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1. Introduction

Let n be a positive integer. We denote by F2n the finite field with 2n elements, by F∗

2n the multiplicative group of
on-zero elements of F2n and by F2n [X] the ring of polynomials in one variable X with coefficients in F2n . Let F be a
unction from F2n to itself. We can uniquely express F as a polynomial in F2n [X] of degree at most 2n

− 1 thanks to
agrange’s interpolation formula. A polynomial F ∈ F2n [X] is a permutation polynomial of F2n if the mapping X ↦→ F (X)
s a permutation of F2n . It may be noted that functions over finite fields are very important objects due to their wide
ange of applications in coding theory and cryptography. For example, in cryptography, these functions are often used in
esigning what are known as substitution boxes (S-boxes) in modern block ciphers.
One of the most effective attacks on block ciphers is differential cryptanalysis, which was first introduced by Biham

nd Shamir [1]. The resistance of a function against differential attack is measured in terms of its differential uniformity
a notion introduced by Nyberg [17]. For any function F : F2n → F2n and for any a ∈ F2n , the derivative of F in the

direction a is defined as DF (X, a) := F (X + a) + F (X) for all X ∈ F2n . The Difference Distribution Table (DDT) entry of F
t a point (a, b) ∈ F2n × F2n , denoted by ∆F (a, b), is the number of solutions X ∈ F2n of the equation DF (X, a) = b. The
ifferential uniformity of F , denoted by ∆F , is given by ∆F := max{∆F (a, b) : a ∈ F∗

2n , b ∈ F2n}. When ∆F = 1, 2, F is
a perfect nonlinear (PN) function, respectively, an almost perfect nonlinear (APN) function. It should be noted that there
are no PN functions over finite fields with even characteristic.

The boomerang attack on block ciphers was proposed by Wagner [21]. In Eurocrypt 2018, Cid et al. [9] introduced a
systematic approach known as the Boomerang Connectivity Table (BCT), to analyze the boomerang style attack. Boura
and Canteaut [2] further studied BCT and coined the term ‘‘boomerang uniformity’’, which is essentially the maximum
value of nontrivial entries of the BCT, to quantify the resistance of a function against the boomerang attack. For effectively
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computing the entries in the BCT, Li et al. [15] proposed an equivalent formulation as described below. For any a, b ∈ F2n ,
the Boomerang Connectivity Table (BCT) entry at (a, b) ∈ F2n × F2n , denoted as BF (a, b), is the number of solutions in
F2n × F2n of the following system{

F (X) + F (Y ) = b
F (X + a) + F (Y + a) = b.

The boomerang uniformity of F is defined as BF := max{BF (a, b) | a, b ∈ F∗

2n}.
For any permutation F , Cid et al. [9, Lemma 1] showed that BF (a, b) ≥ ∆F (a, b) for all (a, b) ∈ F2n × F2n . It was later

proved to be valid for non-permutation functions by Mesnager et al. [16]. According to Cid et al. [9, Lemma 4], the first row
and first column are the only places where the BCT and DDT differ for APN permutations. APN permutations therefore offer
the most effective defense against differential and boomerang attacks. However, when n is even, the only known instance
of an APN permutation over F2n is due to Dillon et al. [3] over F26 . The existence of APN permutations over F2n , n ≥ 8 even,
is open and often referred to as the Big APN Problem. Thus, over F2n , the functions with low differential and boomerang
uniformity (particularly, the functions with differential and boomerang uniformity of four) are of great interest. As a
consequence of the inequality BF (a, b) ≥ ∆F (a, b) for all (a, b) ∈ F2n ×F2n , Cid et al. [9] (see also [16, Theorem 1]) showed
that for a permutation F , BF ≥ ∆F . This does not necessarily hold true for non-permutations as shown in [12]. This is
because DF (X, a) = b may have a solution corresponding to b = 0 when F is a non-permutation whereas such a solution
is not possible for permutations. Motivated by the work of Cid et al. [9], many functions with low boomerang uniformity
have been studied in the last couple of years (see, for example, [5,12,13,15,16,20,22], and the references therein). Hence,
the construction of functions (polynomials) with low differential and boomerang uniformities is important for designing
S-boxes of many block ciphers. For instance, the inverse function over F28 is used to design the S-box of the Advanced
Encryption Standard (AES), and it is a differentially 4-uniform and boomerang 6-uniform permutation over F28 . In this
paper, we study the boomerang uniformity of some classes of functions by finding the number of solutions to a system
of equations over finite fields. In fact, we provide upper bounds for their boomerang uniformity, and it turns out that
these bounds hold true even when these functions are permutations under certain conditions. We want to point out that
some of the perturbations we discuss here do have low boomerang uniformity. Ultimately, questions on differential and
boomerang uniformity reduce to solving some equations in finite fields, which are notoriously difficult, and very few
such allow general methods, most being resolved via ad hoc techniques, depending upon the shape of the function under
consideration.

We shall now give the structure of the paper. We first recall a definition and some results in Section 2. In Section 3, we
give general bounds for the boomerang uniformity of the perturbed functions over F2n , and further compute the bounds
for the boomerang uniformity of the perturbed Gold function. In Section 4, bounds for the boomerang uniformity of the
perturbed inverse function have been computed. An explicit class of permutation polynomials with boomerang uniformity
at most 8 is given in Section 5. We conclude the paper in Section 6.

2. Preliminaries

We will first provide some background and provide several lemmas that will be used in the subsequent sections. As
it is known (and discussed in [6], for instance), a function from F2n to F2 can be represented as Tr(R(x)) for some (not
unique) mapping R : F2n → F2n , where Tr denotes the absolute trace of F2n over F2.

Definition 2.1 ([6]). A function Tr(R(X)) is said to have a linear structure α ∈ F∗

2n if Tr(R(X)) + Tr(R(X + α)) =

Tr(R(X) + R(X + α)) is a constant function. We call α ∈ F∗

2n a b-linear structure if Tr(R(X) + R(X + α)) = b for all X ∈ F2n ,
where b ∈ F2.

We present now a few lemmas, as they will be used later in the paper.

Lemma 2.2 ([6, Theorem 2]). Let G(X),H(X) ∈ F2n [X], γ ∈ F2n and G(X) be a permutation polynomial. Then F (X) =

G(X) + γ Tr(H(X)) is a permutation polynomial of F2n if and only if H(X) = R(G(X)), where R(X) ∈ F2n [X] and γ is a 0-linear
structure of the function Tr(R(x)).

Lemma 2.3 ([10, Theorem 3]). Let k be a non-negative integer and F (X) = X2k
+ AX + B ∈ F2n [X], A ̸= 0. Let d = gcd(k, n),

m = n/d and Trnd be the relative trace from F2n to F2d . For 0 ≤ i ≤ m−1, define ti =
∑m−2

j=i 2k(j+1). Put α0 = A and β0 = B. If
m > 1, then for 1 ≤ r ≤ m−1, we let αr = A1+2k+22k+···+2kr and βr =

∑r
i=0 A

siB2ki where si =
∑r−1

j=i 2k(j+1) for 0 ≤ i ≤ r−1
and sr = 0.

