, the equivalent reduced formulation follows because the each u generates a unique y vector according

to the constraints. �

Appealing to the separability of f and g, and expanding the matrices A1 and H 1, we have established the

following main result.
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THEOREM 4.2.5. The dual problem associated with the estimation problem (P) is the optimal control

problem

sup
u0,...,uT

T
ÿ

t“0

f ˚t pytq`g˚t putq´ z1tut(D)

s.t. yt “ F 1t yt`1`H 1t ut , t “ 0, ...,T ´1

yT “ H 1uT

The next theorem provides a condition, known as a constraint qualification, for strong duality to hold

between the estimation problem P and control 4.6 problems above.

THEOREM 4.2.6. [Roc97, Theorem 28.2] Assume that the problem P is strictly feasible, so that there

exists a pair px,wq satisfying (4.4), w P intpdomp f qq, z´Hx P intpdompgqq. Then a strong duality relationship

exists between the problems P and D . In other words, the supremum in D equals the optimal value in P .

Furthermore, this supremum is attained.

PROOF. This follows directly from the strong duality theorem in [Roc97, Theorem 28.2]. Note that the

typical formulation of this constraint qualification requires only a relative interior point, when the domains

are considered as subsets of their affine hulls, instead of an interior point. However, since by Lemma 4.2.2

the domains of f and g are full-dimensional, the notions are equivalent. �

4.3. The Piecewise Linear Quadratic Case

In this section we investigate structural constraints on the functions ft and gt in the densities of Wt and

Vt that allow us to remove the constraint qualification condition in 4.2.6.

Recall that a function is linear-quadratic if it is polynomial of degree at most two, so that constant and

linear functions are included in this family.

THEOREM 4.3.1. Assume that ft and gt are convex and piecewise linear-quadratic. If either P or D

are feasible, then strong duality holds between these estimation and optimal control problems, so that their

optimal objective values are equal. Furthermore, both problems attain their optimal objective values.

PROOF. If ft and gt are piecewise linear quadratic, then the reformulated problem 4.5 is a piecewise

linear-quadratic program. Lemma 4.2.2 gives us that each of ft and gt are proper, and hence each of their
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conjugates is as well. Combined with the assumption that one of P and D is feasible, we know that the

optimal objective value of this problem is finite. Strong duality and the attaining of optimal values then

follow directly from [RWW10][Thm 11.42] �

Theorem 4.3.1 removes the contraint qualification of Theorem 4.2.5 by imposing extra structure on

the functions ft and gt . By assuming that ft and gt are piecewise linear-quadratic, strong duality becomes

automatic.

When ft and gt are arbitrary convex functions, computing closed form expressions for the conjugates

that occur in the dual problem may be difficult. The conjugate function, Lagrangian, and dual problem D

are especially easy to compute in the special case that ft and gt are monitoring functions, which includes

many problems of practical interest.

A monitoring function is a function ρU,M : Rn Ñ R defined by

ρU,Mpxq “ sup
uPU
tx1u´

1
2

u1Muu

where U Ď Rn is a nonempty polyhedral set and M is an nˆn positive semidefinite matrix.

Monitoring functions are flexible tools for modeling penalties. They are proper, convex, and piecewise

linear-quadratic [RWW10][Ex 11.18], and can be used to model a variety of linear and quadratic penalties in

addition to polyhedral constraints. A probabilistic interpretation of the use of monitoring functions in robust

smoothing problems can be found in [ABP13]. The authors detail the construction of many commonly used

penalties in robust optimization, and provide remarks for constructing others.

The incentive for considering the case that ft and gt are monitoring functions is two-fold. The first

is that the MAP problem with Gaussian noise is contained in this case. The second is that the frame-

work provides enough structure to make the computation of the conjugates and the dual control problem D

straight-forward.

We’ll be aided in this by the following lemma.

LEMMA 4.3.2. If ρU,M is a monitoring function, then the conjugate ρ˚U,M is given by

ρ
˚
U,Mpyq “

$

&

%

1
2 y1My when y PU

8 otherwise
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PROOF.

ρ
˚
U,Mpyq “ sup

xPRn

 

x1y´ρU,Mpxq
(

“ sup
xPRn

"

x1y´ sup
uPU

"

x1u´
1
2

u1Mu
**

“ sup
xPRn

inf
uPU

"

x1py´uq`
1
2

u1Mu
*

(4.7)

This can be interpreted as the dual to the problem

inf
uPU

1
2

u1Mu

s.t. u“ y

In the same spirit as 4.3.1, we apply [RWW10][11.42] to see that, when U is nonempty, 4.7 equals

inf
uPU

sup
xPRn

"

x1py´uq`
1
2

u1Mu
*

“

$

&

%

1
2 y1My when y PU

8 otherwise

�

We’ve arrived at a precise formulation of the dual control problem D .

COROLLARY 4.3.3. If Wt and Vt have a PLQ density

Wt9e´ρWt ,Mt Vt9e´ρVt ,Nt
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with Mt ,Nt ľ 0 and and Wt , Vt nonempty and polyhedral, then the MAP problem P is dual to the control

problem

sup
u0,...,uT

T
ÿ

t“0

1
2

y1tMtyt `
1
2

u1tNtut ´ z1tut(4.8)

s.t. yt “ F 1t yt`1`H 1t ut , t “ 0, ...,T ´1

yT “ H 1uT

yt PWt , t “ 0, ...,T(4.9)

ut PVt , t “ 0, ...,T(4.10)

Optimal values are attained and strong duality holds when either problem is feasible.

PROOF. Follows directly from 4.2.5 and 4.3.1. �

As an application of Theorem 4.3.3, we verify the strong duality between estimation and control in

the linear-quadratic Gaussian setting. By taking Wt „N p0,Qtq and Vt „N p0,Rtq, we can represent the

density functions as in Theorem 4.3.3 by taking

Wt “ Rnx , Mt “ Qt , Vt “ Rnz ,Nt “ Rt

Because ρt,Rnx ,Qt and ρt,Rnz ,Rt have domains Rnx and Rnz , respectively, the MAP problem is feasible for any

measurements pz0, ...,zT q. Strong duality then follows directly from Theorem 4.3.3.

Moreover, by taking Wt „N p0,Qtq and Vt ” 0, we recover the duality of the two problems considered

by Kalman from the introduction. The time reversal is in fact an artifact of taking the convex analytic dual,

though recovery of the Riccati-covariance propagation equivalence requires considering each problem as

sequential, which is not the appoach that we’ve taken here.

4.4. Applications: Reconstructing an Estimator from Optimal Controls

In this section we apply the results of the previous sections to construct the solution to an optimal esti-

mation problem from the solution to its dual problem of optimal control. We focus on a nonsmooth problem

of practical interest. First, we formulate an estimation problem where the density of the measurement noise

is generated via log-concave maximum likelihood estimation from a sample of measurement noise. We then
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use the result 4.2.5 to construct a corresponding dual control problem. Finally, we use the solution to this

control problem to construct an optimal estimator for the original problem.

The set up for this problem motivated by the following scenario. A practioner aims to estimate the

current and previous states of a dynamical system from a set of noisy measurements. Through calibration

of a sensor or observation, the practioner has the ability to generate sample data for the measurement noise.

How can one use this data to formulate an estimation problem which reflects the tendencies of the sensor?

We would like to capitalize on the ability to generate measurement noise, instead of defaulting to a Gaussian

noise assumption.

The following theorem, due to [Ruf] and [PWM07], as well as the computational results in [DR], allow

us to form a nonparametric density estimate of a log-concave density based on a set of sample data.

THEOREM 4.4.1. If X1, ...,Xn are i.i.d. observations from a univariate log-concave density, then the

nonparametric MLE exists, is unique, and is of the form φ̂n “ exp f̂n. The function f̂n is piecewise linear on

rXp1q,Xpnqs, with the set of knots contained in tX1, ...,Xnu. Outside of rXp1q,Xpnqs, f̂ takes the value8.

