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RECURSIONS FOR MODIFIED WALSH TRANSFORMS OF SOME FAMILIES OF
BOOLEAN FUNCTIONS

AXEL O. GÓMEZ-FLORES, LUIS A. MEDINA, AND PANTELIMON STĂNICĂ

ABSTRACT. We show that, under certain conditions, restricted and biased exponential sums and Walsh
transforms of symmetric and rotation symmetric Boolean functions are, as in the case of non-biased
domain, C-finite sequences. We also prove that under other conditions, these sequences are P-finite, which
is a somewhat different behavior than their non-biased counterparts. We further show that exponential
sums and Walsh transforms of a family of rotation symmetric monomials over the restricted domain
En, j = {x ∈ Fn

2 : wt(x) = j} (wt(x) is the weight of the vector x) are given by polynomials of degree
at most j, and so, they are also C-finite sequences. Finally, we also present a study of the behavior of
symmetric Boolean functions under these biased transforms.

1. Introduction

An n-variable Boolean function is a function from Fn
2 → F2, where F2 represents the field of two

elements and Fn
2 is the vector space of dimension n over F2. These functions have application to

different scientific fields like coding theory, cryptography and information theory. The set of all
n-variables Boolean functions is usually denoted by Bn.

A Boolean function f ∈ Bn can be regarded as a multi-variable polynomial called the algebraic
normal form (or ANF for short) of f . To be specific, f can be viewed as

f (X1, . . . ,Xn) = a0 ⊕ ∑
1≤i≤n

aiXi ⊕ ∑
1≤i< j≤n

ai jXiX j ⊕·· ·⊕a12···nX1X2 · · ·Xn,

where a0,ai,ai j, . . . ,a12···n ∈ F2 and ⊕ represents addition modulo 2. The algebraic degree of a
Boolean function f is the degree of its ANF representation. The Hamming weight of a vector
x = (x1, . . . ,xn) ∈ Fn

2, which is usually denoted by wt(x), is the number of 1’s in x.
The (unnormalized) Walsh transform at a ∈ Fn

2 of f ∈ Bn is defined as the real valued function

Wf (a) = ∑
x∈Fn

2

(−1) f (x)⊕a·x,

where a ·x represents the usual scalar product. We sometimes encounter in literature this transform
normalized by the factor 2−n/2. The nonlinearity of a Boolean function f ∈ Bn is the distance from f
to the set of affine functions in n variables,

nl( f ) = min
g affine

dist( f ,g),
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 2

where dist( f ,g) is the Hamming distance (number of bits where they differ) between f and g. The
spectral amplitude of a Boolean function f , denoted by Spec( f ), is defined by

Spec( f ) = max
a∈Fn

2

|Wf (a)|.

The spectral amplitude of a Boolean function is related to its nonlinearity via the equation

nl( f ) = 2n−1 − 1
2

Spec( f ).

Highly nonlinear Boolean functions are desirable in some cryptographic applications. Boolean
functions with the highest nonlinearity, i.e. 2n−1 −2n/2−1 (n even) are known as bent functions. These
functions were introduced in the mid 1960’s in [27]. Observe that an n-variable Boolean function f is
bent if

1
2n/2 |Wf (a)|= 1, for all a ∈ Fn

2.

Another desirable property in cryptographic applications is balancedness. Order the elements of
Fn

2 lexicographically and denote x0 = (0,0, . . . ,0,0), x1 = (0,0, . . . ,0,1), . . ., x2n−1 = (1,1, . . . ,1,1).
The truth table of a Boolean function f ∈ Bn is the vector [ f (x0), f (x1), . . . , f (x2n−1)]. A Boolean
function f is said to be balanced if the number of 0’s and the number of 1’s in its true table are the
same, that is, wt( f ) = 2n−1 (wt( f ) is the Hamming weight of f ’s truth table).

Balancedness of Boolean functions is often studied from the point of view of exponential sums. The
exponential sum of a Boolean function f ∈ Bn is defined as

S( f ) = ∑
x∈Fn

2

(−1) f (x).

Observe that the exponential sum of a Boolean function coincides with its Walsh transform at a= 0, that
is, S( f ) =Wf (0). Also, a Boolean function f is balanced if and only if S( f ) = 0. For a comprehensive
study of Boolean functions, please refer to [2, 5, 18].

Balancedness of some special classes of Boolean functions, like symmetric and rotation symmetric
Boolean functions, have been extensively studied and are an active area of research [1, 4, 7, 8, 9, 14,
15, 16, 17, 19, 21, 24, 28, 29]. A Boolean function f ∈ Bn is symmetric if it is fixed under the action
of the symmetric group Sn of n symbols, that is, if

f (Xσ(1), . . . ,Xσ(n)) = f (X1, . . . ,Xn), for every σ ∈ Sn.

It is a well-established result that every symmetric Boolean function f ∈ Bn can be identified with an
expression of the form

(1.1) f = en,k1 ⊕·· ·⊕ en,ks ,

where 0 ≤ k1 < k2 < · · · < ks are integers and en,k represents the n-variable elementary symmetric
polynomial of degree k. For simplicity, we denote the linear combination on the right-hand side of (1.1)
as en,[k1,...,ks]. Symmetric Boolean functions are useful in efficient implementations (thanks to their
symmetry), however, they may be vulnerable to attacks.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 3

A Boolean function f ∈ Bn is rotation symmetric if it is fixed under the action of the cyclic group
Cn of n elements, that is, if

f (Xσ(1), . . . ,Xσ(n)) = f (X1, . . . ,Xn), for every σ ∈Cn.