(i) If αm−1 = 1 and βm−1 ̸= 0 then the trinomial F has no roots in F2n .

(ii) If αm−1 ̸= 1 then F has a unique root, namely X =
βm−1

1 + αm−1
.

(iii) If αm−1 = 1, βm−1 = 0, F has 2d roots in F2n given by x + δτ , where δ ∈ F2d , τ is fixed in F2n with τ 2k−1
= A (that is,

a (2k
− 1)-root of A), and, for any c ∈ F∗

n , satisfying Tr (c) ̸= 0 then x =
1 ∑m−1

(∑i c2
kj
)
AtiB2ki .
2 d Trd(c) i=o j=0
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Lemma 2.4 ([7, Theorem 7]). Let Fs,t,γ (X) = X s
+ γ Tr(X t ) with γ ∈ F∗

2n . Then Fs,t,γ is a permutation polynomial over F2n if
and only if gcd(s, 2n

− 1) = 1, t ≡ 2j(2i
+ 1)s (mod 2n

− 1) for some 0 ≤ i, j ≤ n − 1, i ̸= n/2, and either of the following
holds:

(i) i = 0 and Tr(γ ) = 0;
(ii) i > 0 and γ ∈ F2k with Tr(γ 2i+1) = 0, where k = gcd(2i, n).

Moreover, if Tr(γ ) = 1 in Case (i), or Tr(γ 2i+1) = 1 in Case (ii), then Fs,t,γ is a 2-to-1 mapping.

Lemma 2.5 ([7, Proposition 3]). Let F (X) = G(X) + γ Tr(H(X)), G(X),H(X) ∈ Fq[X], where q is a prime power and γ ∈ F∗
q .

Then ∆F ≤ 2∆G.

Lemma 2.6 ([8, Lemma 5]). Let F (X) = X−1
+ γ Tr(H(x)) where H ∈ F2n [X] and γ ∈ F∗

2n . Then

∆F ∈

{
{2, 4} if n is odd;
{4, 6} if n is even.

Lemma 2.7 ([11, Lemma 11]). Let n be a positive integer. The equation X2
+ aX + b = 0, with a, b ∈ F2n , a ̸= 0, has two

solutions in F2n if Tr
(

b
a2

)
= 0, and no solution otherwise.

3. Boomerang uniformity of the perturbed gold functions

It is not a new idea to modify a good function via a trace, and we mention here the beautiful APN function X3
+Tr(X9)

of [4], which changes a Gold APN function in one component.
Here we shall discuss the boomerang uniformity of the functions of the form F (X) = G(X) + γ Tr(H(X)), where

G,H ∈ F2n [X] over finite field F2n . From Lemma 2.5, we know that the differential uniformity of the function F is bounded
above by twice the differential uniformity of G. The following lemma, whose proof is rather immediate, gives a relation
between the BCT entries of the function F and G.

Lemma 3.1. Let F (X) = G(X) + γ Tr(H(X)) ∈ F2n [X], where γ ∈ F∗

2n . Then for any (a, b) ∈ F2n × F2n ,

BF (a, b) ≤ BG(a, b) + BG(a, b + γ ) + N1 + N2,

where

N1 =

⏐⏐⏐⏐{(X, Y ) ∈ F2n × F2n |

{
G(X + a) + G(Y + a) = b + γ

G(X) + G(Y ) = b

}⏐⏐⏐⏐ (3.1)

nd

N2 =

⏐⏐⏐⏐{(X, Y ) ∈ F2n × F2n |

{
G(X + a) + G(Y + a) = b
G(X) + G(Y ) = b + γ

}⏐⏐⏐⏐ . (3.2)

emark 3.2. Notice that the permutations displayed in Lemmas 2.2 and 2.4 are a particular case of the function F
entioned in Lemma 3.1. Therefore, also for these specific permutations, the upper bound for the boomerang uniformity

emains valid.

We next discuss the particular case of Lemma 3.1 when G(X) = L1(Xd), where L1 is a linear permutation and
(X) = L2(X), for a linear map L2 over F2n . This lemma will be used in the subsequent section.

emma 3.3. Let F (X) = L1(Xd)+ γ Tr(L2(X)) ∈ F2n [X], where γ ∈ F∗

2n , L1 is a linear permutation and L2 is a linear map over
2n . Then for any (a, b) ∈ F∗

2n × F∗

2n

BF (a, b) ≤ max{2BG,BG + (d′
− 1)(d′

− 2)},

here d′
= gcd(d, 2n

− 1) and G(X) = Xd.

roof. Let (a, b) ∈ F∗

2n × F∗

2n , then we have the following system of equations:{
L1(Xd) + L1(Y d) + γ Tr(L2(X + Y )) = b
L1((X + a)d) + L1((Y + a)d) + γ Tr(L2(X + Y )) = b.

(3.3)

e first consider the case when b ̸= γ . Now, we deal with two subcases depending upon whether Tr(L2(X + Y ))
s 0 or 1. When Tr(L2(x + y)) is 0, then we have at most BG(a, L−1

1 (b)) possible solutions, instead when Tr(L2(x + y))
s 1, there are at most B (a, L−1(b + γ )) possible solutions. Therefore, for any a, b ∈ F∗ with b ̸= γ , we infer
G 1 2n
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BF (a, b) ≤ BG(a, L−1
1 (b)) + BG(a, L−1

1 (b + γ )) ≤ 2BG. Next, we consider the case when b = γ . Then, System (3.3) would
further reduce to the following system of equations,{

L1(Xd) + L1(Y d) + γ Tr(L2(X + Y )) = γ

L1((X + a)d) + L1((Y + a)d) + γ Tr(L2(X + Y )) = γ .
(3.4)

urther if Tr(L2(X + Y )) = 0, System (3.4) has at most BG(a, L−1
1 (γ )) solutions. Now, if Tr(L2(X + Y )) = 1, then the first

quation of System (3.4) will give us L1(Xd) = L1(Y d) or equivalently, Xd
= Y d. If Z =

X
Y , then Zd

= 1 has d′
= gcd(d, 2n

−1)
solutions in F2n . One, among these d′ solutions is Z = 1, or equivalently X = Y , which is not possible. Hence, we are
left with X = αY , where α ∈ F2n \ {1} satisfying αd′

= 1. Now, from the second equation of System (3.4) we have
L1((X + a)d) = L1((Y + a)d), i.e., (X + a)d = (Y + a)d. Using the same argument, we get X + a = β(Y + a), where

β ∈ F2n \ {1} satisfying βd′

= 1. Now if α = β , we have a(1 + α) = 0, which is not possible. For α ̸= β , Y =
a(1 + β)
(α + β)

nd thus, X =
aα(1 + β)
(α + β)

. We have at most (d′
− 1)(d′

− 2) choices for Y =
a(1 + β)
(α + β)

in F2n . Hence, this will give us

F (a, γ ) ≤ BG(a, L−1
1 (γ ))+ (d′

− 1)(d′
− 2) ≤ BG + (d′

− 1)(d′
− 2), where d′

= gcd(d, 2n
− 1). This completes the proof. □

We shall now use Lemma 3.1 to compute bounds for the boomerang uniformity of the function F for some particular
type of functions G. The following theorem gives a bound for the function F when the function G is a Gold function.