For the generation of our example problem, we use 10 time steps and a two dimensional state space,

motivated by components representing position and velocity. The dynamics matrices Ft corresponds to

the physical dynamics that would occur in such a situation. We produce a “true” sequence of states to be

estimated by generating dynamical system noise according to a N p0, Iq distribution. We take the measure-

ment operators Ht be the sum of the components. Lastly, we construct measurements from a sample of

Laplacep0,1q measurement noise.

For the formulation of the MAP problem, we assume that the dynamical system noise was generated

according to N p0, Iq distribution. For the measurement noise, we construct a log-concave MLE estimator

e´ĝ of the density from a sample of size 100 generated from a Laplace(0,1) distribution. ĝ and its convex

conjugate ĝ˚ are illustrated in figure 4.1.

92



4.4. APPLICATIONS: RECONSTRUCTING AN ESTIMATOR FROM OPTIMAL CONTROLS

(a) ĝ (b) ĝ˚

FIGURE 4.1. ĝ and ĝ˚, where the MLE density is e´gpxq

The MAP problem P is then

min
x0,...,x10

10
ÿ

t“0

1
2
||wt ||

2
` ĝpzt ´p 1 1 q ¨ xtq(Pex)

s.t. xt`1 “

¨

˝

1 1

0 1

˛

‚xt `wt`1, t “ 0, ...,T ´1

x0 “ w0

According to 4.2.5 this problem has as its dual the control problem

max
u0,...,u10

10
ÿ

t“0

1
2
||yt ||

2
` ĝ˚putq´u1tzt(Dex)

s.t. yt “

¨

˝

1 0

1 1

˛

‚yt`1`

¨

˝

1

1

˛

‚ut , t “ 0, ...,T ´1

yT “

¨

˝

1

1

˛

‚uT

Because our dynamical system noise in Pex has full support, Theorem 4.2.6 guarantees that strong

duality holds between the problems, and that the dual control problem attains its solution. Assume that

we have solved this control problem and have a corresponding optimal control pu˚,y˚q. Since an optimal

estimate pw˚,x˚q gives a saddle point pw˚,x˚;u˚,y˚q to the Lagrangian L in Theorem 4.2.4, it follows from
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FIGURE 4.2. Dual Reconstruction of State Estimate

the proof of this theorem that w˚ minimizes f pwq´w1y˚. In our problem f , when f pwq “ 1
2 ||w||

2, which

yields the relationship w˚ “ y˚. This is similar to the relationship between primal and dual solutions in

the Fenchel Duality framework. See [Ber09][Prop. 5.3.8] for further details. Note that this allows us to

reconstruct a primal solution from a dual solution and vice versa. In particular, the relationship between y˚

and w˚ is linear when the dynamical system noise is assumed to be Gaussian.

Solving Dex to optimality gives y˚, from which we generate w˚ and then an optimal estimate x˚. Figure

4.2 contains a plot of the estimated and true state.

Though we have demonstrated a convenient technique to generate solutions for an estimation problem

from the solution to its dual control problem, in this example we have no reason to believe that solving Dex

is any easier than solving the original problem Pex. Nevertheless, the results in this and previous sections
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provide motivation for further investigation into applying control algorithms to solve estimation problems

and vice versa.
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CHAPTER 5

A Duality Result for Portfolio Optimization in Set-Valued Conic Market

Models

5.1. Introduction

Portfolio optimization problems have a long and rich history. Traditionally, portfolio optimization

took place in models without transaction costs, as in [Mer71]. Portfolio optimization problems in finan-

cial market models which include proportional transaction costs first appeared in the work of Magill and

Constantinides [MC76]. The two asset model was solved rigorously and improved upon shortly there-

after [DN90] [SS94]. Since then, much more focus has been placed on deriving results in markets with

transaction costs, as researchers tried to develop results analogous to the classical case.

In this chapter, we consider the conic market model initially developed by Kabanov [Kab99] for mod-

eling foreign transaction markets. The conic market model expresses portfolios in terms of the number of

physical assets they contain, as opposed to their value in currency. This allows the formulation of wealth

processes without the explicit use of stochastic integration. Though this quality may be seem surprising

to portfolio optimization veterans, it is attractive in terms of its simplicity and intuitive nature. In order to

compare portfolios, we consider them as assets of vectors under a partial ordering, and invoke the theory of

set optimization to formulate the portfolio problem.

Set optimization is primarily motivated by the desire to optimize with respect to a non-total order rela-

tion. Vector-valued optimization fits directly into this framework, with component-wise comparison. How-

ever, we prefer to work in a set-optimization framework as opposed to the less general vector-optimization

because of its succinct theory [HHL`ng]. Following the work of [Ham09], we introduce an ordering of

sets which generates a complete lattice. This allows us to define corresponding notion of infimums and

supremums of sets–a fundamental step in the formulation of the portfolio optimization problem. We then

This chapter is based on joint work with Khoa Le [BL16].
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use the tools in [HL14] to formulate a set-valued dual to the portfolio optimization problem. Because we

consider the multistage problem, our results are generalize those in [Wan11].

Constructing a primal-dual pair of problems for set-valued portfolio optimization provides insight into

the relationship between traditional portfolio optimization theory and the proportional transaction cost case.

But it is also our hope that the results contained here would be of more than just theoretical interest. Recent

work [LRU14] [HLR14] has been investigating computational techniques for solving set-valued optimiza-

tion problems. In particular, [LRU14] uses both the primal and dual formulation of a set optimization

problem to work towards computing a solution. In this sense, the results in this chapter provide a valuable

relationship which will help bring the portfolio optimization problem considered closer to practitioners, as

computational techniques progress.

The rest of this chapter is organized as follows. In the first section, we introduce the material which we

use to formulate the set-valued portfolio optimization problem. This includes a review of the conic market

model in addition to a summary of the set-optimization tools and techniques the we will use in our problem

formulation. The next section explicitly formulates the multi-period utility maximization problem. In the

third section, we discuss duality in the set optimization framework. The fourth section is devoted to our

main results, the formulation of a dual problem and a proof that a strong duality relationship holds. The last

section applies the main results to an example utility maximization problem.

5.2. Preliminaries

5.2.1. Conical Market Model. In this section, we recall the framework of the conic market model with

transaction costs introduced in [Kab99], though we primarily follow the development in [Sch04].

Consider a financial market which consists of d traded assets. In classical models, we assume that at

some terminal time T all assets are liquidated, i.e. converted to some numeraire. In certain applications, this

is unrealistic. For example, an agent with a portfolio consisting of assets in both US and European markets

should not need to choose between liquidation into Euro or USD to establish its relative value. For this

reason, we use a numeraire-free approach by considering vector-valued portfolios. In particular, we express

portfolios in terms of the number of physical units of each asset, instead of the value of those assets with

respect to a numeraire. This approach is especially interesting when liquidation into some numeraire has an
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associated transaction cost. In this case conversion to a unified currency is irreversible, and different choices

of numeraire could result in different relative values of portfolios.

We consider a market in which transaction costs are proportional to the number of units exchanged. To

model these costs, we introduce the notion of a bid-ask matrix.

DEFINITION 5.2.1. A bid-ask matrix is a dˆd matrix Π such that its entries π i j satisfy

(1) π i j ą 0, for 1ď i, j ď d

(2) π ii “ 1, for 1ď iď d.

(3) π i j ď π ikπk j, for iď i, j,k ď d.

The terms of trade in the market are given by the bid-ask matrix, in the sense that the entry π i j gives the

number of units of asset i which can be exchanged to one unit of asset j. Thus the pair t 1
π ji ,π

i ju denotes

the bid and ask prices of the asset j in terms of the asset i. A financial interpretation of the first and second

properties of a bid-ask matrix is straightforward, with the third condition ensuring that an agent cannot

achieve a better exchange rate through a series of exchanges than exchanging directly.