Rotation symmetric Boolean functions where introduced by Pieprzyk and Qu [26] (although, they did
appear before in the work of Filiol and Fontaine [20] as idempotents). As in the case of symmetric
Boolean functions, these functions have efficient implementations. However, Pieprzyk and Qu showed
that these functions are useful, among other things, in the design of fast hashing algorithms with strong
cryptographic properties. Let 1 < j1 < · · ·< js be integers. A rotation symmetric Boolean function of
the form

Rn,[ j1,..., js] = X1X j1 · · ·X js ⊕X2X j1+1 · · ·X js+1 ⊕·· ·⊕XnX j1−1 · · ·X js−1,

where the indices are taken modulo n and the complete system of residues mod n is {1,2, . . . ,n}, is
called a monomial rotation symmetric Boolean function on n variables. We say that Rn,[ j1,..., js] is a long
cycle if the period is n and a short cycle, if the period is a nontrivial divisor of n (we then make the
convention in the above displayed equation that we stop “shifting” indices if we encounter one of the
previous terms, otherwise a short cycle would always sum to 0). The function

R5,[2,3] = X1X2X3 ⊕X2X3X4 ⊕X3X4X5 ⊕X4X5X1 ⊕X5X1X2

is an example of a long cycle, while

R4,[3] = X1X3 ⊕X2X4

is an example of a short cycle.
It is known that under certain conditions, exponential sums and Walsh transforms of symmetric

Boolean functions and rotation symmetric Boolean functions are C-finite sequences [3, 7, 8, 10, 12,
13, 16, 17]. We say that a sequence {a(n)} of real numbers satisfies a homogeneous linear recurrence
with constant coefficients, or that it is C-finite, if there is a positive integer d and some constants
c0, . . . ,cd ∈ R, with cd ̸= 0, such that

(1.2)
d

∑
ℓ=0

cℓ a(n+ ℓ) = 0.

Many classical sequences, like Fibonacci and Lucas numbers, are defined by this type of recurrences.
C-finite sequences are well-understood: solutions to a recurrence relation of type (1.2) are tied to roots
of a polynomial called the characteristic polynomial of the relation.

We say that a sequence {a(n)} satisfies a homogeneous linear recurrence with polynomial co-
efficients, or that it is holonomic or P-finite, if there is a positive integer d and some polynomials
p0(n), . . . , pd(n), with pd(n) not identically zero, such that

d

∑
ℓ=0

pℓ(n)a(n+ ℓ) = 0.

Classical examples of P-finite sequences include the factorial sequence {n!}, which satisfies

a(n+1)− (n+1)a(n) = 0,
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 4

the central binomial coefficients
(2n

n

)
, which satisfy

(n+1)a(n+1)− (4n+2)a(n) = 0,

and the Motzkin numbers

Mn =
⌊n/2⌋

∑
k=0

1
k+1

(
n
2k

)(
2k
k

)
,

which satisfy
(n+4)a(n+2)− (2n+5)a(n+1)− (3n+3)a(n) = 0.

It is clear that every C-finite sequence is P-finite, but not the other way around. P-finite sequences were
introduced (formally) by Stanley [30]. There are various celebrated results in this area of mathematics,
and we mention here Zeilberger’s Algorithm [32], as a famous example. A great read about P-finite
sequences is [31].

In [3, 7] it was shown that exponential sums of symmetric Boolean functions are C-finite. To be
specific, if 1 ≤ k1 < · · · < ks are integers and r = ⌊log2(ks)⌋+ 1, then {S(en,[k1,...,ks])} satisfies the
recurrence

a(n) =
2r−1

∑
j=1

(−1) j−1
(

2r

j

)
a(n− j),

whose characteristic polynomial is given by

(X −2)Φ4(X −1)Φ8(X −1) · · ·Φ2r(X −1).

This result was later extended to exponential sums of perturbations of them in [8], to their Walsh
transforms in [12] and to finite fields beyond F2 in [10, 11].

In [13], Cusick showed that weights (equivalent to exponential sums) of rotation symmetric Boolean
functions are also C-finite. This was later extended to Walsh transforms of these [12] and to other finite
fields [10]. In the case of [10], their results were obtained using auxiliary functions which they called
trapezoid function. These functions are defined as

Tn,[ j1,..., js] = X1X j1 · · ·X js⊕X2X j1+1 · · ·X js+1⊕·· ·⊕Xn+1− jsX j1+n− js · · ·X js−1+n− jsXn.

Observe that Tn,[ j1,..., js] is the expression before the rotation part of Rn,[ j1,..., js].
In this article, we show that some of these results can be extended to both classes of Boolean

functions over restricted and biased domains. Let f ∈ Bn and E ⊂ Fn
2. Define the (scaled) restricted

exponential sum of f over E as
S( f ;E) = ∑

x∈E
(−1) f (x).

Similarly, define the (scaled) restricted Walsh transform of f over E at a as

Wf (a;E) = ∑
x∈E

(−1) f (x)⊕a·x.

Boolean functions over restricted domains have been a subject of study recently [6, 22, 23, 25],
especially in the context of the FLIP cipher. In general, when working over restricted domains, the
distribution is non-uniform, and the cryptographic properties of the involved Boolean function may
change significantly. In [22], the concepts of biased exponential sum and biased Walsh transform of a
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 5

Boolean function were introduced. Let p(u) be a probability distribution on Fn
2. If f ∈ Bn and a ∈ Fn

2,
then the biased Walsh transform of f at a is defined as

W B
f (a; p) = ∑

x∈Fn
2

p(x)(−1) f (x)⊕a·x.

We are mostly interested in the biased exponential sum of f as defined by

SB( f ; p) = ∑
x∈Fn

2

p(x)(−1) f (x).

(Observe that SB( f ; p) =W B
f (0; p).)