Theorem 3.4. Let F (X) = X2k+1
+ γ Tr(H(X)) ∈ F2n [X], where H ∈ F2n [X], γ ∈ F∗

2n and gcd(k, n) = 1. Then BF ≤ 12.

Proof. Recall that for any (a, b) ∈ F∗

2n × F∗

2n , the BCT entry BF (a, b) at a point (a, b) of F , is given by the number of
solutions (X, Y ) ∈ F2n × F2n of the following system{

X2k+1
+ Y 2k+1

+ γ Tr(H(X) + H(Y )) = b,
(X + a)2

k
+1

+ (Y + a)2
k
+1

+ γ Tr(H(X + a) + H(Y + a)) = b.
(3.5)

From Lemma 3.1, we know that BF (a, b) ≤ BG(a, b) + BG(a, b + γ ) + N1 + N2, where N1 and N2 are given in Eq. (3.1)
and (3.2), respectively. It is easy to observe that for a ∈ F∗

2n and b ∈ F∗

2n \ {γ }, we have BF (a, b) ≤ 2BG +N1 +N2. We now
consider the number of solutions (X, Y ) ∈ F2n × F2n of the following system:{

(X + a)2
k
+1

+ (Y + a)2
k
+1

= b + γ ,

X2k+1
+ Y 2k+1

= b,

which can be further written as{
a(X + Y )2

k
+ a2

k
(X + Y ) = γ ,

X2k+1
+ Y 2k+1

= b.

Substituting X + Y = Z , we get the following{
aZ2k

+ a2
k
Z = γ

X2k+1
+ (X + Z)2

k
+1

= b.
(3.6)

Consider the first equation of System (3.6), that is

Z2k
+ a2

k
−1Z + a−1γ = 0. (3.7)

Since a ∈ F∗

2n , from Lemma 2.3, Eq. (3.7) can have at most 2 solutions (as d = gcd(k, n) = 1). Also notice that since X2k+1,
where gcd(k, n) = 1, is APN over F2n , the second equation of System (3.6) can have at most 2 solutions for some fixed
Z ∈ F∗

2n . Thus N1 ≤ 4. Similar arguments can be applied to show that N2 ≤ 4. Hence, for a ∈ F∗

2n and b ∈ F∗

2n \ {γ }, we
get BF (a, b) ≤ 2BG + 8.

We shall now compute the BCT entry BF (a, γ ), which is given by the number of solutions (X, Y ) ∈ F2n × F2n of the
following system{

G(X + a) + G(Y + a) + γ Tr(H(X + a) + H(Y + a)) = γ

G(X) + G(Y ) + γ Tr(H(X) + H(Y )) = γ .
(3.8)

We shall now split the analysis of the solutions of the above system in following four cases.

Case 1. Let Tr(H(X + a) + H(Y + a)) = 0 = Tr(H(X) + H(Y )), then{
(X + a)2

k
+1

+ (Y + a)2
k
+1

= γ

X2k+1
+ Y 2k+1

= γ .

As γ ̸= 0, we can have at most two solutions for System (3.8) in F n × F n .
2 2
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Case 2. Let Tr(H(X + a) + H(Y + a)) = 1 = Tr(H(X) + H(Y )), then{
(X + a)2

k
+1

+ (Y + a)2
k
+1

= 0
X2k+1

+ Y 2k+1
= 0.

When n is odd, there does not exist any solution (X, Y ) ∈ F2n ×F2n of the second equation of the above system. This is
because gcd(k, n) = 1 and hence the second equation will give us X = Y , which is not possible. For even n, System (3.8)
has at most two solutions in F2n × F2n from this case.

Case 3. Let Tr(H(X + a) + H(Y + a)) = 1 and Tr(H(X) + H(Y )) = 0, then{
(X + a)2

k
+1

+ (Y + a)2
k
+1

= 0,
X2k+1

+ Y 2k+1
= γ .

Similar arguments as in Case 2, for odd n, we have no solution of System (3.8) from this case and for even n, we have at
most two solutions in F2n × F2n .

Case 4. Let Tr(H(X + a) + H(Y + a)) = 0 and Tr(H(X) + H(Y )) = 1, then{
(X + a)2

k
+1

+ (Y + a)2
k
+1

= γ ,

X2k+1
+ Y 2k+1

= 0.

Similar to the above case, we have at most two solutions of System (3.8) from this case. This completes the proof. □

Remark 3.5. Charpin et al. [8] showed that for n odd, G(X) = X3
+ Tr(X3

+ X9) is bijective on F2n and satisfies ∆G = 4.
Experimentally, we found that over F27 , G(X) attains the upper bound 12 of the boomerang uniformity.

We now put a restriction on H(X) and take H(X) = X + X2k+1. It is obvious from Lemma 2.5 that the differential
uniformity of F (X) = X2k+1

+γ Tr(X +X2k+1) over F2n , where γ ∈ F∗

2n and gcd(n, k) = 1 is bounded above by 4. Moreover,
if Tr(γ ) = 0, F is EA-equivalent to X2k+1, which makes it APN and hence the DDT entry at (a, b) ∈ F∗

2n × F2n and BCT
entry at (a, b) ∈ F∗

2n × F∗

2n of F is at most 2. We shall compute the bounds for the boomerang uniformity of the function
F (X) = X2k+1

+ γ Tr(X + X2k+1) in the next theorem by first finding out the DDT entries in the following lemma.

Lemma 3.6. Let F (X) = X2k+1
+ γ Tr(X + X2k+1) ∈ F2n [X], where γ ∈ F∗

2n , gcd(n, k) = 1. Then for any (a, b) ∈ F2n × F2n ,
the DDT entries of the function F are given by

∆F (a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
= (1, 0),

2 if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
∈ {(1, 1), (0, 1)},

4 if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
= (0, 0), where b′

:= F (a) + b.

Further, if Tr(γ ) = 0, ∆F (a, b) ∈ {0, 2}.

Proof. For a ∈ F∗

2n and b ∈ F2n , consider the following equation

b = F (X + a) + F (X)

= X2k+1
+ (X + a)2

k
+1

+ γ Tr
(
X + X2k+1

+ X + a + (X + a)2
k
+1

)
= a2

k
+1

+ aX2k
+ Xa2

k
+ γ Tr

(
a + a2

k
+1

+ aX2k
+ Xa2

k
)

,

or equivalently,

aX2k
+ Xa2

k
+ γ Tr

(
aX2k

+ Xa2
k
)

= b′, (3.9)

where b′
= b + a2

k
+1

+ γ Tr
(
a + a2

k
+1

)
= F (a) + b. Now, we split the analysis of Eq. (3.9) in the following two cases.

Case 1. Let Tr(aX2k
+ Xa2

k
) = 0. Then Eq. (3.9) reduces to

X2k
+ Xa2

k
−1

+ b′a−1
= 0.