Next, we consider the notions of solvency and available portfolios. Recall that, given a set C Ď Rd , the

convex cone generated by C is the set

conepCq “ t
n
ÿ

i“1

λiyi : yi PC,λi ě 0,1ď iď n,n P Nu.

DEFINITION 5.2.2. For a given bid-ask matrix Π, the solvency cone KpΠq is the convex cone in Rd

generated by the unit vectors ei and π i jei´ e j, 1ď i, j ď d.

Solvent positions in vector valued portfolios are those which can be traded to the zero portfolio. The

vector π i jei´e j, which consists of π i j long position in asset i and one short in asset j, is solvent because the

terms of trade given by Π allow exchanging π i jei to e j. It follows that any non-negative linear combination

of π i jei´e j is also solvent. We also allow an agent to discard non-negative quantities of an asset in order to

trade to the zero portfolio, which justifies including the ei vectors in the solvency cone definition.

What is that set of portfolios that can be obtained from the zero portfolio, according to the terms of trade

governed by Π? Similar to the definition of the solvency cone, it consists of vectors e j´π i jei, which cor-

respond to trades at the exchange rate given by Π. Again permitting trades where agents discard resources,

we see that the set of portfolios available at price zero is the cone ´KpΠq.
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Given a cone K Ď Rd , we denote by K` the positive polar cone of K, i.e.,

K` “ tw P Rd : xv,wy ě 0 for v P KpΠqu.

Recall that the interior of K` is the set

intK` “ tw : xw,xy ą 0,@x P K,x‰ 0u.

DEFINITION 5.2.3. A nonzero element w P Rd is a consistent price system for the bid-ask matrix Π if

w is in the positive polar cone of KpΠq, so that

w P K`pΠq “ tw P Rd : xv,wy ě 0 for v P KpΠqu.

The set of all consistent price systems for a bid-ask matrix is then simply K`pΠqzt0u.

The notion of a consistent price system has an important financial interpretation. A price system w gives

a non-negative price wi for each asset i. One interpretation of the definition of a consistent pricing system is

that, if we fix some numeraire asset i, then w satisfies the condition that the frictionless exchange rate w j

wi for

asset j is less than π i j. Allowing for arbitrary choice of numeraire i and asset j, this is equivalent to

tw P Rd
`zt0u :

w j

wi ě π
i j for 1ď i, j ď du.

One can easily show that this set is in fact equal to K`pΠqzt0u, the set of all price systems consistent with

Π.

Fixing a filtered probability space pΩ,pF qTt“0,Pq, we model a financial market by pΠtq
T
t“0, an F

adapted process taking values in the set of bid-ask matrices. Such a process will be called a bid-ask process.

We make the following simplifying assumptions.

ASSUMPTION 5.2.4. pΩ,pF qTt“0,Pq satisfies

‚ F0 “ tH,Ωu is trivial.

‚ The model is in discrete time with t “ 0, ...,T

‚ The probability space Ω is finite, with |Ω| “ N

‚ Each element in Ω has nonzero probability, i.e. Prωns “ pn ą 0, where Ω “ tω1,ω2, ...,ωNu and

n“ 1, ..,N.
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The assumption that Ω is finite means that we can identify the space of all d-dimensional random

variables with RdˆN and inner product Exx,yy, where x and y are random vectors. As a result, the different

topologies L8pΩ,F ,Pq, L1pΩ,F ,Pq, L0pΩ,F ,Pq, etc. on the set of all Rd-valued random variables X :

ΩÑ Rd are isomorphic. We will refer to this topology simply as LppΩ,F ,Pq for some p P p1,8q, in order

to make clear when we are referring to the dual space LqpΩ,F ,Pqwhere 1
p`

1
q “ 1. For ease of notation, we

will denote these spaces LppF ;Rdq and LqpF ;Rdq. For the sake of notation, we will denote the components

of a vector x P RdˆN by xipωq for ω PΩ, 1ď iď N.

Again exploiting the finiteness of Ω, we know that any cone in LppFt ,Rdq generated by a finite set of

random vectors txiu
m
i“1 is generated by txi1Γ ju in RdˆN , where tΓ ju jPJ is the set of atoms of Ft .

Let pΠtq
T
t“0 be a bid-ask process. This generates a cone-valued process pKtq

T
t“0 where each Kt is an

associated solvency cone. We denote by LppFt ,Ktq the set

tX P LppFt ;Rdq : Xtpωq P Ktpωq for each ω PΩu.

for each ω PΩ.

We can now define the notion of a self-financing portfolio.

DEFINITION 5.2.5. An Rd-valued adapted process ϑ “ pϑtq
T
t“0 is called a self-financing portfolio pro-

cess if the increments

ξtpωq :“ ϑtpωq´ϑt´1pωq

belong to the cone´Ktpωq of portfolios available at price zero, for all time t “ 0, . . . ,T . We also put ϑ´1“ 0

by convention.

For each t “ 0, . . . ,T , we denote by At the convex cone in LppFt ;Rdq formed by the random variables

ϑt , where ϑ “ pϑiq
T
i“0 runs through the self-financing portfolio processes. We always assume that the initial

portfolio ϑ0 is deterministic. AT may be then interpreted as the set of positions available at time T from an

initial endowment 0 PRd . More precisely, if we denote by 1 P LppF0,Rdq the constant random variable that

assumes the value 1, we have the following result:

PROPOSITION 5.2.6. For each t “ 1, ...,T ,

At “´K01´LppF1;K1q´ ¨ ¨ ¨´LppFt ;Ktq .
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PROOF. Assume x P At . Then x is a convex combination of random variables

x“
n
ÿ

j“1

λ
j
ϑ

j
t

where for each j, pϑ j
i q

T
i“0 is a self-financing portfolio and λ j ě 0. We rewrite x as

x“
n
ÿ

j“1

λ
j
´

ϑ
j

t ´ϑ
j

t´1`ϑ
j

t´1´ ...´ϑ
j

0 `ϑ
j

0

¯

.

Expanding this sum, each
řn

j“1 λ jpϑ
j

i ´ϑ
j

i´iq P ´KpΠiq since ´KpΠiq is a cone and ϑ
j

i ´ϑ
j

i´1 P ´KpΠiq

for every j. We have established that

At Ď´K01´LppF1;K1q´ ¨ ¨ ¨´LppFt ;Ktq .

The reverse containment follows by a symmetric argument and is omitted. �

Similarly, if one starts with an initial endowment x0 P Rd , then the collection of all random portfolios

available at time T is given by AT px0q “ x01`AT . Explicitly, we have

(5.1) AT px0q “ x01´K01´LppF1;K1q´ ¨ ¨ ¨´LppFT ;KT q ,

with convention AT p0q “ AT .

Another important concept in a financial market model is the concept of arbitrage. In the conic market

model framework, the bid-ask process pΠtq
T
t“0 is said to satisfy the no arbitrage property if

(5.2) AT XLppFT ;Rd
`q “ t0u .

We will assume that our market model satisfies the no arbitrage property.

In classical financial market models, no arbitrage is intimately connected to the existence of an equiva-

lent martingale measure. The corresponding notion in the conic market model is a consistent pricing process.

DEFINITION 5.2.7. An adapted Rd
`-valued process pZtq

T
t“0 is called a consistent pricing process for the

bid-ask process pΠtq
T
t“0 if Z is martingale and Ztpωq lies in Ktpωq

`zt0u for each t “ 0, . . . ,T .

