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1 Introduction and Basic Definitions

In [10], we defined a multiplier differential and difference distribution table (in any
characteristic). There seems to be quite a bit of interest in this new notion, as it opens
the possibility for a modification of the differential attack. Using this concept, we
extended the notion of the Boomerang Connectivity Table in [22]. In this paper, we
investigate the c-differential uniformity for the Gold function, modified on a subfield.

As customary, n is a positive integer, p is a prime number, Fpn is the finite field
with pn elements, and F

∗
pn = Fpn \ {0} is the multiplicative group (for a �= 0, 1

a
means the inverse of a in the multiplicative group of the corresponding finite field).
We let Fn

p be the n-dimensional vector space over Fp. We use #S to denote the
cardinality of a set S and z̄, for the complex conjugate. We call a function from Fpn

(or Fn
p) to Fp a p-ary function on n variables. For positive integers n and m, any

map F : Fpn → Fpm (or Fn
p → F

m
p ) is called a vectorial p-ary function, or (n,m)-

function. When m = n, F can be uniquely represented as a univariate polynomial
over Fpn (using some identification, via a basis, of the finite field with the vector
space) of the form F(x) = ∑pn−1

i=0 ai xi , ai ∈ Fpn , whose algebraic degree is then
the largest Hamming weight of the exponents i with ai �= 0.

Given a p-ary function f , the derivative of f with respect to a ∈ Fpn is the p-
ary function Da f (x) = f (x + a) − f (x), for all x ∈ Fpn , which can be naturally
extended to vectorial p-ary functions.

The next concept can be defined for general (n,m)-functions, though in this
paper we only consider m = n. For an (n, n)-function F , and a, b ∈ Fpn , we let
�F (a, b) =#{x ∈ Fpn : F(x + a) − F(x) = b}. We call the quantity δF =
max{�F (a, b) : a, b ∈ Fpn , a �= 0} the differential uniformity of F . If δF = δ, then
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we say that F is differentially δ-uniform. If δ = 1, then F is called a perfect nonlin-
ear (PN) function, or planar function. If δ = 2, then F is called an almost perfect
nonlinear (APN) function. It is well known that PN functions do not exist if p = 2.

For a p-ary (n,m)-function F : Fpn → Fpm and c ∈ Fpm ; the (multiplicative) c-
derivative of F with respect to a ∈ Fpn is the function

cDaF(x) = F(x + a) − cF(x), for all x ∈ Fpn .

For an (n, n)-function F , and a, b ∈ Fpn , we let the entries of the c-Difference
Distribution Table (c-DDT) be defined by c�F (a, b) = #{x ∈ Fpn : F(x + a) −
cF(x) = b}. We call the quantity

δF,c = max
{
c�F (a, b) | a, b ∈ Fpn , and a �= 0 if c = 1

}

the c-differential uniformity of F (see [2] for a particular case). If δF,c = δ, then
we say that F is differentially (c, δ)-uniform (or that F has c-uniformity δ, or for
short, F is δ-uniform c-DDT). If δ = 1, then F is called a perfect c-nonlinear (PcN)
function (certainly, for c = 1, they only exist for odd characteristic p; however, as
proven in [10], there exist PcN functions for p = 2, for all c �= 1). If δ = 2, then F
is called an almost perfect c-nonlinear (APcN) function. It is easy to see that if F is
an (n, n)-function, that is, F : Fpn → Fpn , then F is PcN if and only if cDaF is a
permutation polynomial.

This concept has been picked up quickly by the community and a flurry of papers
started appearing [1, 17, 21–24, 27–29]. It is the purpose of this paper to investi-
gate the c-differential uniformity for a subfield-modified (concept defined below)
Gold function in the binary case. These affine modifications are occurring in many
papers (see [12–14, 18–20, 26, 30], to cite just a few works).

The reader can consult [4–6, 8, 16, 25] for more on Boolean and p-ary (p is an
odd prime) functions beyond what we have introduce here.

We will only consider the p = 2 case in this note. Given F : F2n → F2n , and a
divisor of n, say s | n, a fixed t ∈ F2s , we let G be the F2s -modification of F defined
by

G(x) = F(x) + t
(
x2

s + x
)2n−1 + t =

{
F(x) + t if x ∈ F2s

F(x) if x /∈ F2s .

