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Abstract. Graph states are present in quantum information and found ap-
plications ranging from quantum network protocols (like secret sharing) to

measurement based quantum computing. In this paper, we extend the no-

tion of graph states, which can be regarded as pure quantum graph states, or
as homogeneous quadratic Boolean functions associated to simple undirected

graphs, to quantum states based on mixed graphs (graphs which allow both

directed and undirected edges), obtaining mixed quantum states, which are
defined by matrices associated to the measurement of homogeneous quadratic

Boolean functions in some (ancillary) variables. In our main result, we describe

the extended graph state as the sum of terms of a commutative subgroup of the
stabilizer group of the corresponding mixed graph with the edges’ directions

reversed.

1. Introduction

Graph states [5] are very important in quantum computation and quantum error-
correcting, and are the base of measurement-based quantum computation. There
are several generalizations of graph states to various types of graphs, like hyper-
graphs (a graph in which an edge can join any number of vertices) and we refer
here to [3, 7, 9] and the references therein. Certainly, a natural question that arises
would be how to extend the concept of graph states to quantum states associated
with mixed graphs, which are graphs where some or all of the edges may be directed
(and no multiple edges or loops are allowed). It is the purpose of our paper to do
just that, obtaining mixed quantum states, or matrices associated to the measure-
ment of graph states in some (ancillary) variables. In our main result, we describe
the extended graph state as the sum of terms of a commutative subgroup of the
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stabilizer group of the corresponding graph with the arrows reversed (which we call
below, the companion graph).

Structure of the paper: In this section, we introduce the notation and concepts
needed in the paper. In Section 2, we present the stabilizer basis associated with a
mixed graph, and discuss the definition of a quantum state associated to a mixed
graph, as well as the non-unicity of this state, via an example. In Section 3, we
generalize the definition of graph states, and give a definition of the quantum states
associated with a mixed graph, which we call a extended graph state. In Sec-
tion 4, we discuss the minimal amount of ancilliary states needed to extend a
non-commutative group of stabilizers to a commutative group. In Section 5, we
state and prove the main results of the paper. In Section 6, we discuss how to
find extended graph states via maximal commutative subgroups of the stabilizer
group of the corresponding mixed graph with the edges’ directions reversed, which
in turn gives a way to describe the density matrix of the mixed states associated
to it. Finally, in Section 7, we summarize the paper. We will have many examples
throughout to make the paper easier to read. While we draw our motivation from
quantum information theory, the paper is very mathematical in nature.

For a positive integer n, we let F2, Fn2 , Zn, C, be the two-element field, the
vector space of dimension n over F2, the ring of integers modulo n, and the complex
numbers set, respectively. The operations in all of these algebraic structures will
be denoted by ‘·’, ‘+’, and will be understood from the context. When there is a
danger of confusion we shall use ‘⊕’ for the binary operation.

A qubit (or qu-bit) [10] can be described as a column vector |ψ〉 = (a, b)T ∈ C2,
where ‘T ’ indicates the transpose, |a|2 is the probability of observing the value 0
when we measure the qubit, and |b|2 is the probability of observing 1 (hence the
sum of the two probabilities is 1). If both a and b are nonzero, the qubit has both
the value 0 and 1 at the same time, and we call this a superposition. Once we have
measured the qubit, however, the superposition collapses, and we are left with a
classical state that is either 0 or 1 with certainty. A pure quantum state of n qubits
is represented by a normalized complex vector with 2n elements. We define 〈ψ| as
the conjugate transpose of |ψ〉. This notation is known as the bra-ket notation. A
mixed quantum state corresponds to a probabilistic mixture of pure states, and it
cannot be expressed as a vector, but only as a matrix ρ ∈ C2n×2n which is positive
semidefinite, Hermitian, and has trace 11; this matrix is known as the density matrix
of the quantum state. A pure state |ψ〉 can also be described as a density matrix,
given by ρ = |ψ〉 〈ψ|. We can distinguish the density matrix of a pure state from
that of a mixed state by the following property: if Tr(ρ2) = 1, the state is pure; if
Tr(ρ2) < 1, the state is mixed.

The Pauli matrices are:

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = iXZ,

where i =
√
−1. Note that all Pauli matrices are unitary, that is, if U ∈ {I,X,Z, Y },

then UU† = I, where U† is the conjugate transpose of the matrix. Note also that
X,Z and Y are pairwise anti-commuting, and that X and Z are self-inverse. These
properties are used frequently throughout the paper.

The Pauli matrices form a finite group up to global constants {±1,±i}, in the
sense that, for instance, Y = iXZ, XY = iZ, Y X = −iZ, and similarly for the rest

1A matrix describes a quantum state if and only if it fulfills these conditions.
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of the relevant operations (see [10]). The n-tensor products of these matrices also
form a finite group, up to global constants, known as the Pauli group in n qubits.

Let G be a simple, undirected graph with n nodes. We define the following set
of pairwise commuting matrices (see [5]) in C2n×2n : For every node a og G, let

Ka = XaZNa = Xa

∏
b∈Na

Zb,

where Aa = I ⊗ I ⊗ · · ·⊗
a

↓
A ⊗I ⊗ · · · ⊗ I, and Na are the neighbors of node a in

G. The choice of matrices is motivated by quantum error-correcting codes. The
matrices Ka have a unique common eigenvector corresponding to the eigenvalue +1
such that its first entry is +2−

n
2 . This is a quantum state, and, since it can be

represented by a simple graph, G, it is known as a graph state (see [5, 13]). Graph
states are present in quantum information and found applications ranging from
quantum network protocols (like secret sharing) to measurement based quantum
computing [2, 8].

It is clear that, given two matrices, Ka,Kb, associated to a graph, which have |ψ〉
as a common eigenvector corresponding to the eigenvalue +1, the product KaKb

also has |ψ〉 as an eigenvector corresponding to eigenvalue +1. These matrices
(known as the stabilizers of |ψ〉) generate a finite group (up to global constants),
known as the stabilizer group of |ψ〉.

Let G be a simple, undirected graph, with associated graph state |ψ〉. We can
associate to G a homogeneous quadratic Boolean function f in n variables, de-
fined as the Boolean function with algebraic normal form (ANF) f(x0, . . . , xn−1) =∑
a<b Γab xaxb, where Γ = (Γab)a,b is the adjacency matrix of the graph. We

define the signature of the function f , (−1)f , as the length 2n bipolar vector
s = (s00...0, s00...1, . . . , s11...1) such that si = (−1)f(i). Then, it can be proven
(see [15]) that |ψ〉 = 2−

n
2 (−1)f , that is, the normalized signature of the function f .

Example: For example, let G be the simple, undirected line on nodes {0, 1, 2} with
edges 01, 12 (we customarily, write ab for an edge between the vertices a, b). Then,
the matrices Ka are defined as follows:

K0 = X0

∏
b∈{1}

Zb = X0Z1 = X ⊗ Z ⊗ I,

K1 = X1

∏
b∈{0,2}

Zb = X1Z0Z2 = Z ⊗X ⊗ Z,

K2 = X2

∏
b∈{1}

Zb = X2Z1 = I ⊗ Z ⊗X.

Note that these matrices pairwise commute. It can be easily checked that a common
eigenvector with eigenvalue +1 is |ψ〉 = 1

23/2
(1, 1, 1,−1, 1, 1,−1, 1)T . This vector is

the associated graph state to the graph G. The associated Boolean function is
f(x0, x1, x2) = x0x1 + x1x2, and consequently, |ψ〉 = 1

23/2
(−1)f .

2. Stabilizers of a mixed graph

Similarly to the case of undirected simple graphs, we can define stabilizers for
mixed graphs:
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Definition 2.1. Let G be a mixed graph G with set of vertices V and set of edges
E, we can define the stabilizer basis associated to G as:

KG
v = XvZ ~Nv = Xv

∏
b∈ ~Nv

Zb,

where Av = I ⊗ I ⊗ · · ·⊗
v

↓
A ⊗I ⊗ · · · ⊗ I, and ~Nv = {u : (v, u) ∈ E} are the out-

neighbors of v in G. When G is clear from context, we will drop the superscript.