From Lemma 2.3, m = n, and hence αm−1 = 1. Here, si =
2kn−2k(i+1)

2k−1
and hence

βm−1 = βn−1 =

n−1∑
(a2

kn
−2k(i+1)

)(b′a−1)2
ki

= a
n−1∑ (b′)2

ki

2ki+2k(i+1) = aTr
(

b′

2k+1

)
.

i=0 i=0 a a
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γ

P

Thus, from Lemma 2.3, Eq. (3.9) has the following solutions:⎧⎨⎩no solutions if Tr
(

b′

a2k+1

)
= 1,

{X, X + a} if Tr
(

b′

a2k+1

)
= 0.

Case 2. Let Tr(aX2k
+ Xa2

k
) = 1. In this case Eq. (3.9) reduces to

X2k
+ Xa2

k
−1

+ (b′
+ γ )a−1

= 0.

Similar to Case 1, Eq. (3.9) has the following solutions:⎧⎨⎩no solutions if Tr
(

b′
+γ

a2k+1

)
= 1,

{X, X + a} if Tr
(

b′
+γ

a2k+1

)
= 0.

From the above discussion, we infer that

∆F (a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
= (1, 0),

2 if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
∈ {(1, 1), (0, 1)},

4 if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
= (0, 0).

Further, if Tr(γ ) = 0, we have from Eq. (3.9) that Tr(b′) = 0 in Case 1 and Tr(b′) = 1 in Case 2. Hence, Case 1 and Case 2
cannot occur simultaneously when Tr(γ ) = 0. This completes the proof of the lemma. □

The following theorem gives the boomerang uniformity of the function F (X) = X2k+1
+γ Tr(X +X2k+1) over F2n , where

γ ∈ F∗

2n and gcd(k, n) = 1. In case of odd n, the bound is refined further.

Theorem 3.7. Let F (X) = X2k+1
+γ Tr(X+X2k+1) ∈ F2n [X], where γ ∈ F∗

2n and gcd(k, n) = 1. Then for any (a, b) ∈ F2n ×F2n ,
the BCT entries of the function F are given by

BF (a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if
(
Tγ , Tb, Ta, TZ

)
= (0, 1, 0, 0),

2 if Tγ = 1,
4 if

(
Tγ , Tb, Ta, TZ

)
∈ {(0, 0, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)},

8 if
(
Tγ , Tb, Ta, TZ

)
∈ {(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1)},

12 if
(
Tγ , Tb, Ta, TZ

)
= (0, 0, 0, 0),

where
(
Tγ , Tb, Ta, TZ

)
:=

(
Tr

(
γ

a2k+1

)
, Tr

(
b

a2k+1

)
, Tr

(
F (a)

a2k+1

)
, Tr

(
F (Z)
a2k+1

))
and Z is a solution of the equation aZ2k

+ a2
k
Z +

= 0. Also, when Tr(γ ) = 0, we have BF (a, b) ∈ {0, 2}. Moreover, when n is odd, BF ≤ 8.

roof. For a, b ∈ F∗

2n , the BCT entry BF (a, b) is given by the number of solutions in F2n × F2n of the following system{
(X + a)2

k
+1

+ (Y + a)2
k
+1

+ γ Tr(X + (X + a)2
k
+1

+ Y + (Y + a)2
k
+1) = b,

X2k+1
+ Y 2k+1

+ γ Tr(X + X2k+1
+ Y + Y 2k+1) = b.

After simplifying and substituting Z = X + Y , we get{
γ Tr(aZ2k

+ a2
k
Z) = aZ2k

+ a2
k
Z,

X2k+1
+ (X + Z)2

k
+1

+ γ Tr(Z + X2k+1
+ (X + Z)2

k
+1) = b,

or equivalently,{
aZ2k

+ a2
k
Z + γ Tr(aZ2k

+ a2
k
Z) = 0,

XZ2k
+ X2kZ + γ Tr(XZ2k

+ X2kZ) = b + F (Z).
(3.10)

Now we shall consider the following two cases, namely, Tr(aZ2k
+ a2

k
Z) = 0 and Tr(aZ2k

+ a2
k
Z) = 1, respectively.

Case 1. Let Tr(aZ2k
+ a2

k
Z) = 0. Then from the first equation of the above system, we have aZ2k

+ a2
k
Z = 0. As Z ̸= 0

and gcd(2k
− 1, 2n

− 1) = 1, we have Z2k−1
= a2

k
−1, which implies that Z = a. Substituting Z = a in the second equation

in System (3.10), we get

Xa2
k
+ X2ka + γ Tr(Xa2

k
+ X2ka) = b′,
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where b′
= b + F (a). From Lemma 3.6, we know that the above equation has⎧⎪⎪⎪⎨⎪⎪⎪⎩

no solutions if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
= (1, 0),

2 solutions if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
∈ {(1, 1), (0, 1)},

4 solutions if
(
Tr

(
b′

a2k+1

)
, Tr

(
γ

a2k+1

))
= (0, 0).

Case 2. Let Tr(aZ2k
+ a2

k
Z) = 1. Then from the first equation of the above system, we have aZ2k

+ a2
k
Z = γ . From

emma 2.3, we have m = n, αn−1 = 1 and βn−1 = aTr
(

γ

a2k+1

)
. When Tr

(
γ

a2k+1

)
= 1, the equation aZ2k

+ a2
k
Z + γ = 0

has no solution Z ∈ F2n and consequently, System (3.10) has no solution (X, Z) ∈ F2n × F2n . When Tr
(

γ

a2k+1

)
= 0, the

equation aZ2k
+ a2

k
Z + γ = 0 has two solutions Z, Z + a ∈ F2n . When Z is a solution of the equation aZ2k

+ a2
k
Z + γ = 0,

System (3.10) has⎧⎨⎩no solutions if
(
Tr

(
b+F (Z)
a2k+1

)
, Tr

(
γ

a2k+1

))
= (1, 0),

4 solutions if
(
Tr

(
b+F (Z)
a2k+1

)
, Tr

(
γ

a2k+1

))
= (0, 0).

When Z + a is a solution of the equation aZ2k
+ a2

k
Z + γ = 0 then System (3.10) has⎧⎨⎩no solutions if

(
Tr

(
b+F (Z)+F (a)

a2k+1

)
, Tr

(
γ

a2k+1

))
= (1, 0),

4 solutions if
(
Tr

(
b+F (Z)+F (a)

a2k+1

)
, Tr

(
γ

a2k+1

))
= (0, 0).

From the above discussion, we infer the following,

BF (a, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if
(
Tγ , Tb, Ta, TZ

)
= (0, 1, 0, 0),

2 if Tγ = 1,
4 if

(
Tγ , Tb, Ta, TZ

)
∈ {(0, 0, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)},

8 if
(
Tγ , Tb, Ta, TZ

)
∈ {(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1)},

12 if
(
Tγ , Tb, Ta, TZ

)
= (0, 0, 0, 0),

where
(
Tγ , Tb, Ta, TZ

)
=

(
Tr

(
γ

a2k+1

)
, Tr

(
b

a2k+1

)
, Tr

(
F (a)

a2k+1

)
, Tr

(
F (Z)
a2k+1

))
. Notice that

Ta = Tr
(

F (a)
a2k+1

)
= Tr(1) + Tr(a + a2

k
+1)Tr

(
γ

a2k+1

)
.

hen Tγ = 0, we get that Ta = Tr(1). Hence, BF (a, b) ≤ 8 for odd n. Also, if Tr(γ ) = 0, Case 2 will have no solutions
ecause Tr(γ ) = Tr(aZ2k

+a2
k
Z) = 1 and Case 1 can give at most 2 solutions which follow from Lemma 3.6. This completes

he proof. □

. Boomerang uniformity of the perturbed inverse function

In this section, we shall give bounds for the boomerang uniformity for the general case of perturbed inverse functions.
n fact, we prove in the following theorem that for even n, the bound is sixteen and twenty when n ≡ 2 (mod 4) and
≡ 0 (mod 4), respectively, and twelve for odd n. For inverses of elements in the finite field, we shall use the convention

hat for any nonzero a ∈ F2n , a−1
:=

1
a and 0−1

:= 0.