The following extension of the Fundamental Theorem on Asset Pricing, due to Kabanov and Stricker,

[KS01], establishes the connection between no arbitrage and consistent pricing processes.
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THEOREM 5.2.8. Let Ω be finite. The bid-ask process pΠtq
T
t“0 satisfies the no arbitrage condition if and

only if there is a consistent pricing system Z “ pZtq
T
t“0 for pΠtq

T
t“0.

This theorem is a fundamental component in the proof of our main duality result, Theorem 5.5.2.

We will make use of this result in the form of the following lemma

LEMMA 5.2.9. A bid-ask process satisfies the no arbitrage condition if and only if

p´A`T qX intpLqpFT ,Rd
`qq ‰H.

PROOF. For the forward direction, assume a bid-ask process satisfies the no arbitrage condition. Then

AT XLppFT ,Rd
`q “ t0u.

Since Ω is finite, AT is the sum of finitely generated closed convex cones, so it is a finitely generated convex

cone, and hence closed. Let C :“ convptepωqi,1 ď i ď d,ω P Ωuq, where each epωqi is a unit vector in

RdˆN . Since C is the convex hull of a finite set of points in LppFT ,Rd
`q, it is compact. Obviously 0 RC. By

the separation theorem (in the case that one set is closed and the other compact) there is a nonzero z P Rn

that strictly separates C and AT . That is,

sup
xPAT

xz,xy ă inf
yPC
xz,yy.

C is compact, so the expression on the right-hand side of the inequality is finite. Since AT is a cone, the

left-hand side of the inequality must then be zero, so z P ´A`T . Furthermore, xz,yy ą 0 for each y P C,

so that xz,λyy ą 0 for all y P C and λ ‰ 0. Since C generates LppFT q, we have that xz,λyy ą 0 for all

y P LppFT ,Rd
`q with y‰ 0. It follows that

z P int
`

pLppFT ,Rd
`qq

`
˘

“ int
`

LqpFT ,Rd
`q
˘

.

For the reverse direction, assume that

p´A˚T qX intpLqpFT ,Rd
`qq ‰H.

102



5.2. PRELIMINARIES

Then there is a z such that

xz,xy ď 0 for x P AT and xz,yy ą 0 for y P Kzt0u.

This obviously implies that AT and Kzt0u are disjoint. �

5.2.2. Set Optimization. In this section, we review the components of set-valued optimization that

will be necessary to introduce the portfolio optimization problem. For a more detailed exposition of the

set-valued optimization framework and the corresponding duality theory, see [HHL`ng, Ham09, HL14].

We begin by constructing a suitable notion of “order” for sets. Let Z be a non-trivial real linear space.

Given a convex cone C Ĺ Z with 0 PC, we have a preordering of Z, denoted by ďC, which is defined as

z1 ďC z2 ðñ z2´ z1 PC

for any z1,z2 P Z. The following are equivalent to z1 ďC z2,

z1 ďC z2 ðñ z2´ z1 PC ðñ z2 P z1`C ðñ z1 P z2´C.

These last two expressions can be used to extendďC from Z to PpZq, the power set of Z. Given A,B PPpZq,

we define two possible extensions.

A ďC B ðñ BĎ A`C

A űC B ðñ AĎ B´C.

We use ` to denote Minkowski addition of sets, with set convention that A`H “ H` A “ H for all

A PPpZq.

In what follows we will exclusively discuss the relation ďC, which is appropriate for set-valued min-

imization. Each of the results we include has a corresponding result for űC in the maximization context,

which we omit. For further details see [HHL`ng].

In addition, we assume that Z is equipped with a Hausdorff, locally convex topology. We consider the

space

G pZ,Cq “ tAĎ Z : A“ clconvpA`Cqu
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where clconv is the closure of the convex hull. We abbreviate G pZ,Cq to G pCq, when Z is clear from the

context. We define an associative and commutative binary operation ‘ : G pCqˆG pCq Ñ G pCq by

A‘B“ clpA`Bq

Observe that in G pCq, the relation ďC reduces to containment. For any A,B P G pCq,

A ďC B ðñ AĎ B.

As shown in [Ham09], the pair pG pCq,Ěq is a complete lattice, meaning that Ě yields a partial order on

G pCq, and that each subset of G pCq has an infimum and supremum with respect to Ě in G pCq. Given

H‰A Ď G pCq, the infimal and supremal elements in G pCq are

(5.3) inf
pG pCq,Ěq

A “ clconv
ď

APA

A, sup
pG pCq,Ěq

A “
č

APA

A.

In order to preserve intuition, it is useful to recall how this framework relates to the familiar complete

lattice of the extended real numbers RYt˘8u with the ď order. The extended real-numbers translate into

the set-valued framework described above by using the ordering cone C “ R` and identifying each point

z P R with the set tzu`R` in pG pR,R`q,Ěq. Moreover, `8 and ´8 in the usual framework are replaced

byH and R, respectively, in the set-valued case.

Next, assume that X ,Y are two locally convex spaces, and that DĎ Y is a convex cone with 0 P D. Let

f : X Ñ G pCq and g : X Ñ G pDq be two set-valued functions. We consider optimization problems of the

form

min
xPX

f pxq subject to 0 P gpxq.

Where the minimum refers to the set-valued ordering previously discussed. In other words, we want to find

the set

inf
pG pCq,Ěq

t f pxq|x P X ,0 P gpxqu “ clconv
ď

t f pxq|x P X ,0 P gpxqu.

This is the minimum of our optimization problem.
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Extending the notion of a minimizer to the set-valued case is slightly more subtle. Given f : X Ñ G pCq

and M Ď X , we denote the set of all values of f on M by

f rMs “ t f pxq|x PMu.

The minimal elements of f rMs are defined by

Min f rMs :“ t f pxq| f pxq P f rMs and @ f pyq P f rMs with f pyq Ě f pxq, f pyq “ f pxqu.

Similarly, an element x is a minimizer of f on M if f pxq PMin f rMs.

In addition to a minimality condition, we also expect a solution to attain the infimum of a problem. We

say that the infimum of a problem

min f pxq subject to x P X

is attained at a set X Ď X if

inf
xPX

f pxq “ inf
xPX

f pXq.

As per the definition of infimum in (5.3), this means that

clconv
ď

xPX

f pxq “ clconv
ď

xPX

f pxq.

Alternatively, we say that the set X is an infimizer of the problem. Combining both of these requirements,

we arrive at an appropriate notion of a solution to a set optimization problem.

DEFINITION 5.2.10. Given f : X Ñ G pCq, an infimizer X Ď X is called a solution to the problem

min f pxq subject to x P X

if X ĎMin f rXs. Similarly, we call an infimizer X Ď X a full solution to the problem if X “Min f rXs.

In the typical optimization framework of the extended real numbers, the notion of an infimizer and

minimizer coincide because the search for infimizers can be reduced to singleton sets. In the set-optimization

setting, this is not the case, which warrants the above definition. The infimum of a problem is, in general,

the closure of the union of function values, which is not necessarily a function value itself. Further details

and a more in depth review of this issue can be found in [HL14].
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We next review some important convex-analytic type properties for set-valued functions.

DEFINITION 5.2.11. A set valued function f : X Ñ pG pCq,Ěq is said to be convex if for every pair x1,

x2 P X and every t P p0,1q

f ptx1`p1´ tqx2q Ě t f px1q`p1´ tq f px2q.

It is straight-forward to show that convexity of f is equivalent to convexity of the graph of f , where

graph f :“ tpx,zq P XˆZ|z P f pxqu Ď XˆZ.

We end this section with the following results, found in [HL14], which use convexity to simplify the

computation of infimums and Minkowski sums.