This could be interpreted as an interaction pattern in a similar way as for graph
states: for simple undirected graphs, whenever two particles, originally spin-1/2 sys-
tems, have interacted via a certain (Ising) interaction, the graph connecting the two
associated vertices has an edge (see [5]). In the case of a mixed graph, one could in-
terpret a directed edge as a one-way interaction, while undirected edges are two-way
interactions. However, in this paper we will concentrate on the stabilizer interpre-
tation of the states, due to its possible applications in quantum error-correcting
codes.

In the case of a mixed graph, the matrices Ka that arise from a mixed graph are
not necessarily pairwise commuting, so, in general, they will not have a common
eigenvector. In fact, two square matrices A,B of size n have a common eigenvector

if and only if

n−1⋂
k,`=1

ker[Ak, B`] 6= {0}, where [U, V ] = UV − V U is the commutator

(see [14]). However, since in our case, we deal with matrices which are self-inverse,
the result simplifies to the matrices commuting with each other.

For mixed graphs, we then need to slightly modify/extend the context, in order
to find an equivalent for this common eigenvector. Below, we display our approach.
Let U be any stabilizer of a quantum graph state |ψ〉. Let ρ = |ψ〉 〈ψ| be the density
matrix of the state. Since U |ψ〉 = |ψ〉, then UρU† = ρ, or, equivalently, Uρ = ρU .
Note that, then, ρ is an element of the normalizer of the stabilizer group (see [6]
for more on group theoretical concepts), seen as a subgroup of the group generated
by {I,X, Y, Z}⊗n.

We go now back to the question of mixed graphs. Even though, in this case, the
stabilizers will not have a common eigenvector, since they are not in general pairwise
commuting (though, they are either commuting AB = BA, or anti-commuting, that
is, AB = −BA), we can, however, say that a density matrix ρ such that KaρK

†
a = ρ

(or, equivalently, Kaρ = ρKa for all a) is stabilized by the stabilizers.
Note that, if sρs† = ρ, then ρ is stabilized by any αs, where |α| = 1 (that is,

(αs)ρ(αs)† = ρ), which is why we do not have to concern ourselves with global phase
constants in members of the stabilizer group S, and we will choose a representative
where the global constant is 1.
Examples: 1) For instance, given the mixed graph G1 over the set of nodes
{0, 1, 2} comprising an undirected edge 12, and a directed edge 0→ 1 (customarily,
we shall represent the edges in our graphs by using arrows for directed edges between
nodes, and, as before, concatenation, for undirected edges), we obtain the stabilizer

basis KG1
0 = X⊗Z⊗I, KG1

1 = I⊗X⊗Z, KG1
2 = I⊗Z⊗X. Note that, while KG1

0

and KG1
2 , respectively, KG1

1 and KG1
2 , commute, KG1

0 and KG1
1 anti-commute, so

there is no common eigenvector |ψ〉 for all KG1
0 , KG1

1 , KG1
2 . The group of matrices

generated by KG1
0 , KG1

1 and KG1
2 is then (up to global constants) the stabilizer
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group SG1 is

{I⊗I⊗I, X⊗Z⊗I, I⊗X⊗Z, I⊗Z⊗X, X⊗Y ⊗Z, X⊗I⊗X, I⊗Y ⊗Y, X⊗X⊗Y }.

We can however associate SG1 to the quantum state whose density matrix (we will
discuss in Section 3 how to obtain this matrix) is

ρG1
0 =

1

8


1 1 1 −1 0 0 0 0
1 1 1 −1 0 0 0 0
1 1 1 −1 0 0 0 0
−1 −1 −1 1 0 0 0 0
0 0 0 0 1 1 −1 1
0 0 0 0 1 1 −1 1
0 0 0 0 −1 −1 1 −1
0 0 0 0 1 1 −1 1

 .

It is easy to check that

KG1
0 ρG1

0 (KG1
0 )† = KG1

1 ρG1
0 (KG1

1 )† = KG1
2 ρG1

0 (KG1
2 )† = ρG1

0 .

2) We now take G2 be the directed triangle defined by its directed edges 0→ 1, 1→
2, 2→ 0. The stabilizer group SG2 is generated by

KG2
0 = X ⊗ Z ⊗ I,KG2

1 = I ⊗X ⊗ Z,KG2
2 = Z ⊗ I ⊗X.

Therefore, SG2 is

{I⊗I⊗I, X⊗Z⊗I, I⊗X⊗Z, Z⊗I⊗X, X⊗Y ⊗Z, Y ⊗Z⊗X, Z⊗X⊗Y, Y ⊗Y ⊗Y }.

Because these generators anti-commute, there is no common eigenvector |ψ〉 for all

KG2
0 , KG2

1 , KG2
2 . Instead we can associate SG2 to the quantum state whose density

matrix (we will discuss in Section 3 how to obtain this matrix) is

ρG2
0 =

1

8


1 0 0 i 1 0 0 −i
0 1 i 0 0 −1 i 0
0 −i 1 0 0 i 1 0
−i 0 0 1 −i 0 0 −1
1 0 0 i 1 0 0 −i
0 −1 −i 0 0 1 −i 0
0 −i 1 0 0 i 1 0
i 0 0 −1 i 0 0 1

 .

It is easy to check that

KG2
0 ρG2

0 (KG2
0 )† = KG2

1 ρG2
0 (KG2

1 )† = KG2
2 ρG2

0 (KG2
2 )† = ρG2

0 .

In both examples, the density matrix displayed does not have the property
Tr(ρ20) = 1, and it corresponds therefore to a mixed quantum state. We will see,
however, that ρG0 is not a unique mixed quantum state associated to S. For both
examples, There are other density matrices ρj such that the above identities hold.
Namely, we can find two other matrices2 that are not locally equivalent (that is, one
cannot be transformed into the other by multiplication by a n-fold tensor product
of 2× 2 unitary matrices) and three more matrices which are locally equivalent to
the above ones, for a total of six. These six states form a family, the family of
extended graph states associated to this graph. 3

2As we will see, we only consider matrices of the same size (determined uniquely by the graph)
in our extension of graph states.

3If one wishes to define a unique state associated to the graph, it could also be natural to define
the extended graph state associated to the graph as ρ =

∑5
i=0 cjρj , where cj ≥ 0,

∑5
j=0 cj = 1,

i.e., as the convex sum of these density matrices. Note that, although only three of them are locally
inequivalent, we include them all in the general sum ρ, since changing ρj for a locally equivalent

ρ′j does not necessarily give local equivalence in ρ.
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3. Extended graph states

Throughout the remaining sections we define the pure state vectors using a
Boolean function notation [12]. We need a slight generalization of the one in pre-
vious sections, since, as we shall see later in the section, we extend the matrix of
stabilizers to a fully (row) commuting matrix, which does not always have X in
the diagonal, and is thus not the usual stabilizer set of a graph state. A natural
generalization of the stabilizer basis for a graph state (associated to a mixed graph
G) is given by:

Definition 3.1. Let G be a simple undirected graph with weighted nodes, where
the weight can be 0 or 1. For reasons of easy reference, we will refer to the nodes
of weight 0 as white nodes, and to the nodes of weight 1 as red nodes. We define
the stabilizers associated to G as follows:

KG
v = σvZNv = σv

∏
w∈Nv

Zw,

where σv = X if v is a white node, and σv = Y if v is a red node. When G is clear,
we will drop the superscript.

For the construction of extended graph states that we use in this paper we require
this extra generality.

Definition 3.2. Let G be a simple undirected graphs with red and white nodes
as described above. Let A be the modified adjacency matrix of our graph state
with elements Ajk, defined as Ajk = 1 if k ∈ Nj , Ajj = 0 if j is a white node,
and Ajj = 1 if j is a red node. We define the generalized graph state associated
to G, |ψ〉, as |ψ〉 = 2−

n
2 ip, where p : Fn2 → Z4, defined by p(x0, x1, . . . , xn−1) =∑

j<k 2Ajkxjxk +
∑
j Ajjxj .

This is a natural generalization of the concept of graph state. The proof for the
next lemma is straightforward, so we omit it.