Theorem 4.1. Let F (X) = X−1
+ γ Tr(H(X)) ∈ F2n [X], where γ ∈ F∗

2n . Then the boomerang uniformity BF of F is given by

BF ≤

⎧⎨⎩
12 if n is odd,
16 if n ≡ 2 (mod 4),
20 if n ≡ 0 (mod 4).

Proof. We know, by Lemma 3.1, that BF (a, b) ≤ BG(a, b) + BG(a, b + γ ) + N1 + N2. We first consider the number of
olutions in F2n × F2n of the following system when a ∈ F∗

2n and b ∈ F∗

2n \ {γ },{
(X + a)−1

+ (Y + a)−1
= b + γ

−1 −1 (4.1)

X + Y = b.
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We will split the analysis of the solutions of the above system in the following five cases.

Case 1. If X = 0, the above system reduces to{
a−1

+ (Y + a)−1
= b + γ

Y = b−1.

Notice that if b = a−1, then the above system is inconsistent. If b ̸= a−1 then (0, b−1) will be a solution of System (4.1) if
and only if a2b2 + a2bγ + ab + aγ + 1 = 0.

Case 2. If X = a, the above system reduces to{
(Y + a)−1

= b + γ

Y = (b + a−1)−1.

Notice that if b = a−1, then the above system is inconsistent. If b ̸= a−1 then (a, (b + a−1)−1) will be a solution of
System (4.1) if and only if a2b2 + a2bγ + ab + 1 = 0.

Case 3. Let Y = 0. Similar to Case 1, System (4.1) has a solution (b−1, 0) if and only if a2b2 + a2bγ + ab + aγ + 1 = 0.

Case 4. Let Y = a. Similar to Case 2, System (4.1) has a solution ((b + a−1)−1
, a) if and only if a2b2 + a2bγ + ab + 1 = 0.

Case 5. Let X, Y ̸∈ {0, a}. In this case System (4.1) reduces to{
(ab2 + abγ + γ )(X + Y ) + a2b2 + a2bγ = 0,
X + Y = bXY .

Since ab2 + abγ + γ ̸= 0, as a2b2 + a2bγ cannot be zero. Hence, after further solving the system, we get⎧⎪⎪⎨⎪⎪⎩
Y = X +

a2b2 + a2bγ
ab2 + abγ + γ

X2
+

a2b2 + a2bγ
ab2 + abγ + γ

X +
a2b2 + a2bγ

b(ab2 + abγ + γ )
= 0.

(4.2)

he above system can have at most two solutions. Hence, for b = a−1, we get at most two solutions (from Case 5) of
ystem (4.1). And when b ̸= a−1, we get at most four solutions, as a2b2+a2bγ +ab+1 = 0 and a2b2+a2bγ +ab+aγ +1 = 0

do not hold simultaneously. Thus

N1 ≤

{
2 if b = a−1,

4 if b ̸= a−1.

Similarly,

N2 ≤

{
2 if b = a−1,

4 if b ̸= a−1.

Also, from [9] (for n odd) and from [2,14] (for n even), we know that for the inverse function G(X) = X−1, the BCT entry
BG(a, b) at point (a, b) ∈ F∗

2n × F∗

2n is given by

BG(a, b) ≤

⎧⎨⎩
2 if n is odd,

4 if n ≡ 2 (mod 4),
6 if n ≡ 0 (mod 4).

Summarizing the above discussion for a ∈ F∗

2n and b ∈ F∗

2n \ {γ }, we have

BF (a, b) ≤

⎧⎨⎩
12 if n is odd,

16 if n ≡ 2 (mod 4),
20 if n ≡ 0 (mod 4).

(4.3)

Now, we shall directly compute BF (a, γ ) without making use of Lemma 3.1, by considering the number of solutions of
the following system{

(X + a)−1
+ (Y + a)−1

+ γ Tr(H(X + a) + H(Y + a)) = γ

X−1
+ Y−1

+ γ Tr(H(X) + H(Y )) = γ ,
(4.4)

and splitting this analysis in the following four cases.

Case 1. Let Tr(H(X + a) + H(Y + a)) = 0 = Tr(H(X) + H(Y )). In this case, System (4.4) reduces to{
(X + a)−1

+ (Y + a)−1
= γ

−1 −1
X + Y = γ .
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Table 1
Boomerang uniformity of some perturbed inverse functions over F2n .

F (X) n ∆F BF Ref

X−1
+ Tr(X2n−1

−2) 5 4 6 [8, Proposition 5]
X−1

+ Tr(X−1
+ X−3) 7 4 8 [8, Remark 8]

X−1
+ (g3

+ g2
+ g + 1)Tr(X5) 4 4 6 [8, Theorem 8]

X−1
+ Tr(X5) 8 4 12 [8, Theorem 8]

X−1
+ (g3

+ g2
+ g)Tr(X3) 6 4 8 [8, Theorem 8]

The number of solutions of the above system is⎧⎨⎩
≤ 2 if n is odd,

≤ 4 if n ≡ 2 (mod 4),
≤ 6 if n ≡ 0 (mod 4).

(4.5)

Case 2. Let Tr(H(X + a) + H(Y + a)) = 1 = Tr(H(X) + H(Y )). Then the system further reduces to{
(X + a)−1

+ (Y + a)−1
= 0

X−1
+ Y−1

= 0.

For X, Y ̸∈ {0, a}, the above system is inconsistent. Also, when X = 0, we get Y−1
= 0, i.e., Y = 0, but (X, X) cannot be

a solution of System (4.4), hence the system is inconsistent. Similarly, when X = a, we get Y = a, hence the system is
inconsistent. As the above system is symmetric with respect to X and Y , we get no solutions in this case.

Case 3. Let Tr(H(X +a)+H(Y +a)) = 1, Tr(H(X)+H(Y )) = 0. Similar to Case 2, we do not get any solution of System (4.4)
from this case.

Case 4. Let Tr(H(X +a)+H(Y +a)) = 0, Tr(H(X)+H(Y )) = 1. Similar to Case 2, we do not get any solution of System (4.4)
from this case, too.

As BF = maxa,b∈F∗

2n ,b̸=γ {BF (a, b),BF (a, γ )}, using System (4.3) and System (4.5), we have our claim. □

The examples given in Table 1 (g denotes a primitive element of F∗

2n ) illustrate Theorem 4.1. It is worth noting that
he values obtained are strictly smaller than the bounds in Theorem 4.1. It would be interesting to investigate whether
hese bounds can be reached or not.