In this paper, we consider the F2s -modification of the Gold function only, so,G(x) =
x2

k+1 + t
(
x2

s + x
)2n−1 + t , 1 ≤ k < n, gcd(k, n) = 1, s | n, t ∈ F2s .
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2 The c-Differential Uniformity of the Subfield Modified
Gold Function

1

We will now state and prove our result for the c-differential uniformity of the binary 
F2s -modification of the Gold function F(x) = x2k +1, gcd(n, k) = 1, which is known 
to be APN under gcd(n, k) = 1 (it is differentially 4-uniformity when n ≡ 2 (mod 4) 
and gcd(n, k) = 2).

Theorem Let G(x) = x2k +1 + t 
(
x2

s + x
)2n−1 + t be the F2s -modification of the 

Gold function, 1 ≤ k < n, gcd(k, n) = 1, s | n, t ∈ F2s . Then, for c �= 1, the c-
differential uniformity of G is δG,c ≤ 9. �

Proof There is no need to consider c = 0 for the c-differential uniformity, since we 
can easily show that G is a permutation, and we argue that below. We assume that
G(x1) = G(x2), for  some  x1, x2 ∈ F2n . If both x1, x2 ∈/ F2s , then we get x2

k +1 + t =
x2

k+1
2 + t , implying that x1 = x2 from the invertibility of F . If x1 ∈ F2s , x2 ∈ F2n ,
then x2

k+1
2 = x2

k+1
1 + t ∈ F2s , implying that x2 ∈ F2s , as well, which is a contradic-

tion. If none of x1, x2 are in F2s , then again x2
k+1

1 = x2
k+1

2 , implying that x1 = x2.
From here on, we assume that c �= 0, 1. The c-differential equation G(x + a) −

cG(x) = b of G at a, b ∈ F2n is

(x + a)2
k+1 + t

(
(x + a)2

s + (x + a)
)2n−1 + t + cx2

k+1 + ct
(
x2

s + x
)2n−1 + ct = b,

which is equivalent to

(1 + c)x2
k+1 + ax2

k + a2
k
x + t

(
x2

s + x + a2
s + a

)2n−1 + ct
(
x2

s + x
)2n−1

+ a2
k+1 + t (1 + c) + b = 0.

Case 1. Let a ∈ F2s , x ∈ F2s . By expanding the first term, the above equation trans-
forms into

(1 + c)x2
k+1 + x2

k
a + a2

k
x + a2

k+1 + t (1 + c)
(
x2

s + x
)2n−1 + t (1 + c) + b = 0.

Since x ∈ F2s , the equation becomes (when divided by a2
k+1 and by relabeling x

a �→
x)

x2
k+1 + 1

1 + c
x2

k + 1

1 + c
x + d = 0, (1)

where d = a2
k+1+t (1+c)+b
(1+c)a2k+1

. If d = 0, then x = 0 is a solution. The cofactor, with the

relabeling 1
x �→ x , becomes

x2
k + x + (c + 1) = 0.
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We now need to investigate the number of solutions of this linearized poly-
nomial. We rewrite (simplifying some parameters) a result from [7, 15]. Let
f (z) = z p

k − Az − B in Fpn , g = gcd(n, k), m = n/ gcd(n, k), and TrFpn /Fpg
be

the relative trace from Fpn to Fpg . For 0 ≤ i ≤ m − 1, we define ti = pnm−pn(i+1)

pn−1 ,

α0 = A, β0 = B. Ifm > 1, then, for 1 ≤ r ≤ m − 1, we let αr = A
pk(r+1)−1

pk−1 and βr =
∑r

i=0 A
si B pki , where si = pk(r+1)−pk(i+1)

pk−1 , for 0 ≤ i ≤ r − 1 and sr = 0. The trinomial
f has no roots in Fpn if and only if αm−1 = 1 and βm−1 �= 0. If αm−1 �= 1, then
it has a unique root, namely x = βm−1/(1 − αm−1), and, if αm−1 = 1, βm−1 = 0,
it has pg roots in Fpn given by x + δτ , where δ ∈ Fpg , τ is fixed in Fpn with
τ pk−1 = a (that is, a (pk − 1)-root of a), and, for any e ∈ F

∗
pn with Trg(e) �= 0,

then x = 1

TrFpn /Fpg
(e)

m−1∑

i=0

⎛

⎝
i∑

j=0

ep
kj

⎞

⎠ Ati B pki .