Lemma 3.3. Let G be a simple undirected graphs with red and white nodes as
described above, and let KG

v and |ψ〉 defined as above. Then, for any node v,
KG
v |ψ〉 = |ψ〉.
For simplicity of notation, we will associate to the set of stabilizers K0, . . . ,Kn−1

a matrix A defined by Auu = σu and Auv =
{

Z, v ∈ Nu
I, v /∈ Nu , and we will talk about

the multiplication of its rows as the result of the multiplication of the corresponding
stabilizers. In the same spirit, we refer to the commutativity or non-commutativity
of the rows of the matrix A, meaning the commutativity or non-commutativity of
the corresponding stabilizers.

In Example 2) of Section 2, for instance, we obtain the matrix

A =

 X Z I
I X Z
Z I X

←→ K0 = X ⊗ Z ⊗ I
K1 = I ⊗X ⊗ Z
K2 = Z ⊗ I ⊗X

 ,

which has rows that are not pairwise commuting, but can still be interpreted as a
quantum object by making it part of a larger fully commuting matrix, where we
choose the environment appropriately. This will imply that our quantum object is
a mixed state, which we will call an extended graph state (in this paper, we limit
our study to the addition of environmental qubits as opposed to, more generally,
qudits).
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Definition 3.4. Let G be a mixed graph, with associated matrix A, and let e
be the (minimum) number of columns, e, to A so as to make all rows pairwise
commute. Let B be any symmetric matrix obtained by extending A by e environ-
mental columns and rows. We will refer to the graph state associated to B as a
parent graph state of G. We then denote the marginal state given by tracing out
the environmental qubits as its child, in the following way: Let |φ〉 be the parent
graph state. Then, |φ〉 = 2−

n
2 ip(x0,...,xn−1,...,xn−1+e). Let (an, . . . , an−1+e) ∈ Fe2. We

define |φan,...,an−1+e〉 = 2−
n
2 ip(x0,...,xn−1,xn=an,...,xn−1+e=an−1+e), the result of mea-

suring the added variable(s) in xk = ak, n ≤ k ≤ n−1+e. Their respective density
matrices are ρan,...,an−1+e

= |φan,...,an−1+e
〉 〈φan,...,an−1+e

|. Then,

ρ =
1

2e

∑
(an,...,an−1+e)∈Fe2

ρan,...,an−1+e

is the child of the parent |φ〉. Note that the child is, in general, a mixed quantum
state, being pure if and only if G is undirected (in which case, it is the usual graph
state).

NB: We can easily check that ρ is stabilized by the matrix Ka = Xa

∏
b∈Na Zb

associated to the mixed graph G: observe that if p : Fn2 → F4 is an arbitrary
quadratic generalized Boolean function where all quadratic terms are Boolean, then,
Xa will change xa for xa + 1, and each Zb will add the linear term xb, so that

Kai
p = ip(x0,...,xa+1,...,xn−1)+2

∑
b∈Na xb .

Definition 3.5. We define then the family of extended graph states associated to
G as the set of all children of parent graph states of G.4

We are therefore looking to append a (minimum) number of columns, e, to A so
as to make all rows pairwise commute. We can then add the same number, e, of
rows to the matrix to make it square, making sure that all rows pairwise commute.
We will come back to this minimal append parameter e, later in the section.

NB: Note that one could extend by more than one column/row and still obtain a
fully commuting matrix. By stipulating that that we only extend by the minimum
possible number e of columns/rows, we take the most natural generalization of
the concept of graph state, being the most compatible with the pure graph state
formulation as e = 0 forces the state to be pure.

The following example illustrates the concepts of parent and child:
Example: Let K0 = X ⊗ Z ⊗ I, K1 = I ⊗X ⊗ Z and K2 = I ⊗ Z ⊗X, so that

A =

(
X Z I
I X Z
I Z X

)
be the matrix associated to G1 in Section 2. We can extend A

by e = 1 column/row (surely, here, e is minimal, since our original matrix has non-

commuting rows) to get A′ =

(
Z

A X
I

Z I I X

)
=

(
X Z I Z
I X Z X
I Z X I
Z I I X

)
, which is

fully row commuting. Finally, as this matrix is fully commuting we can, by suitable
row multiplications, recover its graph form (meaning that X or Y are on the main

diagonal, and only Z and I are outside the diagonal) with B =

(
X Z I Z
Z X Z I
I Z X I
Z I I X

)
.

4As mentioned in the examples in Section 2, we could alternatively define a unique extended
graph state as the convex sum of all children of parents graph states of G, which is a mixed

quantum state.
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This can be interpreted (via the stabilizers inferred from the rows) as a graph, and,
because it is symmetric, as an undirected graph.

We consider the pure graph state described by B to be a parent graph state,
being a parent of the extended graph state described by A. We then denote the
marginal state given by tracing out the environmental qubits as its child.

Here e = 1, and the parent graph state is |φ〉 = 2
−3
2 (−1)x0(x1+x3)+x1x2 . We mea-

sure x3 at 0 and 1, and obtain |φ0〉 = 2
−3
2 (−1)x0x1+x1x2 = 2

−3
2 (1, 1, 1,−1, 1, 1,−1,

1)T and |φ1〉 = 2
−3
2 (−1)x0(x1+1)+x1x2 = 2

−3
2 (1, 1, 1,−1,−1,−1, 1,−1)T . Note that

K0 |φ0〉 = |φ0〉 = K2 |φ0〉, while K1 |φ0〉 = |φ1〉, and that K0 |φ1〉 = − |φ1〉 =
−K2 |φ1〉, while K1 |φ1〉 = |φ0〉. From these two states, we obtain the density matri-

ces ρ0 = |φ0〉 〈φ0|, ρ1 = |φ1〉 〈φ1|. By the argument above, K0ρ0K
†
0 = ρ0 = K2ρ0K

†
2 ,

while K1ρ0K
†
1 = ρ1, and K0ρ1K

†
0 = ρ1 = K2ρ1K

†
2 , while K1ρ1K

†
1 = ρ0. The child

graph state is then given by ρ = 1
2 (ρ0 + ρ1) = ρG1

0 .
Note that this matrix is stabilized by the operators K0, K1, K2 and that this

is a density matrix, since it has trace 1, it is Hermitian (a complex square matrix
that is equal to its own conjugate transpose) and positive semi-definite (indeed, it
is a convex sum of density matrices, thus, a density matrix [11]). This is, therefore,
a state stabilized by the associated stabilizers for the graph on three vertices with
edges 0→ 1, 12.

NB: A parent graph state, and consequently a child, can be associated to different
mixed graphs (this is a natural consequence of Theorem 5.4, since the density matrix
of a child is, as we shall see there, a sum of a maximal subset of stabilizers of the
graph with the arrows reversed, and such a subset occurs in the stabilizer of different
graphs. However, the family of children, i.e. the family of extended graph states, is
associated with a unique mixed graph.

4. The minimal append parameter e

We now go back to the minimal append parameter e, i.e. the number of
columns/rows that need to be added to the adjacency matrix of the graph to ob-
tain, via linear operations, a symmetric matrix. Let G be the mixed graph defined
by the adjacency matrix A, and Gb be the undirected graph that has adjacency
matrix Γ = A + AT . Thus, Gb is the simple graph obtained from G by erasing all
undirected edges of G and making all directed edges of G undirected. We recall the
following result, which is a consequence of [1].

Lemma 4.1. The minimum number, e, of columns and rows required to be added
to A to make its rows pairwise fully commuting is given by

e =
1

2
rank(Γ).

(We refer to e as the mixed rank).

NB: Note that the rank (we need here the rank over the binary field, though the
result is more general) of a symmetric binary matrix with zero diagonal, such as Γ,
is always even [4].

Lemma 4.2. The extension columns and rows do not depend on the direction of
the arrows. (Note however that the parent graphs, and therefore the children states,
do depend on the direction of the arrows.)
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Proof. Note that from the previous lemma, it is easy to see that Γ is the same
regardless of the direction of the arrows, consequently, the number of extension
columns and rows is independent of the arrow direction. Furthermore, how we
can extend the columns/rows depends exclusively on the commutativity or anti-
commutativity of the stabilizer basis, which is not dependent on arrow direction.

For example 1) in Section 2, where A =

 0 1 0
0 0 1
0 1 0

, and so, A =

 X Z I
I X Z
I Z X

,

the minimum number of columns and rows necessary to add to A to make it fully
commuting is

e =
1

2
rank(Γ) =

1

2
rank

(
0 1 0
1 0 0
0 0 0

)
= 1,

which is consistent to what we have previously observed. We extended to a 4-qubit
pure graph parent state where the 4th qubit is part of the environment. This pure
graph state can be written using the Boolean function notation as

|ψ〉e =
1

4
(−1)x0x1+x0x3+x1x2 =

1

4
(1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1)T .