Hasan et al. [14] considered the function F (X) = X−1
+γ Tr(H(X)) where γ = 1 and H(X) =

X2

X+1 and they showed that
this function has boomerang uniformity at most twelve over F2n , where n is even. However, in the following theorem,
we compute the bounds for the boomerang uniformity for the function X−1

+ γ Tr (H(X)) over F2n , where H(X) =
X2

+1
X .

n fact, we find some conditions on γ so as to obtain slightly better bounds for its boomerang uniformity.

heorem 4.2. Let F (X) = X−1
+ γ Tr

(
X2

+1
X

)
∈ F2n [X], where n is even, γ ∈ F∗

2n such that Tr(γ ) = 0. Then the boomerang
uniformity of F is given by

BF ≤

{
8 if n ≡ 2 mod 4
12 if n ≡ 0 mod 4.

Further, if Tr(γ −1) = 0, then BF ≤ 6.

Proof. We may write F (X) = L1(X−1)+γ Tr(L2(X)), where L2(X) = X is a linear map and L1(X) = X+γ Tr(X) is a linearized
permutation polynomial over F2n since Tr(γ ) = 0 (see Lemma 2.2). Hence, using Lemma 3.3, we can compute the bounds
for the boomerang uniformity of the function F . Now in view of Lemma 3.3, we have d = 2n

− 2 and thus d′
= 1. This

gives us BF (a, b) ≤ 2BG where G(X) = X−1, which in turn implies that

BF (a, b) ≤

{
8 if n ≡ 2 (mod 4),
12 if n ≡ 0 (mod 4).

It should be noted that the above bounds for the boomerang uniformity are valid regardless of whether Tr(γ −1) is zero
or not. However, the bound for the boomerang uniformity can further be reduced under the condition Tr(γ −1) = 0, and
we present a detailed proof as follows. For a, b ∈ F∗

2n , consider the following system of equations{
F (X + a) + F (Y + a) = b

(4.6)

F (X) + F (Y ) = b,
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which further reduces to{
(X + a)−1

+ (Y + a)−1
+ γ Tr(X + (X + a)−1

+ Y + (Y + a)−1) = b
X−1

+ Y−1
+ γ Tr(X + X−1

+ Y + Y−1) = b,
or, {

(X + a)−1
+ (Y + a)−1

+ X−1
+ Y−1

+ γ Tr(X−1
+ (X + a)−1

+ Y−1
+ (Y + a)−1) = 0

X−1
+ Y−1

+ γ Tr(X + X−1
+ Y + Y−1) = b.

From the first equation of the above system, we get that, either (X + a)−1
+ (Y + a)−1

+ X−1
+ Y−1

= 0 or
(X+a)−1

+(Y+a)−1
+X−1

+Y−1
= γ , but as Tr(γ ) = 0, the only possibility would be (X+a)−1

+(Y+a)−1
+X−1

+Y−1
= 0.

Hence, the above system has solution in F2n × F2n only if the following system{
(X + a)−1

+ (Y + a)−1
+ X−1

+ Y−1
= 0

X−1
+ Y−1

+ γ Tr(X + X−1
+ Y + Y−1) = b

(4.7)

has solution in F2n × F2n . In order to analyze the solutions of this system, we shall consider the following five cases.

Case 1. Let X = 0. Then, System (4.7) reduces to{
(Y + a)−1

+ Y−1
= a−1

Y−1
+ γ Tr(Y + Y−1) = b.

(4.8)

Now, Y = 0 is not the solution of the above system. If Y = a, then System (4.8) has the solution (0, a) in F2n × F2n if
b = a−1

+ γ Tr(a + a−1). For Y /∈ {0, a} we have
1

Y + a
+

1
Y

=
1
a

or,

Y 2
+ aY + a2 = 0

and this quadratic equation has two solutions in F2n as Tr(1) = 0, say, Y1 and Y2. Hence, (0, Y1) and (0, Y2) are solutions
of System (4.8) for b = Y−1

1 + γ Tr(Y1 + Y−1
1 ) and b = Y−1

2 + γ Tr(Y2 + Y−1
2 ), respectively.

Case 2. Let X = a. Then, System (4.7) reduces to{
(Y + a)−1

+ Y−1
= a−1

a−1
+ Y−1

+ γ Tr(a + a−1
+ Y + Y−1) = b.

(4.9)

Now, Y = a, is not the solution of the above system. If Y = 0 then System (4.9) has solution (a, 0) in F2n × F2n if
b = a−1

+ γ Tr(a + a−1). For Y /∈ {0, a} we know that the quadratic equation

Y 2
+ aY + a2 = 0

has two solutions Y1 and Y2 in F2n . Hence, (a, Y1) and (a, Y2) are solutions of System (4.7) for b = a−1
+ Y−1

1 + γ Tr(a +

a−1
+ Y1 + Y−1

1 ) and b = a−1
+ Y−1

2 + γ Tr(a + a−1
+ Y2 + Y−1

2 ), respectively.

Case 3. Let Y = 0. Since System (4.7) is symmetric in X and Y , this case follows from Case 1. Hence, (a, 0) is a solution of
the above system in F2n ×F2n if b = a−1

+γ Tr(a+a−1). Also, (Y1, 0) and (Y2, 0) are solutions for b = Y−1
1 +γ Tr(Y1 +Y−1

1 )
and b = Y−1

2 + γ Tr(Y2 + Y−1
2 ) respectively.

Case 4. Let Y = a. Since, System (4.7) is symmetric in X and Y , this case follows from Case 2. Hence, (0, a) is a
solution of the above System in F2n × F2n if b = a−1

+ γ Tr(a + a−1). Also, (Y1, a) and (Y2, a) are solutions for
b = a−1

+ Y−1
1 + γ Tr(a + a−1

+ Y1 + Y−1
1 ) and b = a−1

+ Y−1
2 + γ Tr(a + a−1

+ Y2 + Y−1
2 ) respectively.

Notice that,

a−1
+ Y−1

1 + γ Tr(a + a−1
+ Y1 + Y−1

1 ) = Y−1
2 + γ Tr(Y2 + Y−1

2 )

and similarly,

a−1
+ Y−1

2 + γ Tr(a + a−1
+ Y2 + Y−1

2 ) = Y−1
1 + γ Tr(Y1 + Y−1

1 ).

Hence, by summarizing Case 1, Case 2, Case 3 and Case 4, we get the solutions for System (4.7) as follows:⎧⎪⎪⎨⎪⎪⎩
{(0, a), (a, 0)} if b = a−1

+ γ Tr(a + a−1)
{(0, Y1), (Y1, 0), (Y2, a), (a, Y2)} if b = Y−1

1 + γ Tr(Y1 + Y−1
1 )

{(0, Y2), (Y2, 0), (Y1, a), (a, Y1)} if b = Y−1
2 + γ Tr(Y2 + Y−1

2 )
no solution otherwise,

2 2 n
where Y1 and Y2 are solutions of Y + aY + a = 0 in F2 .
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Case 5. Let X /∈ {0, a} and Y /∈ {0, a}, then System (4.7) reduces to⎧⎪⎨⎪⎩
1
X

+
1

X + a
=

1
Y

+
1

Y + a
1
X

+
1
Y

+ γ Tr
(
X + Y +

1
X

+
1
Y

)
= b

(4.10)

r, ⎧⎨⎩(X + Y )(X + Y + a) = 0
1
X

+
1
Y

+ γ Tr
(
X + Y +

1
X

+
1
Y

)
= b.