In this article, we show that, under certain conditions, restricted and biased exponential sums
and Walsh transforms of symmetric and rotation symmetric Boolean functions are, as is the case of
non-biased domain, C-finite sequences. However, we also show that under some other conditions,
these sequences are P-finite. This is a different behavior than their non-biased counterparts. In
Section 3 we show that exponential sums of a family of rotation monomials over the restricted domain
En,k = {x ∈ Fn

2 : wt(x) = j} is given by a polynomial of degree j+1. That implies that they are also
C-finite sequences. Finally, in the last section, we study the behavior of symmetric Boolean functions
under these biased transforms.

2. Recurrences over biased domain

As in the case of regular exponential sums and Walsh transforms, under certain conditions, biased
exponential sums and biased Walsh transforms are C-finite sequences. That is the case when the
probability distribution depends only on the first entry of x ∈ Fn

2 and the argument is somewhat simple.
Let α ∈ R be algebraic such that

α
n,

1
2n−1 −α

n ∈ (0,1),

for every integer n ≥ 1. Define, for x = (x1, . . . ,xn) ∈ Fn
2, the probability distribution

(2.1) pα(x) =

{
αn, x1 = 0

1
2n−1 −αn, x1 = 1

and consider the biased exponential sum

SB( f ; pα) = ∑
x∈Fn

2

pα(x)(−1) f (x).

Suppose that fn ∈ Bn is such that the sequences ∑
x∈Fn−1

2

(−1) fn(0,x)


n

and

 ∑
x∈Fn−1

2

(−1) fn(1,x)


n

satisfy linear recurrences with constant coefficients whose characteristic polynomials are given by
q0(X) and q1(X), respectively. Suppose that β1, . . . ,β j are the roots of q0(X) and γ1, . . . ,γr are the
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 6

roots of q1(X). Then,

∑
x∈Fn−1

2

(−1) fn(0,x) =
j

∑
ℓ=1

aℓ(n)β n
ℓ and ∑

x∈Fn−1
2

(−1) fn(1,x) =
r

∑
s=1

bs(n)γn
s ,

where aℓ(n) and bs(n) are some polynomials in n. Observe that

SB( fn; pα) = ∑
x∈Fn

2

pα(x)(−1) f (x)

= ∑
x∈Fn−1

2

pα(0,x)(−1) f (0,x)+ ∑
x∈Fn−1

2

pα(1,x)(−1) f (1,x)

= α
n

∑
x∈Fn−1

2

(−1) f (0,x)+

(
1

2n−1 −α
n
)

∑
x∈Fn−1

2

(−1) f (1,x)

= α
n

j

∑
ℓ=1

aℓ(n)β n
ℓ +

(
1

2n−1 −α
n
) r

∑
s=1

bℓ(n)γn
s

=
j

∑
ℓ=1

aℓ(n)(αβℓ)
n +

r

∑
s=1

2bℓ(n)
(

γs

2

)n
−

r

∑
s=1

bℓ(n)(αγs)
n.

That implies that {SB( fn; pα)} satisfies linear recurrences with constant coefficients, that is, it is a
C-finite sequence. In the particular case when deg(as) = deg(bt) = 0 for all s, t, i.e., when q0(X) and
q1(X) do not have repeated roots, {SB( fn; pα)} satisfies the recurrence whose characteristic polynomial
is given by

lcm
(

µαβ1(X), . . . ,µαβ j(X),µαγ1(X), . . . ,µαγr(X),µ γ1
2
(X), . . . ,µ γr

2
(X)
)
,

where µω(X) represents the minimal polynomial of the algebraic number ω .
Several known families of Boolean functions satisfy the above argument. That includes symmetric

Boolean functions, trapezoid Boolean functions, rotation symmetric Boolean functions and linear
combinations and concatenations of them (degree fixed). Moreover, in the case of those families, the
argument can be extended to perturbations without too much effort. Suppose that fn ∈ Bn is either
symmetric, trapezoid, rotation symmetric or a linear combination or concatenation of symmetric and
rotation symmetric Boolean functions. Let j < n be a fixed positive integer and F ∈ B j. The function
fn(X)⊕F(X) is called a perturbation of fn. If {SB( fn; p)} satisfies the above discussion, then, using
the same technique presented in [8], so does {SB( fn ⊕F ; p)}. This, in turns, implies that the same
argument holds true if we replace SB( fn; p) by the biased Walsh transform W B

fn(a; p) (same conditions
on a as in [12]).

Observe that the argument can be extended further if the probability depends on more than one entry.
For instance, if α1,α2,α3 ∈ R are algebraic numbers such that

α
n
1 , α

n
2 , α

n
3 ,

1
2n−2 −α

n
1 −α

n
2 −α

n
3 ∈ (0,1),
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 7

for all positive integer n, and define, for x = (x1,x2, . . . ,xn) ∈ Fn
2, the probability distribution

p(x) =


αn

1 , x1 = 0,x2 = 0
αn

2 , x1 = 0,x2 = 1
αn

3 , x1 = 1,x2 = 0
1

2n−2 −αn
1 −αn

2 −αn
3 , x1 = 1,x2 = 1,

then the same argument follows by requiring the corresponding four partial sums to be linear recurrent.
Having said that, for simplicity, we summarize the discussion when the probability depends on only
one entry. We gather the above discussion into the next theorem.

Theorem 2.1. Suppose that fn ∈ Bn is one of the following

(1) en,[k1,...,ks] (ki fixed),
(2) Tn, [ j1,..., js] ( ji fixed),
(3) Rn, [ j1,..., js] ( ji fixed),
(4) a linear combination or concatenation of the previous three.

Suppose that a ∈ F j
2 is fixed and that pα(x) is defined as in (2.1). Then {W B

fn(a; pα)} satisfies a linear
recurrence with constant coefficients.