Tracing out the 4th qubit, i.e., summing the projections obtained by fixing x3 = 0
and 1, respectively, we obtain the projections |φ0〉〈φ0| and |φ1〉〈φ1|, where |φ0〉 =
1√
8
(−1)x0x1+x1x2 , |φ1〉 = 1√

8
(−1)x0x1+x1x2+x0 , and then ρ = 1

2 (|φ0〉〈φ0|+ |φ1〉〈φ1|).
As we have seen, we can interpret the stabilizer matrix A as representing the mixed
quantum state ρ. To obtain one more member of the family, observe that it is

equally valid to extend A to A′ =

(
X

A Z
I

I Z I X

)
=

(
X Z I X
I X Z Z
I Z X I
I Z I X

)
, which,

by multiplicative row operations, renders Ae =

(
X I I I
I X Z Z
I Z X I
I Z I X

)
. It is clear

(since the former is a connected graph and the latter is not) that the parent graph
state described by this Ae is locally inequivalent to the previous parent. Therefore
the resultant mixed state, ρ = |φ0〉〈φ0|+ |φ1〉〈φ1|, obtained by tracing out the 4th
qubit, is different from the previous mixed state.

We shall see in later sections (see our main Theorem 5.4) that these density
matrices are given in terms of the Pauli group by:

ρ =
∑
j∈J

σj ,

where ±1,±i{σj : j ∈ J} is a maximal commutative subgroup of the Pauli group
generated by the stabilizer of the graph with reversed edges’ direction5. The fol-
lowing sections will therefore include a discussion over this type of subgroup. We
will also see a simple formula to compute the size of a family (see Corollary 3).

We next define the codespace (that is, the stabilizer group S) of the n×n matrix
A to be the 2n stabilizers formed by products of one or more of the rows of A (recall
that, as some of the rows of A anti-commute, some of the members of S are only
defined up to a global multiplicative constant of ±1). Likewise, the codespace of Ae

5Here we can also see how this is a natural generalization of the concept of graph states; in
the case of an undirected graph the graph with reversed arrows is itself, and the only maximal

commutative subgroup is the whole group of stabilizers.
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comprises 2n+e stabilizers, but now all rows of Ae commute, so the global constant
is always 1.

We now introduce the well known Hadamard matrix, H = 1√
2

(
1 1
1 −1

)
as well

as the negaHadamard matrix N = 1√
2

(
1 i
1 −i

)
, both being unitary.

Proposition 4.3. The Pauli group, {I,X,Z, Y }, is conjugated (up to a factor of
±1) by the group generated by {I,H,N}. Specifically,

I H N N2 NH HN
X X Z −Y Z X Y
Z Z X X −Y −Y Z
Y Y −Y −Z −X Z −X

where the table is read in the following way: the entry matrix C at the intersection
of the row corresponding to the matrix A and column matrix B, means that C =
BAB†. For instance, X = HZH†, −Z = NYN†, and −X = N2Y (N2)†.

Proof. The proof follows by straightforward computation.

Proposition 4.3 implies that, by conjugation, to within a factor of ±1, we can
permute column-wise (there are 3! = 6 such permutations) the elements of the
stabilizer matrix.

The following proposition is well known [10] and so, we omit its proof.

Proposition 4.4. Consider a quantum system comprising a local system, L, possi-
bly entangled with an environment, E, and let ρL be the density matrix that defines

the local system. Then, the unitary conjugation, UE(L×E)U†E on the environment
leaves ρL unchanged.

By Propositions 4.3 and 4.4, we can always perform the extension to a fully
commutative stabilizer set by taking X as elements jj, j = 1, . . . , n+ e− 1.

5. Children of pure graph state parents

In this section, we will state and prove the main theorem of the paper, which
describes how a extended graph state can be expressed as the sum of terms of a
commutative subgroup of the stabilizer group of the companion graph. The different
maximal commutative subgroups correspond to different extensions of the stabilizer
set. We also express the coefficients in this sum in terms of the particular extension
that gives rise to a child.

Certainly, if Γ is the adjacency matrix of a graph G, then ΓT is the adjacency
matrix of the graph with the arrows reversed (the companion graph). In terms of
the matrix given by the stabilizer, A, the corresponding stabilizer group is defined
by AT .

Let A = (σij), where σij ∈ {X,Z, I}, be, as before, the stabilizer matrix. We let

ATk = σ0k ⊗ σ1k ⊗ · · · ⊗ σ(n−1)k.

Given K = {k1 < k2 < . . . < ks} ⊆ {0, 1, . . . , n − 1}, we define ATK =
∏s
i=1ATki

(surely, another ordering is just as valid, and would differ from our defined ATK by
a possible global multiplicative factor of −1, if the factors anti-commute). We can
now let ST =

{
ATK : K ⊆ {0, 1, . . . , n− 1}

}
. Note that this is, up to multiplication

with a global constant ±i, the stabilizer group of the graph with the arrows reversed.
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In this section, given a binary string of length n, j = j0 · · · jn−1, we define the
matrices

←
s j := ATK , where K = supp(j) = {i : ji = 1} (the arrow above is set

to indicate that these are associated to the graph with the arrows reversed). By
convention,

←
s 0...00 = In. Note that the order of multiplication situation carries over

to the
←
s j . In our main Theorem 5.4, the coefficients bj are therefore only defined

up to ±1. Before we state and prove our theorem, we will need several lemmas.
By the support of a matrix M = {Mij}i,j of dimension t × t, denoted, by abuse
of notation, supp(M), we mean the set of nonzero element positions of M , that is,
supp(M) = {(i, j) ∈ {0, . . . , t − 1}2 : Mij 6= 0}6. We also let (a, b) + supp(M) =
{(i+ a, j + b) : (i, j) ∈ supp(M)}. We denote by RA the set of indices k such that
the matrix in position k is A.

Lemma 5.1. Let
←
s j ∈ S⊥, the stabilizer group of the graph with the arrows re-

versed. Then, for any (0, k) ∈ supp(
←
s j), with k =

∑n−1
`=0 a`2

`, and a` = 1 if and
only if (n− `, n− `) ∈ RX ∪RY .

Proof. If M be a t× t matrix, then,

I ⊗M =

(
M 0
0 M

)
and X ⊗M =

(
0 M
M 0

)
.

Note that X has the same support as Y , and Z has the same support as I, so we
only have to consider these two cases. First, observe that

supp(I ⊗M) = supp(M) ∪ ((t, t) + supp(M)) , and

supp(X ⊗M) = ((0, t) + supp(M)) ∪ ((t, 0) + supp(M)) .

Let
←
s j =

⊗
RX

X
⊗

RY
Y
⊗

RZ
Z
⊗

RI
I. From the above observations, (0, k) ∈

supp(
←
s j), with k =

∑n−1
`=0 a`2

`, and a` = 1 if and only if (n−`, n−`) ∈ RX∪RY .

Lemma 5.2. The set of length n Pauli words (stabilizers) that commute with all
rows of A forms a multiplicative group S⊥ of size 2n, identifying with AT (up to
±1 constants).

Proof. Certainly, every row of AT commutes with every row of A. This set is
maximal, since half of the possible length n Pauli words commute with a given row.
The (independent) n rows of AT jointly commute with 4n/2n = 2n Pauli words.
However, the rows of AT generate 2n distinct words and consequently these are the
only ones occurring.

Lemma 5.3. The elements of the stabilizer group S⊥ of a mixed graph have non-
intersecting support.

Proof. First, we observe that the Pauli matrices {X,Y } have intersecting support,
which is disjoint from the common intersecting support of {I, Z}. If a tensor product
of Pauli matrices differ in at least one tensor position, one from {X,Y }, and another
from {I, Z}, then these tensor products also have non-intersecting support. As
observed, the matrix A only has X and/or Y on the diagonal and I and/or Z on
the off diagonal. We let A have rows numbered 0 to n−1. Let R,R′ ⊆ {0, . . . , n−1},
and consider the matrices σ̃kR and σ̃kR′ , being the product of the rows of A indexed
by R,R′, respectively. Then σ̃kR and σ̃kR′ have X or Y at tensor positions indexed
by R,R′, respectively, and I or Z at the other positions. So, unless R,R′ are equal,

6For ease of notation in the results above, we index from 0 to t − 1, instead of the more
conventional from 1 to t.