PROPOSITION 5.2.12. If f : X ÑPpZq is convex and

f pxq “ clp f pxq`Cq,

then f pxq P G pCq

PROOF. We want to show that for each x P X , f pxq “ clconvp f pxq`Cq, given that f is convex and

f pxq “ clp f pxq`Cq. It suffices to show that f pxq`C is convex, which will follow if f pxq is convex because

the Minkowksi sum of two convex sets is convex [Roc97]. But f pxq is convex for every x, since for arbitrary

z1,z2 P f pxq, t P p0,1q, we have

tz1`p1´ tqz2 P t f pxq`p1´ tq f pxq Ď f ptx`p1´ tqxq “ f pxq

where the last containment comes from the convexity of f . �

PROPOSITION 5.2.13. If f : X Ñ G pCq and g : X Ñ G pDq are convex, then

inf
pG pCq,Ďq

t f pxq|x P X ,0 P gpxqu “ cl
ď

t f pxq|x P X ,0 P gpxqu,

so that the convex hull can be removed from the definition of infimum.

PROOF. We want to show that
ď

t f pxq|x P X ,0 P gpxqu
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is convex. We begin by showing that tx P X |0 P gpxqu is convex. If 0 is contained in both gpx1q and gpx2q,

then for any t P p0,1q,

0 P tgpx1q`p1´ tqgpx2q Ď gptx1`p1´ tqx2q,

so that tx P X |0 P gpxqu is convex.

Next, assume that z1,z2 P
Ť

t f pxq|x P X ,0 P gpxqu. Then there are x1,x2 such that z1 P f px1q and z2 P

f px2q, with 0 P gpx1qXgpx2q. Thus for any t P p0,1q

tz1`p1´ tqz2 P t f px1q`p1´ tq f px2q Ď f ptx1`p1´ tqx2q.

Our initial claim gives that 0 P gptx1`p1´ tqx2q, so that
Ť

t f pxq|x P X ,0 P gpxq is convex and we have our

result. �

5.3. Problem Formulation

In this section, we explicitly formulate the multi-period utility maximization problem.

We consider a function Upxq : Rd Ñ Rd which models the utility of an agent’s assets x at the terminal

time T . We make the following assumptions on U .

(1) U is a vector valued component-wise function

Upxq “ pu1px1q,u2px2q, ...,udpxdqq, x“ px1,x2, ...,xdq P Rd

where each ui : RÑR. Note each ui is real-valued, as opposed to extended real valued. Thus U is

defined even in the case of negative wealth.

(2) Each ui is strictly concave, strictly increasing, and differentiable.

(3) Marginal utility tends to zero when wealth tends to infinity, so that

lim
xiÑ8

u1ipxiq “ 0.

(4) ui satisfies the Inada condition, so that the marginal utility tends to infinity when xi tends to the

infimum of the domain of ui. In other words,

lim
xiÑ´8

u1ipxq “ 8.
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These assumptions are standard in the context of utility maximization problems [DS06].

Let the ordering cone C “ Rd
`. We define the objective function F : LppFT ,Rdq Ñ G pCq to be the

expected utility of a random portfolio at terminal time.

Fpxq “ Er´Upxqs`Rd
`.

The expectation is taken with respect to the probability space pΩ,FT ,Pq.

Note that in the definition of F , we have recast the utility maximization problem into a minimiza-

tion framework. This is to establish more consistency with the set-valued optimization tools developed

in [HHL`ng], [Ham09], and [HL14], which cast their results in the traditional minimization framework of

convex analysis. Of course, one could consider the maximization form of the problem without any loss of

generality.

The portfolio optimization problem then takes the form

minimize Fpxq

subject to the constraint that the portfolio x is the terminal result of a self-financing portfolio with initial

endowment x0. In other words, we have the problem

minimize Fpxq(P)

subject to x P AT px0q

5.4. Duality in Set Optimization

In this section we recall the necessary results from set-valued duality [HL14] which we will use to prove

our main result. (P).

Set-valued Lagrange duality follows a similar theme to the real-valued case. Given convex cones C Ď Z

and D Ď Y , and convex functions f : X Ñ G pCq ĎPpZq and g : X Ñ G pDq ĎPpY q, we are interested in

the primal problem

minimize f pxq subject to 0 P gpxq.(Pe)
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i.e. we search for a set p̄Ď Z where

p :“ inf
pG pCq,Ěq

t f pxq|x P X ,0 P gpxqu “ clconv
ď

t f pxq|x P X ,0 P gpxqu.

The first step is to define a set-valued Lagrangian function which recovers the objective, in the sense that the

function f pxq is the supremum of the Lagrangian over the set of dual variables.

For y˚ P Y˚ and z˚ P Z˚, where Y˚ and Z˚ denote the topological dual spaces of Y and Z, respectively,

define the set-valued function SpY˚,Z˚q : Y ÑPpZq by

Spy˚,z˚qpyq “ tz P Z| y˚pyq ď z˚pzqu.

We use these functions to formulate a Lagrangian function.

DEFINITION 5.4.1. We define the Lagrangian l : XˆY˚ˆC`zt0u Ñ G pCq of the problem (Pe) by

lpx,y˚,z˚q “ f pxq‘
ď

yPgpxq

Spy˚,z˚qpyq “ f pxq‘ inftSpy˚,z˚qpyq|y P gpxqu.

We can recover the primal objective from the Lagrangian.

THEOREM 5.4.2. [HL14][Prop 2.1] If f pxq ‰ Z for each x P X, then

sup
py˚,z˚qPY˚ˆC`zt0u

lpx,y˚,z˚q “
č

py˚,z˚qPY˚ˆC`zt0u

lpx,y˚,z˚q “

$

&

%

f pxq : 0 P gpxq

H : otherwise

Under the condition in Theorem 5.4.2, we can formulate the problem (Pe) as

inf
xPX

sup
py˚,z˚qPY˚ˆC`zt0u

lpx,y˚,z˚q.

We define the dual problem

sup
py˚,z˚qPY˚ˆC`zt0u

inf
xPX

lpx,y˚,z˚q.(De)

We denote by h : Y˚ˆC`zt0u Ñ GpCq the dual objective

(5.4) hpy˚,z˚q :“ inf
xPX

lpx,y˚,z˚q
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and define d to be the set

d :“ sup
py˚,z˚qPY˚ˆC`zt0u

hpy˚,z˚q.

We have the following weak duality results for the problems (Pe) and (De).

PROPOSITION 5.4.3. [HL14, Prop 6.2] Weak duality always holds for the problems (Pe) and (De).

That is,

d “ sup
 

hpy˚,z˚q|y˚ P Y˚,z˚ PC`zt0u
(

Ě inft f pxq|x P X ,0 P gpxqu “ p.

Strong duality, on the other hand, requires a constraint qualification. The problem (Pe) is said to satisfy

the Slater condition if

Dx P dom f : gpxqX intp´Dq ‰H.

Slater’s condition is sufficient for strong duality between (Pe) and (De).

THEOREM 5.4.4. [HL14, Theorem 6.1] Assume p‰ Z. If f : X Ñ G pCq and g : X Ñ G pDq are convex

and the Slater condition for problem (Pe) is satisfied, then strong duality holds for (Pe). That is,

p“ inft f pxq|0 P gpxqu “ sup
 

hpy˚,z˚q|y˚ P Y˚,z˚ PC`zt0u
(

“ d.

Lastly, we introduce the notion of a set-valued Fenchel conjugate.

DEFINITION 5.4.5. The (negative) Fenchel conjugate of a function f : X ÑPpZq is the function´ f ˚ :

X˚ˆpC`zt0uq Ñ G pCq defined by

´ f ˚px˚,z˚q “ cl
ď

xPX

“

f pxq`Spx˚,z˚qp´xq
‰

.

Motivation for this definition and further details about the nature of the set-valued Fenchel conjugate

can be found in [Ham09].

5.5. Duality in Portfolio Optimization

In this section we apply the tools introduced in the previous section for dualizing set-valued optimization

problems to the portfolio optimization problem (P).