Example 2.2. Consider the elementary symmetric Boolean polynomial en,3 and the rotation symmetric
Boolean polynomial

Rn,[2,3] = X1X2X3 ⊕X2X3X4 ⊕·· ·⊕Xn−2Xn−1Xn ⊕Xn−1XnX1 ⊕XnX1X2.

Let fn(Y,X1, . . . ,Xn) ∈ Bn+1 be the concatenation of Rn,[2,3] and en,3, i.e

fn(Y,X) = (1⊕Y )Rn,[2,3](X)⊕Y en,3(X).

If x = (x1, . . . ,xℓ) ∈ Fℓ
2, we then let

p(x) =


(

1√
5

)ℓ
, x1 = 0

1
2ℓ−1 −

(
1√
5

)ℓ
, x1 = 1.

Consider the sequence
{

W B
fn(0; p)

}
=
{

SB( fn; p)
}

. Observe that ∑
x∈Fn

2

(−1) fn(0,x)

 =

 ∑
x∈Fn

2

(−1)Rn,[2,3](x)

 .(2.2)

We know that the right-hand side of (2.2) satisfies the homogeneous linear recurrence whose character-
istic polynomial is given X3 −2X −2 (see [10, 13]). Also ∑

x∈Fn
2

(−1) fn(1,x)

 =

 ∑
x∈Fn

2

(−1)en,3(x)

 ,(2.3)
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 8

and again, we know that the right-hand side satisfies a homogeneous linear recurrence, i.e., the one
whose characteristic polynomial is given by (X −2)(X2 −2X −2) (see [7]). Therefore, {SB( fn; p)}
satisfies a linear recurrence with integer coefficients.

If we want to calculate an explicit recurrence, then we must study the roots of the polynomials
associated to (2.2) and (2.3). The polynomial X3 −2X −2, which is associated to (2.2), is irreducible
over Q. Let β represents one of its roots. The roots of (X −2)(X2 −2X −2) are 2,1± i. Thus, we
must find the minimal polynomials of

β√
5
,

2√
5
,

1± i√
5
, 1,

1± i
2

.

These polynomials are given by

µ β√
5
(X) = 125X6 −100X4 +20X2 −4,

µ 2√
5
(X) = 5X2 −4,

µ 1±i√
5
(X) = 25X4 +4,

µ1(X) = X −1,

µ 1±i
2
(X) = 2X2 −2X +1,

and the least common multiple of them is their product, i.e.

Q(X) = (X −1)
(
2X2 −2X +1

)(
5X2 −4

)
×
(
25X4 +4

)(
125X6 −100X4 +20X2 −4

)
.

This implies that {SB( fn; p)} satisfies the linear recurrence whose characteristic polynomial is Q, in
other words, Q(E)(SB( fn; p)) = 0, where E represents the shift operator, i.e., E(an) = an+1.

There are other cases on which biased exponential sums of symmetric and rotation symmetric
Boolean functions are C-finite. A similar behavior is exhibited by symmetric Boolean functions when
the probability distribution depends on the weight of x ∈ Fn

2.
Suppose that α ∈ R is an algebraic number and 0 < j < n be such that

α
n,

1−αn
(n

j

)
2n −

(n
j

) ∈ (0,1),

for all n ≥ 1. Define, for x ∈ Fn
2, the probability distribution

(2.4) p( j)
α (x) =

αn, wt(x) = j,
1−αn(n

j)
2n−(n

j)
, otherwise.

When j is fixed, the scaled biased exponential sum{(
2n −

(
n
j

))
SB
(

en,k; p( j)
α

)}
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 9

is C-finite. The argument for the proof of this claim is somewhat similar to the previous one. However,
when the weight j is not fixed, we still get recurrences, but the coefficients are no longer constants.
Instead, they are polynomials in n. In other words, the sequences are holonomic or P-finite. We show
an example of the last claim.

Let A(n) = 22n −
(2n

n

)
, Lk,α(n) = A(n)SB

(
e2n,k; p(n)α

)
and consider the sequence {Lk,α(n)}n. Ob-

serve that

Lk,α(n) = A(n) ∑
x∈F2n

2

p(n)α (x)(−1)e2n,k(x)

= α
2nA(n) ∑

wt(x)=n
(−1)e2n,k(x)+

(
1−α2n

(2n
n

)
22n −

(2n
n

) )A(n) ∑
wt(x)̸=n

(−1)e2n,k(x)

= (−1)(
n
k)α2nA(n)

(
2n
n

)
+

(
1−α

2n
(

2n
n

)) 2n

∑
ℓ=0,ℓ̸=n

(−1)(
ℓ
k)
(

2n
ℓ

)
.

Since (−1)(
n
k) and α2n are C-finite and A(n) and

(2n
n

)
are P-finite, the terms

(−1)(
n
k)α2nA(n)

(
2n
n

)
and 1−α

2n
(

2n
n

)
are P-finite. On the other hand,

2n

∑
ℓ=0,ℓ̸=n

(−1)(
j
k)
(

2n
j

)
=

2n

∑
ℓ=0

(−1)(
j
k)
(

2n
j

)
− (−1)(

n
k)
(

2n
n

)
.(2.5)

The first term on the right-hand side of (2.5) is C-finite and we already know that the second term is
P-finite. Since the sum and product of P-finite sequences is P-finite, {Lk,α(n)} is P-finite. An explicit
formula for its recursion can be obtained using Zeilberger’s Algorithm [32].

There are other instances for which we obtain P-finite sequences, but the argument is similar to the
one presented. Of course, for general probability distributions, we might not get recursions. In the next
section we show that something similar happens for some restricted domains.

