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Abstract

The Gowers U3 norm of a Boolean function is a measure of its resistance to quadratic
approximations. It is known that smaller the Gowers U3 norm for a Boolean function
larger is its resistance to quadratic approximations. Here, we compute Gowers U3 norms
for some classes of Maiorana–McFarland bent functions. In particular, we explicitly deter-
mine the value of the Gowers U3 norm of Maiorana–McFarland bent functions obtained by
using APN permutations. We prove that this value is always smaller than the Gowers U3

norms of Maiorana–McFarland bent functions obtained by using differentially δ-uniform
permutations, for all δ ≥ 4. We also compute the Gowers U3 norms for a class of cubic
monomial functions, not necessarily bent, and show that for n = 6, these norm values
are less than that of Maiorana–McFarland bent functions. Further, we computationally
show that there exist 6-variable functions in this class which are not bent but achieve the
maximum second-order nonlinearity for 6 variables.

Keywords: Gowers uniformity norms, second-order nonlinearity, Maiorana–McFarland bent
functions, differentially δ-uniform functions, APN functions.
Mathematics Subject Classification: 06E30, 94C10.

1 Introduction

1.1 Boolean functions

We denote by F2 the finite field with 2 elements and by Fn2 = {x = (x1, . . . , xn) : x1, . . . , xn ∈
F2} the n-dimensional F2-vector space consisting of n-tuples of elements of F2. The n-degree
extension field of F2 is denoted by F2n , and F∗2n is the group of units of F2n . Any function
from Fn2 (or, from F2n) to F2 is said to be a Boolean function in n variables and their set
is denoted by Bn. Let Z and R denote the set of integers and real numbers, respectively.
Let Z+ be the set of positive integers. The character form associated to F ∈ Bn, denoted
by the corresponding lower case letter f , is defined by f(x) = (−1)F (x), for all x ∈ Fn2 . The

∗Sections 1–2 were presented in Fq11, The 11th International Conference on Finite Fields and their Appli-
cations, Magdeburg, Germany, July 22–26, 2013.
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weight of x = (x1, . . . , xn) ∈ Fn2 is wt(x) :=
∑n

i=1 xi, where the sum is over the integers. The
Hamming distance d : Bn × Bn → Z+ ∪ {0} is d(F,G) = |{x ∈ Fn2 : F (x) 6= G(x)}|. The
algebraic normal form of a Boolean function F ∈ Bn is

F (x1, . . . , xn) =
∑

u=(u1,...,un)

λu

(
n∏
i=1

xuii

)
, λu ∈ F2,

where the sum is over F2. The algebraic degree, deg(F ) of F is the maximal value of wt(u)
such that λu 6= 0. The inner product of x, y ∈ Fn2 , respectively, x, y ∈ F2n , is denoted by x · y
and defined by x ·y = x1y1 + · · ·+xnyn (the sum being over F2), respectively, x ·y = Trn1 (xy),
where the trace function Trn1 : F2n → F2 is

Trn1 (x) = x+ x2 + x22 + · · ·+ x2n−1
, for all x ∈ F2n .

For any a ∈ Fn2 , ϕa ∈ Bn is the linear function defined by ϕa(x) = a · x, for all x ∈ Fn2 . The
Walsh–Hadamard transform of F ∈ Bn at a ∈ Fn2 is

F(F + ϕa) =
∑
x∈Fn2

(−1)F (x)+ϕa(x) =
∑
x∈Fn2

f(x)(−1)ϕa(x).

The Fourier transform of f at a ∈ Fn2 is defined as

f̂(a) =
1

2n

∑
x∈Fn2

f(x)(−1)ϕa(x) =
1

2n
F(F + ϕa).

The Walsh–Hadamard spectrum of F is the multiset [F(F + ϕa) : a ∈ Fn2 ] and the Fourier

spectrum of f (or, of F ) is [f̂(a) : a ∈ Fn2 ].

Definition 1.1. A Boolean function F ∈ Bn (n even) is said to be bent if and only if there

exists another Boolean function F̃ ∈ Bn such that F(F + ϕa) = (−1)F̃ (a)2
n
2 . The Boolean

function F̃ is called the dual of F and it is also a bent function.

The first generic technique for constructing bent functions was proposed by Rothaus [13].
The functions so obtained are referred to as Maiorana–McFarland bent functions.

Definition 1.2. Suppose m = 2n where n ∈ Z+, π is a permutation on F2n and g ∈ Bn.
A function of the form F (x, y) = π(x) · y + g(x), for all (x, y) ∈ F2n × F2n, is said to be a
Maiorana–McFarland bent function.