Now X + Y ̸= 0, and hence, for X + Y = a, we get that System (4.10) has solutions in F2n × F2n if

1
X

+
1

X + a
+ γ Tr

(
1
X

+
1

X + a

)
= b + γ Tr(a) (4.11)

has solution in F2n . Let Z =
1
X

+
1

X + a
, then Z + γ Tr(Z) is a permutation and hence for (a, b) ∈ F∗

2n × F∗

2n , Z + γ Tr(Z) =

b + γ Tr(a) has a unique solution Z = u ∈ F2n . This is equivalent to
1
X

+
1

X + a
= u, which has at most two solutions

∈ F2n .
Also, notice that if

Y−1
1 + γ Tr(Y1 + Y−1

1 ) = Y−1
2 + γ Tr(Y2 + Y−1

2 ),

then
1
Y1

+
1
Y2

+ γ Tr(Y1 + Y2 +
1
Y1

+
1
Y2

) = 0

that is,
1
a

+ γ Tr
(
a +

1
a

)
= 0,

which has no solution in F∗

2n if Tr(γ −1) = 0. Also, if

a−1
+ γ Tr(a + a−1) = Y−1

1 + γ Tr(Y1 + Y−1
1 ),

then
1
Y1

+
1
a

+ γ Tr
(
Y1 + a +

1
Y1

+
1
a

)
= 0.

As Y1 ̸= a, we are left with the case of Tr
(
Y1 + a +

1
Y1

+
1
a

)
= 1. Hence, we get⎧⎪⎨⎪⎩

Tr
(
Y1 + a +

1
Y1

+
1
a

)
= Tr

(
Y2 +

1
Y2

)
= 1

1
Y1

+
1
a

=
1
Y2

= γ .

The above system is inconsistent over F2n when Tr(γ −1) = 0 and therefore we get no common solution. Hence,
System (4.7) can have at most six solutions when Tr(γ −1) = 0. □

Example 4.3. Let F26 be the finite field, where F∗

26
= ⟨g⟩. In the aforementioned Theorem 4.2, let F (X) = X−1

+ γ Tr(X +

X−1) where γ = g32 with Tr(γ ) = 0. According to Theorem 4.2 (or alternatively, Lemma 3.3), it follows that BF ≤ 8.
However, computational results using SageMath indicate that BF is indeed equal to 8 in this case. This example serves to
demonstrate that the bound stated in Lemma 3.3 and Theorem 4.2 can indeed be attained.

5. A class of permutations with low boomerang uniformity

It is known from the work of Boura and Canteaut [2] the boomerang uniformity of the inverse function is 6, if n ≡ 0
(mod 4) and 4, if n ≡ 2 (mod 4). In [15], the boomerang uniformity of the 0/1-swapped inverse function was shown to
be 10, 8, 6, for n ≡ 0 (mod 6), n ≡ 3 (mod 6), respectively, n ̸≡ 0 (mod 3).

Below, we consider yet another modification of the inverse function. It is clear from Lemma 2.2 that F (X) = X−1
+

Tr(X−3
+ X−5

+ vX−1) is a permutation polynomial over F2n for odd n and v ∈ F2n with Tr(v) = 0. Moreover, it follows
from Lemma 2.5 that the differential uniformity of this function is at most 4. We discuss the boomerang uniformity of F
in the following theorem.
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Theorem 5.1. Let F (X) = X−1
+ Tr(X−3

+ X−5
+ vX−1) over F2n , where n is odd and Tr(v) = 0, for v ∈ F2n . Then BF ≤ 8.

roof. For a, b ∈ F∗

2n , we consider the following system of equations{
F (X + a) + F (Y + a) = b
F (X) + F (Y ) = b,

(5.1)

hich further reduces to{
(X + a)−1

+ (Y + a)−1
+ Tr(X + a)−3

+ (Y + a)−3
+ (X + a)−5

+ (Y + a)−5
+ v((X + a)−1

+ (Y + a)−1) = b
X−1

+ Y−1
+ Tr(X−3

+ Y−3
+ X−5

+ Y−5
+ v(X−1

+ Y−1)) = b,
or, ⎧⎨⎩

(X + a)−1
+ (Y + a)−1

+ X−1
+ Y−1

+ Tr(X−3
+ (X + a)−3

+ Y−3

+(Y + a)−3
+ X−5

+ (X + a)−5
+ (Y + a)−5

+ Y−5
+ v(X−1

+ Y−1
+ (X + a)−1

+ (Y + a)−1)) = 0
X−1

+ Y−1
+ Tr(X−3

+ Y−3
+ X−5

+ Y−5
+ v(X−1

+ Y−1)) = b.

From the first equation of the above system, we consider the following two cases:

ase 1. Assume that Tr(X−3
+ (X + a)−3

+ Y−3
+ (Y + a)−3

+ X−5
+ (X + a)−5

+ Y−5
+ (Y + a)−5

+ v(X−1
+ Y−1

+ (X +

)−1
+ (Y + a)−1)) = 0. Then the above system further reduces to{

(X + a)−1
+ (Y + a)−1

+ X−1
+ Y−1

= 0
X−1

+ Y−1
+ Tr(X−3

+ Y−3
+ X−5

+ Y−5
+ v(X−1

+ Y−1)) = b.
(5.2)

We split this case further into the following five subcases.

Subcase 1.1. If X = 0, System (5.2) reduces to{
Y−1

+ (Y + a)−1
= a−1

Y−1
+ Tr(Y−3

+ Y−5
+ vY−1) = b.

Notice that the above system has only one solution (0, a) in F2n × F2n , when b = a−1
+ Tr(a−3

+ a−5
+ va−1), otherwise

the system is inconsistent.

Subcase 1.2. If X = a, System (5.2) reduces to{
Y−1

+ (Y + a)−1
= a−1

a−1
+ Y−1

+ Tr(a−3
+ Y−3

+ a−5
+ Y−5

+ v(a−1
+ Y−1)) = b.

Notice that the above system has only one solution (a, 0) in F2n × F2n , when b = a−1
+ Tr(a−3

+ a−5
+ va−1), otherwise

the system is inconsistent.

Subcase 1.3. Let Y = 0. As System (5.2) is symmetric in X and Y , then (a, 0) is the only possible solution of the system,
when b = a−1

+ Tr(a−3
+ a−5

+ va−1).

Subcase 1.4. Let Y = a. Similarly as in the above case, (0, a) is the only possible solution of System (5.2), when
b = a−1

+ Tr(a−3
+ a−5

+ va−1).