12 Constanza Riera, Matthew G. Parker and Pantelimon Stănică

they must be non-intersecting in at least one tensor position, so therefore σ̃kR and
σ̃kR′ have non-intersecting support. The elements of the stabilizer group of the
mixed graph are obtained by ranging R over all stabilizer codewords, therefore any
two of them must be non-intersecting.

We now state and prove our main theorem.

Theorem 5.4. Let Lm = {v : (Ae)v,n+m = Z or Y }, I(x) =

e−1∏
m=0

(
1 +

∑
k∈Lm

xk

)
=

e−1∏
m=0

Im(x), and J = {x ∈ Fn2 : I(x) = 1}. Given a directed graph associated with

A, whose symmetric extension is Ae, the child ρ of the pure graph state associated
with Ae is then given by

ρ =
1

2n

∑
j∈J

bj
←
s j , bj ∈ {±1,±i}, ∀j ∈ J.

Furthermore, all
←
s j , j ∈ J , pairwise commute, and if

←
s j ,

←
s j′ are present in the

sum, so is
←
s j
←
s j′ =

←
s j+j′ , therefore, {←s j : j ∈ J} is a commutative subgroup of S⊥.

Proof. The qubits present in each Lm will be the ones connected with the envi-
ronmental qubit n + m, implying that the difference between the measurement in
xn+m = 0 and xn+m = 1 will be the Boolean function

∑
k∈Lm xk. The support of

ρ will be equal to the binary vectors such that these Boolean functions are 0 for all
m. Certainly, ρ can be expressed as the sum of some of the matrices in S⊥.

By Lemma 5.3, all the matrices in S⊥ have non-intersecting support: ρ will
be equal to the sum of the matrices in S⊥ whose support intersects the support
of ρ; therefore, it is sufficient to find the nonzero entries of the first row of the
matrix. It is easy to check that any matrix in S⊥ has only one nonzero entry
on the first row. In other words, ρ will be equal to the sum of the matrices whose

support intersects {(0, k), k ∈ K}, where K =

{
n−1∑
m=0

2mbm,∀b = b0b1 . . . bn−1 ∈ J

}
,

and J is the indicator of the Boolean function

e−1∏
m=0

( ∑
k∈Lm

xk + 1

)
. Surely, by

Lemma 5.1, these matrices are equal to
←
s j , where j ∈ J . To complete the proof

of our theorem, it remains to show that all
←
s j , j ∈ J , pairwise commute, and if

←
s j ,

←
s k are present in the sum, so is

←
s j
←
s k (this last claim follows from the fact

that the indicator J is a linear space, since
←
s j
←
s k corresponds to the sum of the

Boolean vectors). Now we shall show the commutative property. Let j, k ∈ J .

We can write
←
s j =

∏
a∈A
ATa , and

←
s k =

∏
b∈B

ATb , where ATa ,ATb are in the basis of

S⊥. The corresponding Aa ∈ S, a ∈ A, have an even number of Y and Z in each
extension column, and similarly for B. Therefore, both

←
s j ,

←
s k have either X, I in

all extension columns, and therefore they commute.

Let jα ∈ Fn2 and jα,β ∈ Fn2 , 0 ≤ α, β < n be the weight-one and weight-two
binary vectors of support α, respectively, {α, β}. The following, also important,
result discuses the sign of bj .
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Theorem 5.5. Given a directed graph associated with A, whose symmetric exten-
sion is Ae, the coefficients bj from Theorem 5.4 of the child ρ of the pure graph
state associated with Ae, can be described as follows:

(A) Case e = 1:
(1) If

←
s jα is present in the sum, then bjα = +1.

(2) If
←
s jα,β is present in the sum, and :

(i) if
←
s jα and

←
s jβ anti-commute, then ∃ a, b ∈ {α, β} such that (Ae)a,n =

Z and (Ae)b,n = Y ; furthermore, the corresponding term in the sum
will be equal to ±iAT{α,β} = iATaATb , so bjα,β = ±i;

(ii) if ATα and ATβ commute, the corresponding term in the sum will be

equal to AT{α,β}, and bjα,β = 1.

(3) Any other matrices, ATK , will be products of ATKj also present in the sum,

with Kj of size 1 and size 2. Furthermore, their coefficients are given
by the multiplication of the coefficients of the terms into which they are
decomposed.

(B) Case e > 1: The coefficient of ATK , with K of size 1 or 2 is given by multiplying
together the coefficients, one from each extension column. Here, there might
be nondecomposable terms, however, the coefficient of a term will be giving by
multiplying the coefficients obtained by taking each column separately.

Furthermore, for any e, if we change the sign of a term ATk , 0 ≤ k < n, then
we add the Boolean linear term xk to the quadratic Boolean representation of the
pure parent graph state, or if we change the sign of ATK , for a set K of size > 1
present in the sum, we add any of the Boolean linear terms xk for each k such that
(Ae)n+j,k = Y or (Ae)n+j,k = Z.

Proof. Since all parent Boolean functions have no constant terms and no linear
terms involving the environmental qubits, the first entry in a truth table for each
measurement |ψm〉 will always be +1. The first row of the density matrix for each
measurement |ψm〉 will therefore be equal to 1

2n/2
〈ψm|. Also, note that the final ρ

will be nonzero only where the entries for all |ψm〉 are equal, and will then be equal
to any of them; it is therefore enough to look at 〈ψ0...0|.

Case e = 1:

• Size 1: By the proof of Theorem 5.4, any term, ± 1
2nA

T
j , 0 ≤ j ≤ n− 1 is such

that (Ae)j,n = X or I. Since row j of the stabilizer of the parent graph state,
Ae, is equal to A⊗(extension entries), there is no linear term xj in the parent

graph, so that the entry 0 . . .
u↓
1 . . . 0 of |ψ0...0〉 (and therefore of 〈ψ0...0|) of

the parent is + 1
2n/2

. As the first row of ATj has + 1
2n/2

in the same position,

the coefficient of
←
s j is + 1

2n .

• Size 2: Suppose that the matrix AT{j,k} 0 ≤ j, k ≤ n − 1, is present in the

sum. If ATj and ATk anti-commute, the term in the sum will be ± i
2nA

T
{j,k} 0 ≤

j, k ≤ n − 1, since otherwise ± i
2nA

T
j ATk , 0 ≤ j, k ≤ n − 1, would not be

Hermitian. Furthermore, neither ATj or ATj are present in the sum, because by
Theorem 5.4 this would imply that both would be present and would therefore
be commuting. This implies that ∃ a, b ∈ {j, k} such that (Ae)a,n = Y and
(Ae)b,n = Z. The first row of ± i

2nA
T
j ATk has its only nonzero entry where

xj = xk = 1, xu = 0 ∀u 6= j, k. Therefore, the entry in |ψ0〉 will be given by the



14 Constanza Riera, Matthew G. Parker and Pantelimon Stănică

presence or absence of xjxk, xj , xk, in the ANF of the parent graph. Since ATj
and ATk anti-commute, the restriction of Aj ,Ak (that also anti-commute) to
the pair j, k will give XαZβ and IαXβ for α, β ∈ {j, k}. This implies that the
restriction of ATα and ATβ are, respectively, XαIβ and ZαXβ , so the restriction

of iATαATβ is YαXβ . Note that we only need to look at the restriction, since
any further Kronecker product will be by X, Z or I, and these will not change
the first non-zero entry.

– If the extension column gives (Ae)α,n = Z and (Ae)β,n = Y , we get
the term 2(xαxβ + xβ) + xβ in the parent graph, so |ψ0〉 has entry i for
xj = xk = 1, xu = 0, ∀u 6= j, k, which implies that 〈ψ0| has entry −i,
the same as the entry in the first row of the matrix given by the order of
multiplication ATαATβ .

– If the extension column gives (Ae)α,n = Y and (Ae)β,n = Z, we get the
term 2xα+xα in the parent graph, so |ψ0〉 has entry −i (so 〈ψ0| has entry
i) for xj = xk = 1, xu = 0, ∀u 6= j, k, the same as the entry in the first
row of the matrix given by the order of multiplication ATβATα .