We begin by showing that (P) is well-defined.
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LEMMA 5.5.1. The functions F : LPpFT ,RdqÑG pRd ,Rd
`q, Fpxq“Er´Upxqs`Rd

` and g : LPpFT ,RdqÑ

G pLppFT ,Rdq,LppFT ,Rd
`qq, gpxq “ x´AT px0q are well-defined and convex.

PROOF. We begin with the function F . F clearly maps to G pRd ,Rd
`q because

Fpxq`Rd
` “ Er´Upxqs`Rd

`

is a polyhedral convex cone, and hence is a closed convex cone. We claim that F is also a convex map. More

precisely, let x1,x2 P Rd , and t P p0,1q. Then

t f px1q`p1´ tq f px2q

“ t
`

Er´Upx1qs`R`d
˘

`p1´ tq
`

Er´Upx2qs`R`d
˘

“ E rt p´Upx1qq`p1´ tqp´Upx2qqs`R`d .

By the assumptions on our objective function U , for each 1ď iď d, ´ui is convex, so that

t p´uipx1pωqqq`p1´ tqp´uipx2pωqqq ě ´ui ptx1pωq`p1´ tqx2pωqq

for each ω PΩ. It follows that

E rt p´Upx1qq`p1´ tqp´Upx2qqs`R`d Ď E r´Uptx1`p1´ tqx2qs`R`d .

We conclude that F is convex by Definition 5.2.11.

Next we consider the function gpxq. We need to show that in LppFT ,Rdq,

clconvpx´AT px0q`LppFT ,Rd
`qq “ x´AT px0q .

Observe that ´AT px0q and LppFT ,Rd
`q are convex, so their sum is as well [Roc97, Ch. 3] and the convex

hull on the left side can be dropped. In addition, since KT is a solvency cone, the cone LppFT ,Rd
`q is

contained in LppFT ,KT q, thus x´ AT px0q ` LppFT ,Rd
`q “ x´ AT px0q. Hence, it remains to show that

x´ AT px0q is closed in LppFT ,Rdq. By the assumptions (5.2.4), Ω is finite, and each element in Ω “

ω1, . . . ,ωN has positive probability. The space of d-dimensional random variables can then be associated

with Euclidean space of dimension dˆN and inner product Exx,yy. Note that if G “ conepξ1, ...,ξmq is

a random convex cone generated by m Ft-measurable random variables, then LppG,Ftq is the polyhedral
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convex cone generated by ξiIΓ j where tΓ ju jPJ are the atoms of Ft . We have established that each of the

LppFt ,Ktq is finitely generated, so by the Farkas-Minkowski-Weyl Theorem, each is polyhedral. Since the

finite sum of polyhedral cones is a polyhedral cone, we conclude that x´AT px0q is a polyhedral cone, and

hence is closed. �

Note that, in the notation of the previous section, we have established that X “ LppFT ,Rdq, Y “

LppFT ,Rdq, Z “ Rd , C “ Rd
`, and D“ LppFT ,Rd

`q.

We are now ready to state our main result, which is a formulation of the dual problem to the portfo-

lio optimization problem (P). We then examine the relationship between the primal and dual problems.

Namely, we establish that strong duality holds.

THEOREM 5.5.2. The dual problem to (P) is the problem

sup
py˚,z˚qP´AT px0q`ˆRd

`zt0u
hpy˚,z˚q(D)

where h : LqpFT ,RdqˆRd
`zt0u Ñ G pRd

`q is defined as

(5.5) hpy˚,z˚q “

$

&

%

tz P Rd | infxPLppFT ,Rdq z
˚pEr´Upxqsq` y˚pxq ď z˚pzqu if y˚ P p´AT px0qq

`

Rd otherwise.

When y˚ P ´AT px0q
` and no components of z˚ are zero, we can write the function hpy˚,z˚q as

(5.6)

#

z P Rd |E

«

d
ÿ

i“1

z˚i 1u˚i

ˆ

y˚i
z˚i 1

˙

ff

ď z˚z

+

where u˚i denotes the concave conjugate of ui [Roc97].

To prove this result, we require the following lemma

LEMMA 5.5.3. The lagrangian function for the problem (P) is l : LppFT ,RdqˆLqpFT ,RdqˆpRd
`zt0uqÑ

G pRd ,Rd
`q defined by

(5.7) lpx,y˚,z˚q “

$

&

%

tz P Rd |z˚pEr´Upxqsq` y˚pxq ď z˚pzqu if y˚ P ´AT px0q
`

Rd otherwise.
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PROOF. Note that the positive dual cones of LppFT ,Rd
`q and Rd

` are LqpFT ,Rd
`q and Rd

` respectively.

Hence the Lagrangian function l has domain on LppFT ,RdqˆLqpFT ,Rdqˆ pRd
`zt0uq, as per Definition

5.4.1.

Also from Definition 5.4.1, we see that

lpx,y˚,z˚q “ Fpxq‘
ď

yPx´AT px0q

Sy˚,z˚pyq(5.8)

The union on the right side can be written explicitly

ď

yPx´AT px0q

tz P Rd |y˚pyq ď z˚pzqu “ tz P Rd | inf
yPx´AT px0q

y˚pyq ď z˚pzqu

“ tz P Rd | inf
yP´AT px0q

y˚pyq` y˚pxq ď z˚pzqu .

Note that AT px0q “ x0´K0´LppF1,K1q´ ¨ ¨ ¨´LppFT ,KT q is a cone in LppFT ,KT q. The infimum on the

right side is the support function on a cone [Roc97], and can be written

inf
yP´AT px0q

y˚pyq “ ´δ´AT px0q`
py˚q ,

where δ´AT px0q`
py˚q is the indicator function on ´AT px0q

`, equal 0 if y˚ belongs to ´A`T and8 otherwise.

Hence, identity (5.8) becomes

lpx,y˚,z˚q “ Er´Upxqs`tz P Rd | ´δ´AT px0q`
py˚q` y˚pxq ď z˚pzqu‘Rd

`

“ tz P Rd | ´δ´AT px0q`
py˚q` z˚pEr´Upxqsq` y˚pxq ď z˚pzqu‘Rd

`

Since z˚ P Rd
`zt0u,

tz P Rd |aď z˚pzqu‘Rd
` “ tz P Rd |aď z˚pzqu

for any constant a in RYt´8u. It follows that

lpx,y˚,z˚q “ tz P Rd | ´δp´AT px0qq`
py˚q` z˚pEr´Upxqsq` y˚pxq ď z˚pzqu

which deduces identity (5.7). �

113



5.5. DUALITY IN PORTFOLIO OPTIMIZATION

Recall that the coordinate functions uipxq of the utility function Upxq are real-valued for each x P Rd .

Combining this with the fact that Ω is finite (and hence the expectation in the problem formulation is finite)

yields the following proposition.

PROPOSITION 5.5.4. The objective function of (P) can be recovered from the lagrangian (5.7). That

is,

sup
py˚,z˚qPLqpFT ,RdqˆRd

`zt0u
lpx,y˚,z˚q “

$

&

%

Er´Upxqs`Rd
` : 0 P x´AT px0q

H : otherwise

PROOF. This follows immediately from the above comments and an application of Theorem 5.4.2. �

Using Lemma 5.5.3, we complete the proof of Theorem 5.5.2.

PROOF. From the definition of the dual objective (5.4)

hpy˚,z˚q “ inf
xPLppFT ,Rdq

lpx,y˚,z˚q.

If y˚ R ´AT px0q
`, this is Rd . In the case that y˚ P ´AT px0q

`

inf
xPLppFT ,Rdq

lpx,y˚,z˚q

“ inf
xPLppFT ,Rdq

tz P Rd | ´δp´AT px0qq`
py˚q` z˚pEr´Upxqsq` y˚pxq ď z˚pzqu

“ cl
ď

xPLppFT ,Rdq

tz|y˚pxq` z˚pEr´Upxqsq ď z˚pzqu

“ cltz| inf
xPLppFT ,Rdq

z˚pEr´Upxqsq` y˚pxq ď z˚pzqu.