Bent functions are interesting objects of study in coding theory and cryptography, since
they maximally resist affine approximations, being furthest away from the set of all affine
functions.

The derivative of a Boolean function is defined as follows.

Definition 1.3. The derivative of F ∈ Bn with respect to a ∈ Fn2 , denoted by DaF , is defined
by

DaF (x) = F (x+ a) + F (x), for all x ∈ Fn2 . (1)

If f(x) = (−1)F (x), for all x ∈ Fn2 , then Daf(x) = (−1)DaF (x) = (−1)F (x+a)+F (x) =
f(x)f(x + a). By successively taking derivatives with respect to k linearly independent
vectors in Fn2 we obtain the kth-derivatives of F ∈ Bn.
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Definition 1.4. Suppose u1, . . . , uk are linearly independent vectors of Fn2 generating the
subspace V of Fn2 . The kth-derivative of F ∈ Bn with respect to u1, . . . , uk, or alternatively
with respect to the subspace V , is defined as

DV F (x) = Du1,...,ukF (x) =
∑

(a1,...,ak)∈Fk2

F (x+ a1u1 + · · ·+ akuk), for all x ∈ Fn2 . (2)

From the right hand side of (2) it follows that DV F is independent of the choice of
basis for V . The Walsh–Hadamard transform of a bent function F is related to the Walsh–
Hadamard transform of its dual F̃ as we see next.

Proposition 1.5 ( [4, Lemma 2]). Let F be a bent function on n variables and F̃ be its dual.
Then, for any a, b ∈ Fn2 , we have

F(DaF̃ + ϕb) = F(DbF + ϕa). (3)

1.2 Higher-order nonlinearities of Boolean functions

The (first-order) nonlinearity of a Boolean function F ∈ Bn, denoted by nl(F ), is the mini-
mum of its Hamming distances from all the functions in Bn having algebraic degree at most
one, i.e., the affine functions. The nonlinearity F and its Walsh–Hadamard spectrum are
related by

nl(F ) = 2n−1 − 1

2
max
a∈F2n

|F(F + ϕa)|. (4)

The rth-order nonlinearity of F ∈ Bn, denoted by nlr(F ), is its Hamming distance from the
set of Boolean functions in Bn with algebraic degrees at most r.

1.3 Gowers uniformity norms

Let f : V → R be any function on a finite set V and B ⊆ V . Then Ex∈B[f(x)] :=
1
|B|
∑

x∈B f(x) is the average of f over B. The connection between the expected values
of F : Fn2 → F2 and its character form f is given in the lemma below.

Lemma 1.6. We have Ex∈B[f(x)] = 1− 2Ex∈B[F (x)].

Proof. Using the fact that (−1)b = 1− 2b, for b ∈ {0, 1}, we write

Ex∈B[f(x)] =
1

|B|
∑
x∈B

f(x) =
1

|B|
∑
x∈B

(−1)F (x)

=
1

|B|
∑
x∈B

(1− 2F (x)) = 1− 2Ex∈B[F (x)].

Definition 1.7 ([7, Definition 2.2.1]). Let f : Fn2 → R. For every k ∈ Z+, we define the
kth-dimension Gowers uniformity norm (the Uk norm) of f to be

‖f‖Uk =

Ex,x1,...,xk∈Fn2

 ∏
S⊆[k]

f

(
x+

∑
i∈S

xi

) 1

2k

. (5)
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Gowers norms for k = 1, 2, 3 are explicitly presented below (cf. [7, 15]):

‖f‖U1 =| Ex,h∈Fn2 [f(x)f(x+ h)] |1/2

=| Ex∈Fn2 [f(x)] | .

‖f‖U2 =| Ex,h1,h2∈Fn2 [f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)] |1/4

=| Eh1∈Fn2 | Ex∈Fn2 [f(x)f(x+ h1)] |2|1/4,
‖f‖U3 =| Ex,h1,h2,h3∈Fn2 [f(x)f(x+ h1)f(x+ h2)f(x+ h1 + h2)

× f(x+ h3)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3)] |1/8 .

It is not difficult (and we will encounter some instances of this claim later) to see that one
can recursively define the Gowers norms by

‖f‖U1 = |Ex∈Fn2 [f(x)]|,

‖f‖Uk+1
=
(
Eh∈Fn2 [‖Dhf‖2

k

Uk
]
)1/2k+1

.
(6)

The connection between the Gowers uniformity norms and correlation of a function with
polynomials with a certain degree bound is described by results obtained by Gowers, Green
and Tao [11, 12]. For a survey we refer to Chen [7].