For our prior case, p = 2, A = 1, B = c + 1,m = n, g = 1, and so, αn−1 = 1,
βn−1 = ∑n−1

i=0 (c + 1)2
ki
. Thus, if βn−1 �= 0, we have no roots, and if βn−1 = 0, we

have 3 roots (we added the previous 0 root to the count). We make the observation
that these roots can belong to F2s if we force c ∈ F2s , and we take e ∈ F2s in the
formula above.

If d �= 0, taking y = x + (c + 1)−1 we obtain

y2
k+1 + 1

1 + c

(

1 + 1

(1 + c)2k−1

)

y + d + 1

(c + 1)2
= 0.

Now, let y = αz,whereα =
(

1

1 + c
+ 1

(1 + c)2k

)2−k

= 1 + 1

(1 + c)2−k (the 2
k-root

exists since gcd(2k, 2n − 1) = 1). The previous equation becomes

z2
k+1 + z + β = 0, (2)

where β = d(1 + c)2 + 1

α2k+1(1 + c)2
= ca2

k+1 + t (1 + c)2 + b(1 + c)

a2k+1α2k+1(1 + c)2
. Assuming β �= 0, we

will be using some results of [11] (see also [3, 9]), under gcd(n, k) = 1. By [11]
[Theorem 1], we know that Eq. (2) has either none, one or three solutions in F2n . In
fact, the distribution of these cases for n odd (respectively, n even) is (denoting by
M� the amount of equations of type (2) with � solutions)

M0 = 2n + 1

3
, M1 = 2n−1 − 1, M3 = 2n−1 − 1

3
, for n odd,

M0 = 2n − 1

3
, M1 = 2n−1, M3 = 2n−1 − 2

3
, for n even.
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Then, for n ≥ 3, c �= 0, 1, and gcd(n, k) = 1, and since β is linear on b, this implies

that, for any β and any a, c, we can find b such that β = ca2
k+1 + b(1 − c)

α2k+1(1 − c)2
, so the

maximum (attainable, if they happen to be in F2s ) number of solutions for (1) in this
case is 3.
Case 2. Let a ∈ F2s , x /∈ F2s . Then our equation becomes (when divided by a2

k+1

and relabeling x
a �→ x)

x2
k+1 + 1

1 + c
x2

k + 1

1 + c
x + a2

k+1 + b

(1 + c)a2k+1
= 0. (3)

Arguing as above we get that the maximum number of solutions is, yet again, 3, if
b �= a2

k+1.
Case 3. Let a /∈ F2s , x ∈ F2s . As in the first case, by expanding the first term, the
above equation transforms into

(1 + c)x2
k+1 + ax2

k + a2
k
x + a2

k+1 + tc + b = 0,

which, as before, is equivalent to

x2
k+1 + 1

1 + c
x2

k + 1

1 + c
x + d = 0,

with d = a2
k+1+tc+b

(c+1)a2k+1
. A similar analysis as in the prior case renders a maximum of 3

solutions.
Case 4. Let a /∈ F2s , x /∈ F2s , and x + a ∈ F2s . The c-differential equation of G
becomes

(1 + c)x2
k+1 + ax2

k + a2
k
x + a2

k+1 + t + b = 0,

which resembles the prior equations, and so, by appropriate substitutions and arguing
similarly, we infer that it has a maximum of 3 solutions.
Case 5. Let a /∈ F2s , x /∈ F2s , and x + a /∈ F2s . The relevant equation is then

(1 + c)x2
k+1 + ax2

k + a2
k
x + a2

k+1 + b = 0,

which, as we got used by now, renders a maximum of 3 solutions. The theorem is
shown. �

3 Concluding Remarks

In this paper, we find the c-differential uniformity of the F2s -modification of the 
Gold function on F2n , s | n, and show that its c-differential uniformity is less than or 
equal to 9. As we saw already, investigating questions on c-differential uniformity
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by this method is not a simple matter, mostly because the obtained equations need
to be solved over finite fields and not many techniques have been developed for
that purpose. In spite of that, it would be interesting to find other classical PN/APN
functions and study their properties through the new differential. It will also be
worthwhile to check into the general p-ary versions of the results from this paper,
as well as other modifications of the Gold, the inverse, or other PN/APN functions.
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21. Riera C, Stănică P, Investigations on c-(almost) perfect nonlinear functions. https://arxiv.org/

abs/2004.02245

https://arxiv.org/abs/2008.03953
https://eprint.iacr.org/2013/731
https://arxiv.org/abs/2004.02245
https://arxiv.org/abs/2004.02245


Low c-Differential Uniformity for the Gold Function … 137
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