The infimum in the expression above is the Fenchel conjugate of a sum of convex functions. Since the

Fenchel conjugate of a proper convex function is proper and lower semicontinuous [RWW10, Theorem

11.1], this infimum is attained, so we can drop the closure from the expression. Thus,

“ tz| inf
xPLppFT ,Rdq

z˚pEr´Upxqsq` y˚pxq ď z˚pzqu

and the result is proven.
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The final part of the theorem, in which we reformulate the dual objective in terms of concave conjugates,

follows because

inf
xPLppFT ,Rdq

z˚pEr´Upxqsq` y˚pxq

“ inf
xPLppFT ,Rdq

Erxz˚1,´Upxqys` y˚pxq

“ inf
xPLppFT ,Rdq

Erxz˚1,´Upxqy`xy˚,xys

“ inf
xPLppFT ,Rdq

Er
d
ÿ

i“1

´z˚i uipxiq` y˚i xis

“ inf
xPLppFT ,Rdq

ÿ

ωPΩ

Prωs

˜

d
ÿ

i“1

´z˚i uipxipωqq` y˚i pωqxipωq

¸

Exploiting separability over the sum gives

“
ÿ

ωPΩ

Prωs

˜

d
ÿ

i“1

inf
xipωqPR

´z˚i uipxipωqq` y˚i pωqxipωq

¸

“ E

«

d
ÿ

i“1

inf
xiPLppF ,Rq

y˚i pxiq´ z˚i 1uipxiq

ff

from which the result follows immediately. More details can be found in the next section, where we perform

the details of this calculation more slowly with an example problem for context.

�

In the language of set-valued Fenchel conjugates, we have the following easy corollary.

COROLLARY 5.5.5. The objective function of the dual problem is

(5.9) hpy˚,z˚q “

$

&

%

´F˚p´y˚,z˚q if y˚ P ´AT px0q
`

Rd otherwise.

where F˚ is the Fenchel conjugate of F.
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PROOF. We compute the Fenchel conjugate of F . For every y˚ P LqpFT ,Rdq, z˚ P Rd
`zt0u, it follows

from Definition 5.4.5 that

´F˚p´y˚,z˚q “ cl
ď

xPX

`

Fpxq`Sp´y˚,z˚qp´xq
˘

“ cl
ď

xPLppFT ,Rdq

`

Er´Upxqs`Rd
``tz|´ y˚p´xq ď z˚pzqu

˘

“ cl
ď

xPLppFT ,Rdq

 

z`Er´Upxqs`Rd
`|´ y˚p´xq ď z˚pzq

(

(5.10)

(5.11)

Since z˚ P Rd
`zt0u, z˚prq ě 0 for each r P Rd

`, (5.10) becomes

“ cl
ď

xPLppFT ,Rdq

tz|y˚pxq ď z˚pz´Er´Upxqsu

“ cl
"

z| inf
xPLppFT ,Rdq

y˚pxq` z˚pEr´Upxqsq ď z˚pzq
*

“

"

z| inf
xPLppFT ,Rdq

y˚pxq` z˚pEr´Upxqsq ď z˚pzq
*

.

This agrees with (5.5). �

THEOREM 5.5.6. Strong duality holds between the problems (P) and (D). That is,

p“ infFpxq “ suppy˚,z˚q “ d

subject to x P AT px0q subject to y˚ P ´AT px0q
`

z˚ P Rd
`zt0u.

PROOF. By Theorem 5.4.4 and Lemma 5.5.1, it suffices to show that p“ infxPAT px0qFpxq ‰Rd and that

Slater’s condition is satisfied.

For the first part, we use weak duality. By Proposition 5.4.3, p Ď d, so it suffices to show that d ‰

Rd . Lemma 5.2.9 give that ´AT px0q
`X intpLPpFT ,Rd

`q is nonempty, so there exists ỹ˚ P ´AT px0q
` with
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ỹ˚pωqi ă 0 for each ω PΩ, 1ď iď d. Then

pĎ sup
py˚,z˚qP´AT px0q`ˆz˚PRd

`zt0u
hpy˚,z˚q Ď tz| inf

xPLppFT ,Rdq
1dpEr´Upxqsq` y˚0 pxq ď 1dpzqu.

The last containment follows by taking y˚ “ ỹ˚ and z˚ “ 1d , the d-dimensional vector consisting of all ones.

So it suffices to show that

inf
xPLPpFT ,Rdq

1dpEr´Upxqsq´ ỹ˚pxq ą ´8,

which is equivalent to

sup
xPLPpFT ,Rdq

ỹ˚pxq´1dpEr´Upxqsq ă 8.

Note that the left hand side of this expression is simply the Fenchel-Conjugate of the function 1dpEr´Upxqsq.

We have

sup
xPLppFT ,Rdq

ỹ˚pxq´1dpEr´Upxqsq

“ sup
xPLppFT ,Rdq

Erxỹ˚pωq,xpωqys´Erx1,´Upxpωqqys

“ sup
xPLppFT ,Rdq

ωn
ÿ

ω“ω1

Prωs

«

d
ÿ

i“1

ỹ˚i pωqxipωq´p´uipxipωqqq

ff

“

d
ÿ

i“1

ωn
ÿ

ω“ω1

Prωs

«

sup
xipωq

ỹ˚i pωq´p´uipxipωqqq

ff

.(5.12)

The first equality follows from the definition of the inner product in LppFT ,Rdq. The second and third come

from the finiteness of Ω and the separability of the expression, respectively.

Since each u1i is continuous with range p´8,0q, and each ỹ˚i pωq ă 0, the intermediate value theorem

gives that, for each ω PΩ, 1ď iď d, there exists x̃ipωq such that u1ipx̃ipωqq “ ỹ˚i pωq. By [Roc97, Theorem

23.5],

sup
xpωqi

ỹ˚i pωq´p´uipx̃ipωqqq

achieves its supremal value at x̃ipωq. It follows that (5.12) is finite, from which we conclude that p‰ Rd .

Next we show that Slater’s condition is satisfied. We want to find an x P domF such that x´AT px0qX

intp´LppFT ,Rd
`qq ‰ H. Recall from the problem formulation that domF “ LppFT ,Rdq, so the first part
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of Slater’s condition is not a restriction. Note that since

AT px0q “ x01´K01´LppF1,K1q´ ...´LppFT ,KT q

where each Kt is a solvency cone, x01 P AT px0q. Then, choose x such that xipωq ă px0qi for each component

1 ď i ď d and for all ω P Ω. We have that x´ x01 P x´AT px0q and also x´ x01 P intp´LppFT ,Rd
`qq, so

Slater’s condition is satisfied. �

5.6. An Example

In this final section, we explore an example which we hope will help to illustrate the theoretical results

from previous sections.

We consider a market with 2 assets and 3 time steps, so that the time step t ranges from 0 to 3. The

probability space Ω “
Ś3

i“1t´1,0,1u, with the probability measure P defined uniformly on this set. In

other words, the possible outcomes ω are defined as a tuple ω “ pω1,ω2,ω3q, ω1,ω2,ω3 P t´1,0,1u. From

the decision maker’s perspective, we have that at each time step t the random variable taking values ωt

becomes known. Thus the filtration ppFtq
3
t“0q is defined by Ft “ σpωi|iďtq, the sigma algebra generated by

these random variables. We also take F “F3 “ σpω1,ω2,ω3q, the sigma-algebra of full information.

The bid-ask process pΠtq
T
t“0 is defined as follows:

Πtpωq “

»

–

1 1

8 ¨2
ř

iďt ωi 1

fi

fl .