Theorem 1.8 ([7, Fact 2.2.1]). Let k ∈ Z+, ε > 0. Let P : Fn2 → F2 be a polynomial of
degree at most k, and f : Fn2 → R. Suppose

∣∣Ex[f(x)(−1)P (x)]
∣∣ ≥ ε. Then ‖f‖Uk+1

≥ ε.

Theorem 1.8 implies that if a Boolean function has low Gowers Uk+1 norm, then it has
low correlation with all the polynomials functions on Fn2 of degrees at most k. In other words
it has high kth-order nonlinearity.

It is known that the Uk, for k > 1, is a norm, that is, it is homogeneous, nonnegative,
nondegenerate and respects the triangle inequality. It is also known that the sequence of
norms {Uk}k is monotonically increasing, that is, ‖f‖Uk ≤ ‖f‖Uk+1

, k ≥ 0.
It is known that the Gowers U2 norm of a function is the `4 norm of its Fourier transform,

more precisely:

Theorem 1.9 ([7, 11]). Let f : Fn2 → R. Then

‖f‖4U2
=
∑
x∈Fn2

f̂(x)4. (7)

The following is an extension of Theorem 1.9.

Theorem 1.10. Let k ∈ Z+, k ≥ 2. Let F ∈ Bn and f(x) = (−1)F (x), for all x ∈ Fn2 . Then

‖f‖2kUk =
1

2(k−2)n

∑
h1,··· ,hk−2∈Fn2

∑
x∈Fn2

̂Dh1,··· ,hk−2
f(x)4. (8)

Proof. Let g = Dh1,··· ,hk−2
f , where h1, · · · , hk−2 ∈ Fn2 . For any k ∈ Z+, the kth dimensional
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Gowers uniformity norm of f is

‖f‖2kUk = Ex,h1,··· ,hk∈Fn2

 ∏
S⊆[k]

f(x+
∑
i∈S

hi)


=

1

2(k+1)n

∑
x,h1,··· ,hk∈Fn2

g(x)g(x+ hk−1)g(x+ hk)g(x+ hk−1 + hk)

=
1

2(k+1)n

∑
h1,··· ,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

g(x)g(x+ hk−1)
∑
hk∈Fn2

g(x+ hk)g(x+ hk−1 + hk)

=
1

2(k+1)n

∑
h1,··· ,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

g(x)g(x+ hk−1)
∑
y∈Fn2

g(y)g(y + hk−1)

=
1

2(k−1)n

∑
h1,··· ,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

ĝ(x)2 (−1)hk−1·x
∑
y∈Fn2

ĝ(y)2 (−1)hk−1·y

=
1

2(k−1)n

∑
h1,··· ,hk−2∈Fn2

∑
hk−1∈Fn2

∑
x∈Fn2

∑
y∈Fn2

ĝ(x)2 ĝ(y)2 (−1)hk−1·(x+y)

=
1

2(k−1)n

∑
h1,··· ,hk−2∈Fn2

∑
x∈Fn2

∑
y∈Fn2

ĝ(x)2 ĝ(y)2
∑

hk−1∈Fn2

(−1)hk−1·(x+y)

=
1

2(k−2)n

∑
h1,··· ,hk−2∈Fn2

∑
x∈Fn2

ĝ(x)4

=
1

2(k−2)n

∑
h1,··· ,hk−2∈Fn2

∑
x∈Fn2

̂Dh1,··· ,hk−2
f(x)4,

where we used the fact (see [8]) that the autocorrelation

Cg(u) =
∑
x∈Fn2

g(x)g(x+ u) = 2n
∑
x

ĝ(x)2(−1)u·x, u ∈ Fn2 ,

as well as [8, Lemma 2.6] giving
∑

u∈Fn2
(−1)u·w = 2n if w = 0, and 0, if w 6= 0.

1.4 Gowers U3 norm of the dual of a bent function

It is known that the dual of a bent function is bent. However, it is not known whether a bent
function and its dual have the same second-order nonlinearity. We prove that the Gowers
U3 norms of a bent and it dual are equal and therefore they provide equal “resistance” to
quadratic approximations.