3. Recurrences over restricted domain

Boolean functions over restricted domains have been a subject of study recently. In particular, some
cryptographic applications have been found over the restricted domain En, j = {x ∈ Fn

2 : wt(x) = j},
see [6, 22, 25]. When E = En, j, we relabel the restricted exponential sum and the restricted Walsh
transform as S( j)( f ) and W ( j)

f (a), respectively.
The study of symmetric Boolean functions over the restricted domain En, j is rather simple. In that

case, the scaled restricted exponential sum is given by

S( j)(en,k) = (−1)(
j
k)
(

n
j

)
.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 10

Thus, it is given by a polynomial in n of degree j and so it satisfies the linear recurrence whose
characteristic polynomial is given by

(X −1) j+1.

In this section we will show that a similar behavior is exhibited by Rn,[2,3,...,k] ∈Bn, that is, S( j)(Rn,[2,3,...,k]),
for n ≥ j+ k, is given by a polynomial in n variables of degree j.

We start with trapezoid functions, which were introduced in [10]. Recall that if j1 < · · ·< js are
positive integers, then the trapezoid function is defined by

Tn,[ j1,..., js] = X1X j1 · · ·X js⊕X2X j1+1 · · ·X js+1⊕·· ·⊕Xn+1− jsX j1+n− js · · ·X js−1+n− jsXn.

Consider the restricted exponential sum S( j)(Tn,[2,...,k]). Assign first the value 0 and then the value 1 to
Xn. Doing that produces

S( j)(Tn,[2,...,k]) = S( j)(Tn−1,[2,...,k])+S( j−1)(Tn−1,[2,...,k]⊕Xn−k+1 · · ·Xn−1).

The process of assigning the 0,1 values to a variable X j was referred [10] as turning the variable OFF
and ON, respectively. Now, by turning OFF and ON the variable Xn−1 we get

S( j−1)(Tn−1,[2,...,k]⊕Xn−k+1 · · ·Xn−1)

=S( j−1)(Tn−2,[2,...,k])+S( j−2)(Tn−2,[2,...,k]⊕Xn−k+1 · · ·Xn−2⊕Xn−k · · ·Xn−2).

Continuing with this process (as in [10]) we get

S( j)(Tn,[2,...,k]) =S( j) (Tk+1,[2,...,k]
)

+
n−2k+3

∑
ℓ=2

k−2

∑
s=1

S( j−s) (Tn+1−s−ℓ,[2,...,k]
)

+
j−2k+1

∑
ℓ=0

(−1)ℓ
n−k−ℓ

∑
s=k

S( j−k+1−ℓ)
(
Tn−s−ℓ,[2,...,k]

)
.

(3.1)

Equation (3.1) holds for S( j)(Tn,[2,...,k]⊕F(X)) when F(X) is a Boolean polynomial in the first r < k
variables. With this information at hand, we are ready to prove the next series of results. We shall be
using the restricted support of a Boolean function, which is defined as

suppn, j( f ) = {x ∈ En, j : f (x) = 1}.

It is not hard to see that, if f1 and f2 are Boolean functions, then the principle of inclusion and exclusion
leads to ∣∣suppn, j( f1 ⊕ f2)

∣∣= ∣∣suppn, j( f1)
∣∣+ ∣∣suppn, j( f2)

∣∣−2
∣∣suppn, j( f1)∩ suppn, j( f2)

∣∣ .
Lemma 3.1. Let n, j and r be positive integers. Suppose that n ≥ j ≥ r and let f ∈Br be a polynomial.
Then,

∣∣suppn, j( f )
∣∣ is given by a polynomial in n of degree at most j.

Proof. We will prove the result for f of the form Xi1 · · ·Xis ⊕Xh1 · · ·Xhℓ , where

{i1, . . . , is}∪{h1, . . . ,hℓ}= {1,2, . . . ,r}.

The general case follows a similar argument.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 11

Let f1 = Xi1 · · ·Xis and f2 = Xh1 · · ·Xhℓ , so that f = f1 ⊕ f2 and

(3.2)
∣∣suppn, j( f )

∣∣= ∣∣suppn, j( f1)
∣∣+ ∣∣suppn, j( f2)

∣∣−2
∣∣suppn, j( f1)∩ suppn, j( f2)

∣∣ .
Observe that f1 returns 1 if and only if the value of each of the variables Xi1 , . . . ,Xis is 1. Therefore, if
x ∈ En, j, then f1(x) = 1 if and only if the entries of x at the i1, . . . , is positions are 1. That means that
the other n− s entries of x are free and we need to position j− s ones on them. Therefore,

(3.3)
∣∣suppn, j( f1)

∣∣= (n− s
j− s

)
.

Similarly,

(3.4)
∣∣suppn, j( f2)

∣∣= (n− ℓ

j− ℓ

)
.

Finally, x ∈ En, j is in suppn, j( f1)∩ suppn, j( f2) if and only if its first r entries are 1. Therefore,

(3.5)
∣∣suppn, j( f1)∩ suppn, j( f2)

∣∣= (n− r
j− r

)
.

Together, equations (3.2), (3.3), (3.4) and (3.5) imply∣∣suppn, j( f )
∣∣= (n− s

j− s

)
+

(
n− s
j− ℓ

)
−2
(

n− r
j− r

)
,

which is a polynomial in n of degree at most j. The general case follows similarly. □

Lemma 3.2. Let k ≥ r be fixed integers and n be any integer such that n ≥ 2k−1. Suppose that F(X)
is a Boolean polynomial in the first r variables of Tn;[2,3,...,k]. Then,∣∣suppn,k(Tn,[2,3,...,k])∩ suppn,k(F)

∣∣
is constant.

Proof. Recall that

Tn,[2,...,k] = X1X2 · · ·Xk⊕X2X3 · · ·Xk+1⊕·· ·⊕Xn−k+1Xn−k+2 · · ·Xn.