This is obviously pFtq
3
t“0 adapted, and one can also easily check that the properties of bid-ask matrix are

satisfied for each realization. The solvency cones generated by this process are

Ktpωq “ conetp1,´1q,p´1,8 ¨2
ř

iďt ωiqu “ tpx,yq|x` yě 0,8 ¨2
ř

iďt ωix` yě 0u.

Figure (5.1) illustrates these cones for various times and realizations of ω .

We define our vector-valued objective function to be

Upxq “ p´e´x1 ,´e´x2qT
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FIGURE 5.1. The solvency cones Ktpωq for various t and ω.

where x “ px1,x2q
T is the quantity of physical assets we have at terminal time. Our set-valued objective

function to be minimized is then

Fpxq “ E
”

`

e´x1 ,e´x2
˘T
ı

`R2
`.

We assume that our initial endowment is p0,0qT . The set of self-financing portfolios is

A3 “´K01´Lppσpω1q;K1q´Lppσpω1,ω2q,K2q´Lppσpω1,ω2,ω3q,K3q

where Ktpωq are given as above.

We can then formulate the primal portfolio optimization problem as

minimize E
”

`

e´x1 ,e´x2
˘T
ı

`R2
`(Pex)

subject to x P A3

According to theorem (5.5.2), the dual problem is then

suptz| inf
xPLPpR2,F3q

z˚pE
”

p´ex1 ,´ex2q
T
ı

q` y˚pxq ď z˚pzqu(Dex)

subject to y˚ P ´A`3

z˚ P R2
`zt0u
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First, we investigate the nature of the set ´A`3 . From [Roc97][Cor 16.4.2],

´A`3 “ pK01`LppF1,K1q`LppF2,K2q`LppF3,K3qq
`

“

3
č

i“0

pLppFi,Kiqq
`.

In other words, y˚ P LqpF ,R2q is in ´A`3 when ypωq P Ktpωq
` for each t “ 0, ...,3.

We can explicitly compute the cones Ktpωq
`. We have that

Ktpωq “ cone

¨

˝conv

$

&

%

¨

˝

1

´1

˛

‚,

¨

˝

´1

8 ¨2
ř

iďt ωi

˛

‚

,

.

-

˛

‚

`

.

Hence the dual cone is

Ktpωq
` “ cone

¨

˝conv

$

&

%

¨

˝

´1

´1

˛

‚,

¨

˝

´8 ¨2
ř

iďt ωi

´1

˛

‚

,

.

-

˛

‚.

Next we take the intersection of these cones to form A`3 pωq. For a fixed ω , let spωq “min j“0,1,2,3
ř j

i“1 ωi.

Then

´A3pωq
` “ cone

¨

˝

¨

˝

´1

´1

˛

‚,

¨

˝

´8 ¨2spωq

´1

˛

‚

˛

‚.

Figure (5.2) illustrates K`t pωq for various times and realizations of ω .

Now we work with to simplify the dual problem (Dex). The objective function is

hpy˚,z˚q “
"

z| inf
xPLppF ,R2q

z˚pE
“

pe´x1 ,e´x2qT
‰

q` y˚pxq ď z˚pzq
*

“

"

z| inf
xPLppF ,R2q

E
“

z˚11e´x1 ` z˚21e´x2
‰

` y˚pxq ď z˚pzq
*

Recall that the nature of linear functionals y˚ P LqpF ,Rdq is y˚pxq “Exy˚,xy. Hence the objective becomes

"

z| inf
xPLppF ,R2q

E
“

z˚11e´x1 ` z˚21e´x2 ` y˚1 x1` y˚2 x2
‰

ď z˚pzq
*

Using the fact that our probability space is finite, we expand the expectation
#

z| inf
xPLppF ,R2q

1
27

ÿ

ωPΩ

z˚1 e´x1pωq` z˚2 e´x2pωq` y˚1 pωqx1pωq` y˚2 pωqx2pωq ď z˚pzq

+
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FIGURE 5.2. The positive polar cones Ktpωq
` for various t and ω.

This infimum is separable over the xipωq variables. Hence,

“

#

z|
1

27

ÿ

ωPΩ

inf
x1pωqPR

tz˚1 e´x1pωq` y˚1 pωqx1pωqu` inf
x2pωqPR

z˚2 e´x2pωq` y˚2 pωqx2pωq ď z˚pzq

+

We can compute each of these infimums explicitly. Note that

inf
x1pωqPR

z˚1 e´x1pωq` y˚1 pωqx1pωq “ ´ f ˚p´y˚1 pωqq

where f pxq “ z˚1 e´x and f ˚ denotes the convex conjugate of f . Recall that for g : R Ñ R and a P R

(See [Roc97])

pagp¨qq˚px˚q “ ag˚px˚{aq

pgpa¨qq˚px˚q “ g˚px˚{aq

g˚px˚q “

$

’

’

’

&

’

’

’

%

x˚ lnpx˚q´ x˚ if x˚ ą 0

0 if x˚ “ 0

8 otherwise

when gpxq “ ex.
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Hence the objective function becomes
#

z|
1

27

ÿ

ωPΩ

y˚1 pωq´ y˚1 pωq ln
ˆ

y1pωq
˚

z˚1

˙

` y˚2 pωq´ y˚2 pωq ln
ˆ

y˚2 pωq
z˚2

˙

ď z˚pzq

+

when y1pωq,y2pωq,z1,z2 ‰ 0.

Therefore, when y1pωq,y2pωq,z1,z2 ‰ 0, we have the following formulation of the dual problem: find

the supremum of
#

pz1,z2q
T

ˇ

ˇ

ˇ

ˇ

ˇ

1
27

ÿ

ωPΩ

y˚1 pωq´ y˚1 pωq ln
ˆ

y˚1 pωq
z˚1

˙

` y˚2 pωq´ y˚2 pωq ln
ˆ

y˚2 pωq
z˚2

˙

ď z˚1 z1` z˚2 z2

+

subject to

¨

˝

z˚1

z˚2

˛

‚P R2z

$

&

%

¨

˝

0

0

˛

‚

,

.

-

¨

˝

y˚1 pωq

y˚2 pωq

˛

‚P A3pωq @ω PΩ

When either z1 or z2 equals 0, we only consider x2 or x1, respectively, in our objective because the other

terms vanish. Likewise, the case that y1pωq “ 0 eliminates the expressions with y1pωq in the objective,

because of the conjugation result on the previous page. The case that y2pωq “ 0 is symmetric.

122



Bibliography

[ABP13] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, Sparse/robust estimation and kalman smoothing with nonsmooth log-

concave densities: Modeling, computation, and theory, The Journal of Machine Learning Research 14 (2013), no. 1,

2689–2728.

[AT16] T. B. Arnold and R. J. Tibshirani, Efficient implementations of the generalized lasso dual path algorithm, Journal of

Computational and Graphical Statistics 25 (2016), no. 1, 1–27.

[AW94] H. Attouch and R. J.-B. Wets, Epigraphical processes: laws of large numbers for random lsc functions, Dép. des

Sciences Mathématiques, 1994.

[BB05] M. Bagnoli and T. Bergstrom, Log-concave probability and its applications, Economic theory 26 (2005), no. 2, 445–

469.

[BD18] R. Bassett and J. Deride, Maximum a posteriori estimators as a limit of bayes estimators, Mathematical Programming

(2018).

[Bee93] G. Beer, Topologies on closed and closed convex sets, Mathematics and Its Applications, Springer, 1993.

[Ber09] D. P. Bertsekas, Convex optimization theory, Athena Scientific Belmont, 2009.

[Ber14] , Constrained optimization and lagrange multiplier methods, Academic press, 2014.

[BL16] R. Bassett and K. Le, Multistage portfolio optimization: A duality result in conic market models, arXiv preprint

arXiv:1601.00712 (2016).
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