Suppose ATj and ATk commute. Then, the term ± 1
2nA

T
j ATk , 0 ≤ j, k ≤

n − 1, is present in the sum, and the matrices are commuting, since ATj ATk
is Hermitian. By inspection, on the pair Aj ,Ak ∈ S, XαZβ and ZαXβ give
entry −1, regardless of extension (note that they have the commuting entry
in the extension column), and the same is true for ATj ATk . Since XαIβ and

IαXβ give entry +1, regardless of extension, the same is true for ATj ATk .

• By the proof of Theorem 5.4, ATK , K ⊆ {0, . . . , n−1}, is present in the sum if
and only if the corresponding stabilizer ATK has either X or I in the extension
column. Therefore, there exists a (not necessarily unique) decomposition in
size 1 and size 2 terms that have either X or I in the extension column (since
Y Z = iX), and, as the entry xj = 1, ∀j ∈ A, xj = 0, ∀j /∈ A will depend on
the sum of the terms for the size 1 and size 2 cases, as the Boolean function
has degree at most 2, this entry will depend on the entry of the size 1 and
size 2 cases, and therefore the coefficient will be the multiplication of the size
1 and size 2 cases (for any given decomposition).

Case e > 1. Since the case e = 1 was independent of the actual stabilizers (it only
depends on the extension), each new column will modify the Boolean expression,
accordingly. Therefore, the coefficient of any term is given by the multiplication of
the coefficient resultant of each extension column.
Change of sign: Let us first assume that j has weight 1, with support in k. Note
that each ATj has support in (0, 2k). In terms of 〈ψ0...0|, this means that changing

the sign of ATj changes the sign in the jth element in |ψ0...0〉 (and, therefore in
〈ψ0...0|). This is equivalent to adding a linear term xk as long as we change the
sign all elements in |ψ0...0〉 (and, therefore in 〈ψ0...0|) with xk = 1. Suppose now
that j has weight > 1. If we change the sign in j, we have to change also the signs
of an odd number of its decomposing terms. Consider therefore the smallest terms
present in the group. If the sign changed is of weight 1, we refer to our previous
discussion. If the weight is t > 1, with support in k1, . . . , kt, then any of the Aki
are not elements in the subgroup. Adding any linear term xki will give the desired
matrix, since it is zero in the places were it might differ.

Corollary 1. The commutative subgroup corresponding to a child is maximal.
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Proof. Each column added produces an affine linear Boolean function fi, which gives
a constraint to the indicator J of f =

∏
fi. Each constraint fi is nontrivial (that is,

it is not a constant), because if this were the case, then the column would only have
X and I, and would therefore be superfluous, yielding a contradiction. The fi’s are
all independent, otherwise we get redundant columns, yielding a contradiction with
e being minimal. Furthermore, any new independent linear constraint reduces by
half the size of the indicator, which means that this size is equal to 2n−e, so it is a
maximal commutative subgroup.

Example: Let the directed triangle G2 Section 2 be defined by the stabilizer basis
A0 = X ⊗ Z ⊗ I, A1 = I ⊗X ⊗ Z, A2 = Z ⊗ I ⊗X. The basis of S⊥ is given by
reversing the arrows: AT0 = X ⊗ I ⊗ Z, AT1 = Z ⊗ X ⊗ I, AT2 = I ⊗ Z ⊗ X, so
S⊥ = {←s 000 = I ⊗ I ⊗ I,←s 100 = X ⊗ I ⊗Z, ←s 010 = Z ⊗X ⊗ I, ←s 110 = −iY ⊗X ⊗
Z,
←
s 001 = I⊗Z⊗X,←s 101 = iX⊗Z⊗Y, ←s 011 = −iZ⊗Y ⊗X, ←s 111 = −iY ⊗Y ⊗Y }.

One of the two parents is formed by adding the column (X,Z, Y )T to A, rendering
i2(x0x2+x1x2+x1x3+x2x3+x2)+x2 = i2(x0x2+x1x2+x2+(I(x)+1)x3)+x2 . Here L3 = {1, 2},
and I(x) = x1 + x2 + 1, so J = 〈100, 011〉 = {000, 100, 011, 111}.7 By tracing over
the environmental qubit x3 we get

ρ =
1

8
(I ⊗ I ⊗ I +X ⊗ I ⊗ Z + Z ⊗ Y ⊗X + Y ⊗ Y ⊗ Y )

=
1

8

(←
s 000 +

←
s 100 + i

←
s 011 + i

←
s 111

)
.

Note that X ⊗ I ⊗ Z and Z ⊗ Y ⊗X commute, and that (X ⊗ I ⊗ Z) · (Z ⊗ Y ⊗
X) = Y ⊗ Y ⊗ Y . Another parent is formed by adding the column (X,Y, Z)T

to A, rendering i2(x0x2+x1+x1x3+x2x3)+x1 = i2(x0x2+x1+(I(x)+1)x3)+x1 . Once again
L3 = {1, 2}, I(x) = x1 + x2 + 1, and J = {000, 100, 011, 111}. By tracing over the
environmental qubit x3 we get

ρ =
1

8
(I ⊗ I ⊗ I +X ⊗ I ⊗ Z − Z ⊗ Y ⊗X − Y ⊗ Y ⊗ Y )

=
1

8

(←
s 000 +

←
s 100 − i

←
s 011 − i

←
s 111

)
= ρG2

0 .

H and G are unchanged. Observe that the second parent is obtained from the first
by swapping the positions of Y and Z in rows 1 and 2 of the extra column (column
3). In terms of the Boolean function representation of the parents, this translates
to adding the Boolean quadratic terms x1x2 +x1 +x2, and removing x2 and adding
x1, Z4-linear terms. Observe that the coefficients of the Pauli basis terms Z⊗Y ⊗X
and Y ⊗ Y ⊗ Y are multiplied by −1. This is because both terms are generated
from rows 1 and 2 of AT which are the rows where Y and Z are swapped in Ae.

For each parent we can also consider how the addition of binary linear terms (in
the lab) affects the resultant child density matrix. We do not currently consider
the addition of binary linear terms in the environment (x3 for this example). For in-
stance, for the addition of column (X,Z, Y )T then i2(x0x2+x1x2+x1x3+x2x3+x0+x2)+x2 ,
that is, the addition of x0, simply flips the signs of X ⊗ I ⊗ Z and Y ⊗ Y ⊗ Y as
both terms have row 0 of AT as a factor. However, the addition of x1 or x2 has
the same effect as swapping Y and Z in rows 1 and 2, so swaps between the two

7We can reinterpret I(x) and J as parity and generator matrices, H and G, respectively, where

H = (011) and G =

(
100

011

)
, and where G generates the binary linear code with codewords in

set J .
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parents. Thus, the addition of Ī(x) = I(x) + 1 fixes the child density matrix. So,
we have the following maps for a ∈ {0, 1} (in the left column, we insert only the
signs (ε1, ε2, ε3) from I ⊗ I ⊗ I + ε1X ⊗ I ⊗ Z + ε2Z ⊗ Y ⊗X + ε3Y ⊗ Y ⊗ Y ):

child = 8ρ parent

(+1,+1,+1) 2(x0x2 + x1x2 + x2 + Ī(x)(x3 + a)) + x2,
2(x0x2 + x1 + x2 + Ī(x)(x3 + a)) + x1,

(−1,+1,−1) 2(x0x2 + x1x2 + x0 + x2 + Ī(x)(x3 + a)) + x2,
2(x0x2 + x0 + x1 + x2 + Ī(x)(x3 + a)) + x1,

(+1,−1,−1) 2(x0x2 + x1 + Ī(x)(x3 + a)) + x1,
2(x0x2 + x1x2 + x1 + x2 + Ī(x)(x3 + a)) + x2,

(−1,−1,+1) 2(x0x2 + x0 + x1 + Ī(x)(x3 + a)) + x1,

2(x0x2 + x1x2 + x0 + x1 + x2 + Ī(x)(x3 + a)) + x2.