Proposition 1.11. Let the character forms associated to a bent function F ∈ Bn and its
dual F̃ be f and f̃ , respectively. Then

‖f‖U3 = ‖f̃‖U3 . (9)
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Proof. Applying (6), (7) and (3) we obtain

‖f‖8U3
=

1

2n

∑
h∈Fn2

‖Dhf‖4U2
=

1

2n

∑
h∈Fn2

∑
a∈Fn2

D̂hf(a)4 =
1

25n

∑
h∈Fn2

∑
a∈Fn2

F(DhF + ϕa)
4

=
1

25n

∑
a∈Fn2

∑
h∈Fn2

F(DaF̃ + ϕh)4 = ‖f̃‖8U3
.

2 Gowers U3 norm of Maiorana–McFarland bents of the form
Trn1 (yx2i+1)

Gangopadhyay et al. [9] employed the recursive framework developed by Carlet to identify
cubic Maiorana–McFarland bent functions having high second-order nonlinearities. Below
we describe the subclass of Maiorana–McFarland bent functions considered in [9] which was
originally constructed by Canteaut and Charpin [1]. It is shown in [9] that bent functions on
10 variables having maximum known second-order nonlinearity exist within this class.

Let m = 2n. We identify Fn2 with the finite field F2n and Fm2 with F2n × F2n . In the next
theorem we consider cubic Maiorana–McFarland bent functions of the form

Fi(x, y) = Trn1 (yx2i+1) (10)

where x, y ∈ F2n , m ≥ 6, i is an integer such that 1 ≤ i < n, gcd(2n − 1, 2i + 1) = 1 and
gcd(i, n) = e.

Theorem 2.1. If Fi ∈ Bm is a function of the form given by (10) and fi is the associated
character form, then

‖fi‖8U3
=

2m + 2n+e(2e + 1)(2n − 1)

22m
. (11)

Consequently, the Gowers U3 norm is minimum if and only if e = 1.

Proof. For any function F ∈ Bm with f as the associated character form, the Gowers U3

norm can be written as

‖f‖8U3
=

∣∣∣∣∣∣ 1

24m

∑
h,h1,h2,x∈Fm2

(−1)Dh,h1,h2F (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

24m

∑
h1,h2∈Fm2

∑
h,x∈Fm2

(−1)Dh(Dh1,h2F )(x)

∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣
∑

h1,h2∈Fm2

∑
x∈Fm2

(−1)Dh1,h2F (x)

2∣∣∣∣∣∣ .
Let S(h1, h2;F ) :=

∑
x∈Fm2

(−1)Dh1,h2F (x). We note that S(h1, h2;F ) = 2m if either h1 = h2
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or exactly one of h1, h2 is 0, so

‖f‖8U3
=

1

24m

∣∣∣∣∣∣
∑

h1,h2∈Fm2

S(h1, h2;F )2

∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣∣∣2
2m

 ∑
h1∈Fm2

1 +
∑

h2∈Fm2 \{0}
h1=0

1 +
∑

h1∈Fm2 \{0}
h2=0

1

+
∑

h1,h2∈Fm2 \{0}
h1 6=h2

S(h1, h2;F )2

∣∣∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣∣∣2
2m(3 · 2m − 2) +

∑
h1,h2∈Fm2 \{0}

h1 6=h2

S(h1, h2;F )2

∣∣∣∣∣∣∣∣ .
Replacing F by Fi we note that, since Fi is a cubic function, S(h1, h2;Fi) is either 0 or ±2m.
Therefore we have to count the pairs (h1, h2) for which S(h1, h2;Fi) = ±2m. Similar counting
is performed in [9] and [10, Theorem 4]. However, for completeness we recall the basic steps.

Let h1 = (b, a) and h2 = (d, c), where a, b, c, d ∈ F2n .

D(b,a),(d,c)Fi(x, y) = Trn1 (((ad+ cb) + (ad2i + cb2
i
)2i)x2i) + Trn1 ((bd2i + b2

i
d)y)

+ Trn1 (ad2i+1 + cb2
i+1) + Trn1 ((a+ c)(bd2i + b2

i
d)).

(12)

Case 1: If b = d = 0, then D(b,a),(d,c)Fi(x, y) = 0, for all (x, y) ∈ F2n × F2n . The number of
such points is (2n − 1)(2n − 2).
Case 2: If b = 0 and d 6= 0, then

D(d,c),(0,a)Fi(x, y) = Trn1 ((ad+ (ad2i)2i)x2i) + Trn1 (ad2i+1),

which is constant if and only if

ad+ (ad2i)2i = ad+ a2id22i = 0,

i.e., a2i−1d22i−1 = (ad2i+1)2i−1 = 1, since d 6= 0 and a 6= 0,

i.e., ad2i+1 ∈ F∗2e , where gcd(i, n) = e.