Therefore, if u has weight k, then Tn,[2,...,k](u) = 1 if an only if exactly one of its terms is 1. Thus, it is
clear that if

u(n)
ℓ = (0, · · · ,0︸ ︷︷ ︸

ℓ−1

,1, · · · ,1︸ ︷︷ ︸
k

,0, · · · ,0︸ ︷︷ ︸
n−k−ℓ+1

), 1 ≤ ℓ≤ n− k+1,

then
suppn,k

(
Tn,[2,3,...,k]

)
=
{

u(n)
1 ,u(n)

2 , . . . ,u(n)
n−k+1

}
.

By assumption, the polynomial F(X) is formed by adding terms of the form Xi1 · · ·Xit with i1 <
· · ·< it ≤ r (remember that r ≤ k). Let us study

suppn,k
(
Tn,[2,3,...,k]

)
∩ suppn,k (Xi1 · · ·Xit ) .
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 12

Observe that Xi1 · · ·Xit returns 1 at u(n)
ℓ if and only if the entries of u(n)

ℓ at positions i1, . . . , it are all 1.
By hypothesis on n, only on the vectors u(n)

1 ,u(n)
2 , . . . ,u(n)

is the number 1 appears as the entry at position
is. Therefore, ∣∣suppn,k

(
Tn,[2,3,...,k]

)
∩ suppn,k (Xi1 · · ·Xit )

∣∣= i1,

and so
∣∣suppn,k

(
Tn,[2,3,...,k]

)
∩ suppn,k (Xi1 · · ·Xit )

∣∣ is constant. The general case follows by applying the
principle of inclusion and exclusion. □

Lemma 3.3. Let 1 < k ≤ j be integers. Suppose that F(X) is a Boolean polynomial in the first
r < k variables of Tn;[2,3,...,k]. Suppose that n > k+ j − 1. Then S( j)(Tn,[2,3,...,k]⊕F(X)) is given by
a polynomial in n of degree at most j. In particular {S( j)(Tn,[2,3,...,k]⊕F(X))}n≥k+ j satisfies the
homogeneous linear recurrence whose characteristic polynomial is given by

(X −1) j+1.

Proof. The argument is by induction on j. Consider first S(k)
(
Tn,[2,...,k]⊕F(X)

)
. Note that

S(k)
(
Tn,[1,2,...,k]⊕F(X)

)
=

(
n
k

)
−2
∣∣suppn,k

(
Tn,[1,2,...,k]⊕F(X)

)∣∣ .
Recall that ∣∣suppn,k(Tn,[1,2,...,k]⊕F(X))

∣∣= ∣∣suppn,k(Tn,[1,2,...,k])
∣∣+ ∣∣suppn,k(F(X))

∣∣(3.6)

−2
∣∣suppn,k(Tn,[1,2,...,k])∩ suppn,k(F(X))

∣∣ .
We know that

∣∣suppn,k(Tn,[1,2,...,k]⊕F(X))
∣∣ = n− k+1. Lemma 3.1 implies that

∣∣suppn,k F(X))
∣∣ is a

polynomial in n of degree at most k and Lemma 3.2 implies that∣∣suppn,k
(
Tn,[1,2,...,k]

)
∩ suppn,k(F(X))

∣∣
is constant. Therefore, (3.6) is a polynomial in n of degree at most k. Since

(n
k

)
is a polynomial in n of

degree k, then it follows that S(k)(Tn,[1,2,...,k]⊕F(X)) is a polynomial in n of degree at most k.
Suppose that for an arbitrary j we have that S(i)(Tn,[2,...,k]⊕F(X)) is given by a polynomial on n of

degree at most i for every k ≤ i ≤ j−1. Then, by (3.1), S( j)(Tn,[2,...,k]⊕F(X)) is given by a polynomial
in n variables of degree at most

deg

(
n−2k+3

∑
l=2

k−2

∑
s=1

S( j−s)(Tn+1−s−l,[2,...,k]⊕F(X))

)

= 1+deg

(
k−2

∑
s=1

S( j−s)(Tn+1−s−l,[2,...,k]⊕F(X))

)
≤ 1+( j−1) = j.

This concludes the proof. □

We are now ready to prove the following result.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 13

Theorem 3.4. Let j and k be fixed positive integers. Then S( j)(Rn,[2,3,...,k]), for n ≥ j+ k, is given by

a polynomial in n of degree j. In particular, the sequence
{

S( j)
(
Rn,[2,3,...,k]

)}
n≥ j+k

is C-finite and

satisfies the homogeneous linear recurrence whose characteristic polynomial is given by

(X −1) j+1.

Proof. Using the method of turning variables OFF and ON yields

S( j)(Rn,[2,3,...,k]) = S( j)(Tn−1,[2,3,...,k])+
k−2

∑
i=1

S( j−i)

(
Tn−1−i,[2,3,...,k]⊕

i

∑
l=1

k−l

∏
s=1

Xs

)
+

j−2k+1

∑
i=0

(−1)iS( j−k+1−i) (Tn−k−i,[2,3,··· ,k]⊕F(X)
)
,

(3.7)

where F(X) = X1⊕X1X2⊕X1X2 · · ·Xk−1. Lemma 3.3 and Equation (3.7) yield the result.
□

Corollary 3.5. Let j and k be fixed positive integers. Suppose that F(X) is a polynomial in the first
r < k variables of Rn,[2,3,...,k]. Then S( j)(Rn,[2,3,...,k]+F(X)), for n ≥ j+k−1, is given by a polynomial

in n of degree j. In particular, the sequence
{

S( j)
(
Rn,[2,3,...,k]+F(X)

)}
n≥ j+k

is C-finite and satisfies

the homogeneous linear recurrence whose characteristic polynomial is given by

(X −1) j+1.