Other children given by the extensions (Z,X, Y )T and (Z, Y,X)T are, respectively,

ρ1 = 1
8
(I ⊗ I ⊗ I + aZ ⊗X ⊗ I + bX ⊗ Z ⊗ Y + cY ⊗ Y ⊗ Y ) = 1

8

(←
s 000 + a

←
s 010 − bi

←
s 101 + ci

←
s 111

)
,

ρ2 = 1
8
(I ⊗ I ⊗ I + aY ⊗X ⊗ Z + bI ⊗ Z ⊗X + cY ⊗ Y ⊗ Y ) = 1

8

(←
s 000 + ai

←
s 110 + b

←
s 001 + ci

←
s 111

)
,

with condition c = ab, a, b ∈ {1,−1} in both cases.
Example: Let a mixed 6-clique graph be defined by the stabilizer basis

A =


X Z Z Z Z Z
I X Z Z Z Z
I I X Z Z Z
I I I X Z Z
I I I I X Z
I I I I I X.

 .

Then the basis of S⊥ is obtained from AT . The parents are obtained by adding
e = 3 columns to A, with subsequent addition of e = 3 rows. For instance, one
parent is given by

Ae =



X Z Z Z Z Z X I X
I Y Z Z Z Z Y I X
I I X Z Z Z Z I X
I I I X Z Z I X Y
I I I I X Z I Y Y
I I I I I X I Z Y
I Z Z I I I X I I
I I I I Z Z I X I
I I I Z Z Z I I X



≡



X I I I I I I I I
I Y I I I I Z I I
I I X I I I Z I I
I I I Y Z Z I I Z
I I I Z X Z I Z Z
I I I Z Z Y I Z Z
I Z Z I I I X I I
I I I I Z Z I X I
I I I Z Z Z I I X


,

which represents

i2(x1x6+x2x6+x3x4+x3x5+x3x8+x4x5+x4x7+x4x8+x5x7+x5x8+x1+x3+x4+x5)+x1+x3+x5 .

Here L3 = {1, 2}, L4 = {4, 5}, L5 = {3, 4, 5}, and I(x) = (x1 + x2 + 1)(x4 + x5 +
1)(x3 + x4 + x5 + 1), so

J = 〈100000, 011000, 000011〉
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= {000000, 100000, 011000, 111000, 000011, 100011, 011011, 111011}.

We can re-interpret I(x) and J as parity and generator matrices, H and G,

respectively, where H =

(
011000
000011
000111

)
and G =

(
100000
011000
000011

)
, and where G generates

the binary linear code with codewords in set J . By tracing over the environmental
qubits, x6, x7, x8, we get

8ρ = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I +X ⊗ Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z − I ⊗X ⊗ Y ⊗ I ⊗ I ⊗ I
−X ⊗ Y ⊗X ⊗ Z ⊗ Z ⊗ Z − I ⊗ I ⊗ I ⊗ I ⊗X ⊗ Y −X ⊗ Z ⊗ Z ⊗ Z ⊗ Y ⊗X

+I ⊗X ⊗ Y ⊗ I ⊗X ⊗ Y +X ⊗ Y ⊗X ⊗ Z ⊗ Y ⊗X.

Remark 1. Note that allowing superflous constraints fi will give commutative
subgroups that are in general not maximal. In this way, we could also extend
graph states in a natural way: the density matrix for the graph state is given
by the sum of all the elements of the stabilizer (since it is self-dual), and of
course any consistent sign changes that give linear terms (eigenvalue −1). We
can however define more density matrices that are stabilized by the stabilizer of
the graph state, by allowing also smaller commutative subgroups. For instance,
a density matrix associated to the undirected line from 0 to 1 could be then ρ =
a0 (I ⊗ I ±X ⊗ Z ± Z ⊗X ± Y ⊗ Y ) +a1 (I ⊗ I ±X ⊗ Z) +a2 (I ⊗ I ± Z ⊗X) +
a3 (I ⊗ I ± Y ⊗ Y )+a4I⊗ I, where

∑
ai = 1. Note that in the first term, the signs

have to be consistent, changing for instance X ⊗ Z to −X ⊗ Z forces the change
Y ⊗ Y to −Y ⊗ Y .

6. Finding commutative subgroups of S⊥ directly from the graph

Given a mixed graph G and one of its parents, we know how to define the density
matrix of its child in terms of the Pauli group, by Theorem 5.4, and that the terms
of the sum form a commutative subgroup of S⊥; we will show in this section that
we can find all commutative subgroups directly from the graph G, or alternatively
from the adjacency matrix ofGb (the simple undirected graph with adjacency matrix
Γ = A+AT ). We start with a lemma.

Lemma 6.1. Let sj be row j in S, and let
←
s j be the corresponding row in S⊥. Then,

←
s j commutes with

∏
k∈K

←
s k if and only if |K ∩ Nj | ≡ 0 (mod 2). Furthermore,∏

j∈A
←
s j commutes with

∏
k∈K

←
s k if and only if the sum over A of the number of

elements of K ∩Nj is even.

Proof. First, we shall prove that
←
s j commutes with

∏
k∈K

←
s k if and only if the

number of elements of K ∩Nj is even. Observe that
←
s j will anti-commute with any

←
s k such that k ∈ K ∩ Nj , that is, any k in the neighborhood. If there are an even
number of these, the (possible) minus sign will cancel each other out, so that

←
s j

commutes with
∏
k∈K

←
s k. If this number is odd, then there will be a minus sign

left, and
←
s j will anti-commute with

∏
k∈K

←
s k.

Now, we shall prove that
∏
j∈A

←
s j commutes with

∏
k∈K

←
s k if and only if the

sum over A of the number of elements of K ∩ Nj is even. By the first part of
the proof, we know that each of the

←
s j will commute with

∏
k∈K

←
s k if and only

if the number of elements of K ∩ Nj is even. If this number is odd,
←
s j will anti-

commute with
∏
k∈K

←
s k. However, if the sum of the number of elements for each

j ∈ A is even, the (possible) minus signs will cancel each other out, so that
∏
j∈A

←
s j
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commutes with
∏
k∈K

←
s k. If this number is odd, then there will be a minus sign

left, and
∏
j∈A

←
s j will anti-commute with

∏
k∈K

←
s k.

Example: Let Gb be the simple graph 01, 04, 12, 23, 34, 14. Then,
←
s 0 commutes

with
←
s 3 (since they are independent, so the intersection is empty), and both com-

mute with
←
s 4
←
s 2
←
s 1, since 0 has 1 and 4 as neighbors, and 3 has 2 and 4 as neighbors,

so both have two elements in the intersection with K = {1, 2, 4}. Note, however,
that

←
s 0(

←
s 4
←
s 2
←
s 1) = −←s 4

←
s 0
←
s 2
←
s 1 = −←s 4

←
s 2
←
s 0
←
s 1 = +

←
s 4
←
s 2
←
s 1
←
s 0. We also have

that
←
s 3
←
s 2 commutes with

←
s 4
←
s 1
←
s 0, since 3 has 1 neighbor in K = {0, 1, 4}, and 2

has 1 neighbor in K, so the sum over A = {2, 3} is 2, which is even.
In general, in terms of the adjacency matrix of Gb, we have the following propo-

sition.

Proposition 6.2. Let sj be row j in S, and let
←
s j be the corresponding row in

S⊥. Then,
←
s j commutes with

∏
k∈K

←
s k if and only if

⊕
K rk,j = 0, where ′⊕′

is the binary sum. Furthermore,
∏
j∈A

←
s j commutes with

∏
k∈K

←
s k if and only if⊕

j∈A,k∈K rk,j = 0. (Note that due to the symmetry of the adjacency matrix, we

get
⊕

j∈A
⊕

k∈K rk,j =
⊕

k∈K
⊕

j∈A rj,k, which ensures that commutativity is a

symmetric relationship.)

Proof. First, we are going to prove that
←
s j commutes with

∏
k∈K

←
s k if and only

if
⊕

K rk,j = 0. By Lemma 6.1,
←
s j commutes with

∏
k∈K

←
s k ⇔ the number of

elements of K ∩Nj is even. But this is equivalent with there being an even number
of rows k ∈ K such that ck,j = 1, which is equivalent with

⊕
K rk,j = 0.