Subcase 1.5. Let X, Y /∈ {0, a}. Then System (5.2) reduces to{
(X + Y )2 + a(X + Y ) = 0
X−1

+ Y−1
+ Tr(X−3

+ Y−3
+ X−5

+ Y−5
+ v(X−1

+ Y−1)) = b,

From the first equation of the above system, we get Y = X + a. Substituting in the second equation, we get{
X−1

+ (X + a)−1
+ Tr(X−3

+ (X + a)−3
+ X−5

+ (X + a)−5
+ v(X−1

+ (X + a)−1)) = b

which has at most four solutions in F2n × F2n .
Also, when b = a−1

+ Trn1(a
−3

+ a−5
+ va−1), Subcase 1.5 yields two solutions, say (X1, X2), (X2, X1) in F2n × F2n if and

only if Trn1(
1

a+1 ) = 0, where X1 and X2 are solutions of the equation X2
+ aX +

(
a2
a+1

)
= 0. Hence, by summarizing all the

ubcases of Case 1, we get the following solutions of System (5.2):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(0, a), (a, 0)} if b = a−1
+ Tr(a−3

+ a−5
+ va−1),

and Tr
( 1
a+1

)
̸= 0

{(0, a), (a, 0), (X1, X2), (X2, X1)} if b = a−1
+ Tr(a−3

+ a−5
+ va−1),

and Tr
( 1
a+1

)
= 0

at most four solutions otherwise.
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Case 2. Assume that Tr(X−3
+ (X + a)−3

+ Y−3
+ (Y + a)−3

+ X−5
+ (X + a)−5

+ (Y + a)−5
+ Y−5

+ v(X−1
+ Y−1

+ (X +

a)−1
+ (Y + a)−1)) = 1.

Then the above system reduces to{
(X + a)−1

+ (Y + a)−1
+ X−1

+ Y−1
= 1

X−1
+ Y−1

+ Tr(X−3
+ Y−3

+ X−5
+ Y−5

+ v(X−1
+ Y−1)) = b.

(5.3)

We consider the following five subcases.

Subcase 2.1. If X = 0, System (5.3) reduces to{
Y−1

+ (Y + a)−1
= a−1

+ 1
Y−1

+ Tr(Y−3
+ Y−5

+ vY−1) = b.

The above system has at most two solutions (0, Y1) and (0, Y2) in F2n × F2n for b = Y−1
1 + Tr(Y−3

1 + Y−5
1 + vY−1

1 ) or
b = Y−1

2 +Tr(Y−3
2 +Y−5

2 +vY−1
2 ), respectively if and only if Tr

( 1
a+1

)
= 0. Here Y1 and Y2 are solutions of Y 2

+aY +
a2
a+1 = 0.

We argue that the above subcase is not possible. To this end, suppose (0, Y1) satisfies System (5.3), then we have

Tr(a−3
+ Y−3

1 + (Y1 + a)−3
+ a−5

+ Y−5
1 + (Y1 + a)−5

+ v(a−1
+ Y−1

1 + (Y1 + a)−1)) = 1,

or equivalently,

Tr
(

1
a3

+
1
a5

+
1
Y 3
1

+
1
Y 5
1

+
1

(Y1 + a)3
+

1
(Y1 + a)5

+ v

(
1
a

+
1
Y1

+
1

Y1 + a

))
= 1.

As Y1 satisfies Y 2
1 + aY1 +

a2
a+1 = 0, we get that 1

Y1
+

1
Y1+a = 1 +

1
a . Clearly,

1
Y 3
1

+
1

(Y1 + a)3
=

(
1
Y1

+
1

Y1 + a

)3

+
1

Y1(Y1 + a)

(
1
Y1

+
1

Y1 + a

)
nd,

1
Y 5
1

+
1

(Y1 + a)5
=

(
1
Y1

+
1

Y1 + a

)5

+
1

Y1(Y1 + a)

(
1
Y 3
1

+
1

(Y1 + a)3

)
.

sing the above relations, we obtain

Tr(a−3
+ Y−3

1 + (Y1 + a)−3
+ a−5

+ Y−5
1 + (Y1 + a)−5

+ v(a−1
+ Y−1

1 + (Y1 + a)−1)) = 0,

hich is a contradiction to our assumption. Hence, (0, Y1) is not a solution of System (5.3) in F2n × F2n . Similarly, (0, Y2)
is not a solution of System (5.3) in F2n × F2n .

Subcase 2.2. Let X = a. Similar to the above subcase, (a, Y1) and (a, Y2) cannot be the solutions of System (5.3).

ubcase 2.3. Let Y = 0. As System (5.3) is symmetric in X and Y , hence it is inconsistent in F2n × F2n .

Subcase 2.4. Let Y = a. Similar to the above subcase, System (5.3) has no solution in F2n × F2n .

Subcase 2.5. Let X, Y /∈ {0, a}, then System (5.3) reduces to{
(XY )2 + aXY (X + Y ) + a2(XY ) + a(X + Y )2 + a2(X + Y ) = 0
X−1

+ Y−1
+ Tr(X−3

+ Y−3
+ X−5

+ Y−5
+ v(X−1

+ Y−1)) = b.

We further analyze this subcase by dividing it into the following two cases.

Subcase 2.5.1. Let Tr(X−3
+ Y−3

+ X−5
+ Y−5

+ v(X−1
+ Y−1)) = 0. After substituting Z = XY , the above system further

reduces to{
(1 + ab + ab2)Z2

+ (a2 + a2b)Z = 0
X + X−1Z = bZ,

which has at most two solutions,
(
X1,

a2(b+1)
ab2+ab+1

)
and

(
X2,

a2(b+1)
ab2+ab+1

)
in F2n × F2n . Here X1 and X2 are solutions of

X2
+

(
a2b(b+1)
ab2+ab+1

)
X +

a2(b+1)
ab2+ab+1

= 0.

Subcase 2.5.2. Let Tr(X−3
+ Y−3

+ X−5
+ Y−5

+ v(X−1
+ Y−1)) = 1.

This subcase also has at most two solutions
(
X3,

a2b
ab2+ab+1

)
and

(
X4,

a2b
ab2+ab+1

)
in F2n × F2n , where X3 and X4 are

solutions of X2
+

(
a2b(b+1)
ab2+ab+1

)
X +

a2b
ab2+ab+1

= 0.
Summarizing all the subcases of Case 2, System (5.3) has at most four solutions in F2n × F2n , and hence our claim is

hown. □

In Table 2, we provide some computational examples using SageMath that illustrate Theorem 5.1.
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Table 2
Examples to illustrate Theorem 5.1.
n v BF

3 g2
+ g 2

5 g4
+ g3

+ g2
+ 1 6

7 g6 8
9 g 8

6. Conclusion

We have computed the bounds for the boomerang uniformity of a general class of perturbed functions. Subsequently,
e considered special cases of perturbed Gold and inverse functions. We also considered some classes of functions for
ome specific functions H(X). For instance, we have considered a class of permutations with boomerang uniformity of at
most 8. It would be interesting to further investigate the boomerang uniformity (or, even the more difficult concept of
c-boomerang uniformity [13,18,19]) of the function F (X) = G(X) + γ Tr(H(X)) ∈ F2n [X] by taking different functions G,H
and constants γ .
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