Example 3.6. Consider the rotation symmetric Rn;[2,3,4]. According to Theorem 3.4, S(6)(Rn;[2,3,4]) is
given by a polynomial of degree at most 6 (for n ≥ 4+6−1 = 9). In other words, S(6)(Rn;[2,3,4]) = f (n)
with

f (n) = a0 +a1n+a2n2 +a3n3 +a4n4 +a5n5 +a6n6.

Solving the system

f (9) = S(6)(R9;[2,3,4]) = 12

f (10) = S(6)(R10;[2,3,4]) = 70

f (11) = S(6)(R11;[2,3,4]) = 220

f (12) = S(6)(R12;[2,3,4]) = 540

f (13) = S(6)(R13;[2,3,4]) = 1144

f (14) = S(6)(R14;[2,3,4]) = 2191

f (15) = S(6)(R15;[2,3,4]) = 3895,

we find that

S(6)(Rn;[2,3,4]) =
n6

720
− n5

48
+

17n4

144
− 21n3

16
+

4817n2

360
− 265n

6
.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 14

A similar behavior is exhibited by S(6)(Rn;[2,3,4]+X1X2 +X2X3), according to Corollary 3.5. In this
case,

S(6)(Rn;[2,3,4]+X1X2 +X2X3) =
n6

720
− n5

48
+

5n4

144
− 7n3

48
+

4847n2

360
− 316n

3
+234.

Observe that Corollary 3.5 implies that W ( j)
Rn;[2,...,k]

(a), for n ≥ k+ j−1 and a ∈ Fr
2 with r < k, is also

given by a polynomial in n of degree at most j. We will not state that result as a theorem, as it is
included in Corollary 3.5. Also, some adjustments to the argument can be used to prove that we have
the same behavior for other rotation symmetric Boolean functions. For example,

W (7)
Rn;[2,3,5]

(a) =
n7

5040
− 7n6

720
+

133n5

720
− 305n4

144
+

4063n3

180
− 35527n2

180
+

30406n
35

−1116,

where a = (1,0,1) and n ≥ 11.
In the next section we study the asymptotic behavior of biased exponential sums of symmetric

Boolean functions. We show that their behavior almost surely the same as the regular exponential sum.

4. Asymptotic behavior for symmetric Boolean functions

In this section we study the asymptotic behavior of symmetric Boolean functions under biased
exponential sums. It turns out that this behavior is related to the behavior of the regular exponential
sum of symmetric Boolean functions. In [7], it is showed that

(4.1) lim
n→∞

1
2n S(en,k) = c0(k)

where c0(k) is defined as (see [3])

(4.2) c0(k) =
1
2r

2r−1

∑
j=0

(−1)(
j
k),

where r = ⌊log2(k)⌋+ 1. The constant c0(k) also appears in the behavior of symmetric Boolean
functions under biased exponential sums.

We start with the behavior of SB(en,k; p) when p(x) is defined by (2.4). Observe that the conditions
on (2.4) imply that α ≤ 1/2. Consider the case of SB(e2n,k; p), which is one of the cases when j is not
fixed (the case when j is fixed follows in a similar manner). Observe that

SB(e2n,k; p) = ∑
wt(x)=n

p(x)(−1)e2n,k(x)+ ∑
wt(x)̸=n

p(x)(−1)e2n,k(x)

= α
2n(−1)(

n
k)
(

2n
n

)
+

(
1−
(2n

n

)
α2n

22n −
(2n

n

) ) 2n

∑
j=0, j ̸=n

(−1)(
j
k)
(

2n
j

)

= α
2n(−1)(

n
k)
(

2n
n

)
+

(
1−
(2n

n

)
α2n

22n −
(2n

n

) )( 2n

∑
j=0

(−1)(
j
k)
(

2n
j

)
− (−1)(

n
k)
(

2n
n

))
.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 15

The well-known inequality
4n
√

4n
≤
(

2n
n

)
≤ 4n

√
3n+1

,

implies

lim
n→∞

α
2n(−1)(

n
k)
(

2n
n

)
= 0.

Also,

lim
n→∞

(
1−
(2n

n

)
α2n

22n −
(2n

n

) )( 2n

∑
j=0

(−1)(
j
k)
(

2n
j

)
− (−1)(

n
k)
(

2n
n

))

= lim
n→∞

(
1−
(2n

n

)
α2n

22n −
(2n

n

) ) 2n

∑
j=0

(−1)(
j
k)
(

2n
j

)

= lim
n→∞

(
1−
(2n

n

)
α2n

22n(1− 1
22n

(2n
n

)
)

)
2n

∑
j=0

(−1)(
j
k)
(

2n
j

)

= lim
n→∞

1
22n

2n

∑
j=0

(−1)(
j
k)
(

2n
j

)
= c0(k).

The same holds true if p(x) is defined as in (2.1), that is,

lim
n→∞

SB(en,k; p) = c0(k).

In other words, in both cases, the behavior of the elementary symmetric Boolean polynomial en,k
under the biased exponential sum is dominated by c0(k). Furthermore, in both cases, the elementary
symmetric Boolean polynomial en,k is asymptotically not balanced if and only if k is a power of two.
That is, if k is not a power of two, then en,k can only be “sporadically balanced” under the probability
distributions considered so far. That is the same behavior when the domain is not biased.

This behavior might be a bit surprising. However, the next theorem reveals that it is somewhat
expected. That is, if you choose uniformly at random a probability distribution, then almost surely the
biased exponential sum of en,k converges to c0(k) as n increases.

Theorem 4.1. For each positive integer n, suppose that a(n)j , j = 0,1, . . . ,n, were chosen uniformly at
random from the set of nonnegative real numbers such that

(4.3)
n

∑
j=0

a(n)j

(
n
j

)
= 1.