Now, we shall prove that
∏
j∈A

←
s j commutes with

∏
k∈K

←
s k if and only if⊕

j∈A,k∈K rk,j = 0. By Lemma 6.1,
∏
j∈A

←
s j commutes with

∏
k∈K

←
s k if and

only if the sum over A of the number of elements of K ∩ Nj is even. But this is
equivalent with there being an even number of rows k ∈ K such that the amount
of ck,j = 1 is even, which is equivalent with

⊕
j∈A,k∈K rk,j = 0.

Example: In the previous example, ΓGb =

 0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0

. We can see that

←
s 0 commutes with

←
s 3, since r3,0 = 0, and both commute with

←
s 4
←
s 2
←
s 1, since⊕

{1,2,4} ck,0 = 1 ⊕ 0 ⊕ 1 = 0 and
⊕
{1,2,4} ck,3 = 0 ⊕ 1 ⊕ 1 = 0. We also observe

that
←
s 3
←
s 2 commutes with

←
s 4
←
s 1
←
s 0, since

⊕
j∈{2,3}

⊕
k∈{0,1,4} rk,j = (0⊕ 1⊕ 0)⊕

(0⊕ 0⊕ 1) = 0.

Remark 2. Note that if
∏
j∈A cj commutes with

∏
k∈K ck and

∏
j∈A′ cj commutes

with
∏
k∈K ck, and A ∩ A′ = ∅, then

∏
j∈A,A′ cj commutes with

∏
k∈K ck. Sim-

ilarly, if
∏
j∈A cj anti-commutes with

∏
k∈K ck and

∏
j∈A′ cj anti-commutes with∏

k∈K ck, and A∩A′ = ∅, then
∏
j∈A,A′ cj commutes with

∏
k∈K ck. If one of them

commutes and the other anti-commutes, we get anti-commutativity. This implies
that subgroups can be combined to generate other subgroups in an easy way, so
that we only have to look at the commutativity of each of the cj . Note also that
by multiplying two elements that commute with another one, we get a smaller sub-
group than the one that has those elements and the one they commute with, so
these should be discarded when searching for maximal subgroups.
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Example: Let G be the graph defined by the stabilizer basis {X⊗Z⊗Z⊗Z, I⊗X⊗
I⊗I, I⊗Z⊗X⊗Z, I⊗I⊗Z⊗X}. We want to find all maximal commutative sub-

groups. The adjacency matrix of Gb is ΓGb =

(
0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

)
. The binary linear

code generated by this matrix is C = {0000, 0111, 1010, 1100, 1000, 1101, 1011, 1111,
0110, 0010, 0100, 0001, 0011, 0101, 1110, 1001} = F4

2 (this is obvious since ΓGb has
full rank).

The size of a maximal commutative subgroup will be 2n−e = 22 = 4. Now,
←
s j commutes with

∏
k∈K

←
s k if and only if the corresponding element in the code,⊕

k∈K rk, where rk denotes row k in ΓGb , has 0 in position j.

• Thus,
←
s 0 commutes (trivially) with the identity and itself, and with

←
s 1
←
s 2,

←
s 1
←
s 3,

←
s 2
←
s 3 of size 2, and with

←
s 0
←
s 1
←
s 2,

←
s 0
←
s 2
←
s 3,

←
s 0
←
s 1
←
s 3 of size 3. We can

take a basis for each subgroup, for instance we consider the set {←s 1
←
s 2,

←
s 1
←
s 3,

←
s 2
←
s 3}. Each of these size 2 elements, together with

←
s 0, will generate a

maximal commutative subgroup.
• ←s 1 commutes with

←
s 3,

←
s 0
←
s 2,

←
s 0
←
s 2
←
s 3.

• ←s 2 commutes with
←
s 3,

←
s 0
←
s 1,

←
s 0
←
s 1
←
s 3.

• ←s 3 commutes with
←
s 1,

←
s 2,

←
s 1
←
s 2.

Note that the subgroups generated by
←
s 1,

←
s 3, and

←
s 2,

←
s 3 are counted twice here.

One should avoid repetitions by inspecting in lexicographic order. Note also that if
←
s k and

←
s v commute with

←
s j , then

←
s k
←
s v commute with

←
s j . These are all containing

at least one element of size 1. Containing at least one element of size 2 (discounting
those already found):

• ←s 0
←
s 1 commutes with

←
s 0
←
s 3,

←
s 0
←
s 2
←
s 3.

• ←s 0
←
s 2 commutes with

←
s 0
←
s 3,

←
s 0
←
s 1
←
s 3.

• ←s 0
←
s 3 commutes with

←
s 1
←
s 2.

There are no more independent maximal commutative subgroups. Note that
each element is in 3 maximal commutative subgroups, and that there are in total
15 maximal commutative subgroups.

In general, the subgroup structure is only dependent on Gb, which is the same
regardless of arrow direction, and so we have the following proposition.

Proposition 6.3. The subgroup structure is independent of the direction of the
arrows, that is, graphs with the same Gb will have the same maximal commutative
subgroup structure.

Proposition 6.4. Suppose Gb has no isolated nodes. Then, the group C generated
by the rows of ΓGb (counting repeated elements) is isomorphic to n−2e+1 copies of
F2e
2 . Note that

←
s j will commute with any copy of itself in C, so that any copy will

be added to all maximal commutative subgroups. Therefore, a copy of F2e
2 means

that the basis cardinality will be larger by n− 2e.

Proof. By definition, rank(ΓGb) = 2e. Therefore, there are 2e linearly independent
elements amongst the rows of the matrix. Let H be a group generated by these 2e
elements. Since all other rows are linear combinations of these, each of these will
yield a copy of H.

It remains now to prove that H ' F2e
2 . We define f : H → F2e

2 by assigning
to each element of the basis an element of the standard basis of F2e

2 . The group
operations are therefore maintained, so that f(ci+cj) = ei+ej = f(ci)+f(cj). Note
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that all elements in both H and F2e
2 are of order 2, so that the order is preserved

by f .

The first corollary is immediate.

Corollary 2. For counting arguments, it is enough to show a statement for the
fully arrowed 2t-clique, which always has e = t = n

2 , and multiply the number by
the number of copies, except for the elements giving 00 . . . 0 in C (which are in any
commutative subgroup).

For instance, the size of subgroups in a fully arrowed clique is 2e. The size is
doubled for every copy of F2e

2 ; that is, we multiply by 2n−2e, and obtain 2e ·2n−2e =
2n−e, which is the size of maximal commutative subgroups.

Corollary 3. The number of maximal commutative subgroups is equal to

(2n − 1)a

2n−e − 1
,

where a = 1
(e−1)!

∏e−1
m=1

(
n−(2m−1)

2

)
, and consequently, depends solely on n and e.

Proof. By the previous proposition, we consider the clique of even size n = 2t. Here,
e = t = n

2 , and C ' Fn2 . Any
←
s j will commute with all even products of

←
s k, k 6= j.

These products will commute with each other if the corresponding edges have an
even number of nodes in common. Therefore, we can get a base consisting of

←
s j

and size 2 products,
←
s k
←
s k′ , for each subgroup. We get thus for

←
s j the choice of 2

elements out of n− 1, then 2 elements out of n− 3, and successively up to 2 out of
3. However, we have to divide by 2 for every possible new pair, since for instance
←
s 0,

←
s 1
←
s 2,

←
s 3
←
s 4 will give the same subgroup as

←
s 0,

←
s 3
←
s 4,

←
s 1
←
s 2. Therefore, there

are a = 1
(e−1)!

∏e−1
m=1

(
n−(2m−1)

2

)
maximal commutative subgroups that contain

←
s j .

To find the total number of maximal commutative subgroups, we note that all
elements but the identity anti-commute with some other element: there are therefore
2n − 1 such elements. Then, (2n − 1)a = (2n−e − 1) · x, where x is the number of

maximal commutative subgroups. Thus, x = (2n−1)a
2n−e−1 .

7. Conclusion

In this paper, we have extended the concept of graph states, from pure graph
states associated to a simple undirected graph, to mixed quantum states associated
with mixed graph, that is graphs where some or all the edges are directed. The
concept of extended graph states includes graph states, so it is a proper generaliza-
tion. We also express the density matrices associated to a mixed graph as a linear
combination of some Clifford group operators which form a maximal commutative
subgroup of the stabilizers of the companion graph (the corresponding mixed graph
with the edges’ directions reversed), and discuss how to find these groups from the
graph.
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