Thus, given any a ∈ F2n \ {0}, c and d can be chosen in 2n and 2e − 1 ways, respectively,
such that the second-derivative under consideration is 0. Therefore, among all the derivatives
of the form D(d,c),(0,a)Fi, exactly 2n(2n − 1)(2e − 1) are constants.

Similarly, if b 6= 0 and d = 0 among all the derivatives of the form D(0,c),(b,a)Fi, then
exactly 2n(2n − 1)(2e − 1) are constants.
Case 3: Suppose b 6= 0 and d 6= 0. Let b = d. Then D(d,c),(b,a)Fi = D(0,c+a),(b,a)Fi =
D(d,c),(0,a+c)Fi. In this case a 6= c, since otherwise (b, a) = (d, c) which is already dealt
with. Thus, among all the derivatives of the form D(d,c),(b,a)Fi, exactly 2n(2n− 1)(2e− 1) are
constants.

Suppose b 6= 0 and d 6= 0. Let b 6= d. The second-derivative D(d,c),(b,a)Fi is constant if
and only if

(ad+ cb) + (ad2i + cb2
i
)2i = 0 and bd2i + b2

i
d = 0.

From the second condition we obtain (b−1d)2i−1 = 1. Since b, d ∈ F2n , (b−1d)2n−1 = 1.
Combining these two we obtain (b−1d)2e−1 = 1, which implies that b−1d ∈ F∗2e . Thus, d = γb
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where γ ∈ F∗2e . Since b 6= d, γ 6= 1. Therefore, for each choice of b it is possible to choose d
in 2e − 2 different ways. From the first condition we obtain:

ad+ cb+ (ad2i + cb2
i
)2i = b(aγ + c) + (b2

i
(aγ + c))2i = 0,

i.e., (b2
i+1(aγ + c))2i−1 = 1, if aγ + c 6= 0.

i.e., b2
i+1(aγ + c) =: γ′ ∈ F∗2e , so, c = aγ + γ′

b2i+1
.

Note that a can be chosen in 2n ways, b in 2n − 1 ways, d in 2e − 2 ways and c in 2e ways
(including the case for which aγ + c = 0). So the total number of ways in which (b, a), (d, c)
can be chosen is

2n+e(2n − 1)(2e − 2).

Combining all the above counts we obtain

‖fi‖8U3
=

2m + 2n+e(2e + 1)(2n − 1)

22m
.

It is observed from (11) that for e = 1, the Gowers U3 norm of Fi

‖fi‖8 =
7 · 2n − 6

23n

is minimum. It has been experimentally checked in [9, Section 3] that for m = 2n = 10, 1 ≤
i ≤ 4 (therefore e = 1), the functions Fi’s have the largest known second-order nonlinearity.

3 Gowers U3 norms of Maiorana–McFarland bent functions
constructed by using APN and differentially 4-uniform per-
mutations

A vectorial Boolean function φ : Fn2 → Fn2 , also referred to as an (n, n)-function, is said to be
differentially δ-uniform if

δ(a, b) = |{x ∈ Fn2 : φ(x) + φ(x+ a) = b}| ≤ δ

for all a, b ∈ Fn2 with a 6= 0. We denote the set {x ∈ Fn2 : φ(x) + φ(x+ a) = b} by ∆(a, b) for
all a, b ∈ Fn2 with a 6= 0. If φ is differentially 2-uniform then it is said to be an almost perfect
nonlinear (APN) function. If φ is an APN function and a permutation then we refer to it as
an APN permutation on Fn2 . There are several applications of APN functions, but perhaps
the most significant is that if the S-box (vectorial Boolean function) is based upon an APN
function, the probability of success for the differential attack is minimized [6]. Certainly, in
block cipher design, invertibility is essential, so the S-boxes must be permutations. There
are very few classes of APN functions, like monomials APN, which are completely described,
and there are many APN questions still open (like the existence of APN permutations in all
even dimensions; in fact, we barely know of a single example in dimension 6). The connection
with linear codes is well-known via a result of Carlet, Charpin and Zinoviev [3], stating that
f : F2n → F2n with f(0) = 0 is APN if and only if the binary linear code with parity check
matrix of columns (αi, f(αi))T , 1 ≤ i ≤ 2n − 1, has minimum distance 5 (α is a primitive
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element of F2n). We refer the reader to the huge body of literature on APN functions, listed
in this paper, and elsewhere.