For x ∈ Fn
2, let the probability distribution be given by p(n)(x) = a(n)j , when wt(x) = j. Then, almost

surely

SB(en,k; p(n))→ c0(k), as n → ∞.
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RECURSIONS FOR MODIFIED WALSH TRANSFORMS 16

Proof. Observe that

SB(en,k; p(n)) = ∑
x∈Fn

2

p(n)(x)(−1)en,k(x) =
n

∑
j=0

a(n)j (−1)(
j
k)
(

n
j

)
.

Let r = ⌊log2(k)⌋+1. Recall that by Lucas’ Theorem,(
j+m ·2r

k

)
≡
(

j
k

)
(mod 2),

for every natural number m. Let j1, . . . , js be all integers between 1 and 2r −1 such that
( j

k

)
is odd.

Then,

SB(en,k; p(n)) =
n

∑
j=0

a(n)j

(
n
j

)
−2

s

∑
ℓ=1

∑
t≡ jℓmod 2r

a(n)t

(
n
t

)
= 1−2

s

∑
ℓ=1

∑
m≥0

a(n)jℓ+m·2r

(
n

jℓ+m ·2r

)
.

Since a(n)j were chosen uniformly at random such that (4.3) holds, then by the Law of Large Numbers

∑
m≥0

a(n)jℓ+m·2r

(
n

jℓ+m ·2r

)
∼ 1

2r

n

∑
j=0

a(n)j

(
n
j

)
→ 1

2r ,

as n grows. This implies that

SB(en,k; p(n)) = 1−2
s

∑
ℓ=1

∑
m≥0

a(n)jℓ+m·2r

(
n

jℓ+m ·2r

)
→ 1−2

s

∑
ℓ=1

1
2r = 1− s ·21−r

= c0(k)

as n grows. This concludes the proof. □

The previous theorem tells us that if we chose a probability distribution p on the elements of Fn
2

randomly, then almost surely

(4.4) SB(en,k; p)∼ c0(k).

This, of course, does not mean that (4.4) holds for every probability distribution. We can design a
probability distribution that specifically targets the behavior of en,k.

Example 4.2. Recall that en,2r−1(x) = 1 if and only if wt(x) ≡ 2r − 1 (mod 2r). We can use this
information to design a probability distribution p such that

SB(en,2r−1; p) ̸∼ c0(2r −1) =
2r−1 −1

2r−1 .
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Suppose that α is a nonnegative real number. Let x ∈ Fn
2 and define

(4.5) p(x) =


α

α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

(
n

wt(x)

)−1

, if wt(x)≡ 0 (mod 2)

1
α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

(
n

wt(x)

)−1

, if wt(x)≡ 1 (mod 2).

Choose j ∈ {0,1, . . . ,n}. There are
(n

j

)
vectors x ∈ Fn

2 such that wt(x) = j. Also, there are ⌈(n+1)/2⌉
integers j ∈ {0,1, . . . ,n} that are congruent to 0 (mod 2) and ⌈n/2⌉ that are congruent to 1 (mod 2).
Therefore, (4.5) is a well-defined probability distribution on Fn

2. Observe that this distribution is
designed in such a way that there is a different scale factor on the probability when wt(x) is even and
we know that every x ∈ Fn

2 such that en,2r−1(x) = 1 lies in the case when wt(x) is odd.
Observe that

SB(en,2r−1; p) = ∑
x∈Fn

2

p(x)(−1)en,2r−1(x)

= ∑
wt(x)≡0 mod 2

p(x)(−1)en,2r−1(x)

+ ∑
wt(x)̸≡2r−1 mod 2r; odd

p(x)(−1)en,2r−1(x)

+ ∑
wt(x)≡2r−1 mod 2r

p(x)(−1)en,2r−1(x)

=
n

∑
j≡0 mod 2

α

α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

+
n

∑
j ̸≡2r−1 mod 2r; odd

1
α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

−
n

∑
j≡2r−1 mod 2r

1
α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

.

However, we know that

#{0 ≤ j ≤ n : j ≡ j0 (mod 2ℓ)} =

⌈
n− j0 +1

2ℓ

⌉
,

where j0 ∈ {0,1,2, . . . ,2ℓ−1}. Therefore,

SB(en,2r−1; p) =
α

α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

⌈
n+1

2

⌉
+

1
α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

2r−3

∑
j=1; odd

⌈
n− j+1

2r

⌉
− 1

α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

⌈
n−2r +2

2r

⌉
.
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Since

lim
n→∞

1
α⌈(n+1)/2⌉)+ ⌈n/2⌉+1

⌈
n− j+1

2r

⌉
=

1
2r−1α +2r−1 ,

this closed formula implies

lim
n→∞

SB(en,2r−1; p) =
2r−2α +2r−2 −1

2r−2α +2r−2 .

This limit is different than c0(2r) if and only if α ̸= 1. In the particular case when r = 2 and α = 0, the
limit is 0 and SB(en,3; p) = 0 if and only if n ≡ 0,3 (mod 4). In other words, the elementary symmetric
polynomial en,3 is balanced over this biased domain when n ≡ 0,3 (mod 4).

5. Concluding remarks

In this work we showed that under some conditions, biased and restricted exponential sums and Walsh
transforms of symmetric and rotation symmetric polynomials are C-finite or P-finite sequences. This is
a generalization of the known results for non-biased domains. We also showed that exponential sums
and Walsh transforms of some families of rotation symmetric monomials over the restricted domain
En, j = {x ∈ Fn

2 : wt(x) = j} (wt(x) is the weight of the vector x) are given by polynomials of degree
at most j. Finally, we also studied the asymptotic behavior of biased exponential sums of symmetric
Boolean functions and showed that their behavior is almost surely the same as the regular exponential
sum. We hope and expect to see applications of our results, as well as continued progress toward
covering other classes of functions, using our methods or new ones to fit the specific purpose.
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