Let
Ei = {(a, b) ∈ Fn2 × Fn2 : a 6= 0 and δ(a, b) = i}, (13)

for all nonnegative integers i. It is easy to see that Ei = ∅, if i ≡ 1 (mod 2).

Lemma 3.1. Suppose that φ : Fn2 → Fn2 is an APN function. Then the cardinality of
E2 = {(a, b) ∈ Fn2 × Fn2 : a 6= 0 and δ(a, b) = 2} is |E2| = 2n−1(2n − 1).

Proof. Let a ∈ Fn2 \ {0}. We know that Daφ(x) = Daφ(x + a) = b ∈ Fn2 , for all x ∈ Fn2 .
Therefore, the cardinality of the range of the function Daφ is at most 2n−1. Suppose that
{xi : i = 1, . . . , 2n−1} ⊆ Fn2 such that xj 6= xi and xj 6= xi + a, for all i 6= j and Daφ(xi) =
Daφ(xi + a) = bi, for all i = 1, . . . , 2n−1. Then

bi = bj ⇐⇒Daφ(xi) = Daφ(xj)

⇐⇒Da(φ(xi) + φ(xj)) = 0

⇐⇒Da(φ(xi) + φ(xi + b)) = 0, where b = xi + xj ,

⇐⇒DaDbφ(xi) = 0,

which is not possible, since φ is APN (cf. [6, p. 417]). Therefore, for each choice of a ∈ Fn2 \{0}
we obtain exactly 2n−1 distinct b’s in Fn2 \ {0} such that δ(a, b) = 2. Since a’s can be chosen
in 2n − 1 many ways, |E2| = 2n−1(2n − 1).

Lemma 3.2. Let φ be a differentially δ-uniform (n, n)-function, where δ = 2k, and

E2i = {(a, b) ∈ Fn2 × Fn2 : a 6= 0 and δ(a, b) = 2i},

for all i ∈ {0, 1, . . . , k}. Then

k∑
i=1

i |E2i| = 2n−1(2n − 1).

Proof. For each a ∈ Fn2 \{0}, it is possible to find a set {x1, . . . , x2n−1} such that xi+a 6= xj ,
whenever i 6= j, so that Fn2 = {x1, . . . , x2n−1} ∪ {(x1 + a), . . . , (x2n−1 + a)}. We construct a
list of differences as follows:

No. Output differences

1 φ(x1) + φ(x1 + a) = b1
2 φ(x2) + φ(x2 + a) = b2
... · · · · · · · · ·
j φ(xj) + φ(xj + a) = bj
... · · · · · · · · ·

2n−1 φ(x2n−1) + φ(x2n−1 + a) = b2n−1

Table 1: List of (not necessarily distinct) output differences when the input difference is a.

If δ(a, b) 6= 0, then (a, b) ∈ E2i for a unique i ∈ {1, . . . , k}, and we have a subset S
(i)
(a,b) ⊆

{1, . . . , 2n−1}, with |S(i)
(a,b)| = i, such that φ(xj) + φ(xj + a) = bj = b, for all j ∈ S(i)

(a,b). We
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say that i rows of S
(i)
(a,b) are covered by (a, b). If we consider the collection of all tables like

Table 1, one for each a ∈ Fn2 \{0}, then for each (a, b) ∈ E2i, i rows of S
(i)
(a,b) are covered. It can

be checked that S
(i)
(a,b) = S

(i′)
(a,b′) if and only if i = i′ and b = b′, otherwise, S

(i)
(a,b) ∩ S

(i′)
(a,b′) = ∅.

The total number of rows covered (considering all the distinct 2n − 1 tables, one corre-
sponding to each a ∈ Fn2 \ {0}) if we vary (a, b) over the whole of E2i is i |E2i|. If we repeat
this process for each i ∈ {1, . . . , k}, eventually all the rows of all the 2n−1 tables will be
exhausted and the claimed identity is shown.

Theorem 3.3. Let F ∈ Bm be a Maiorana–McFarland bent function of the form

F (x, y) = φ(x) · y + h(x),

for all x, y ∈ Fn2 , where h ∈ Bn and φ is an APN permutation on Fn2 . Then the Gowers U3

norm of the character form f = (−1)F is

‖f‖8U3
=

7 · 2n − 6

23n
. (14)

Proof. Using Theorem 1.10,

‖f‖8U3
=

1

2m

∑
(α,β)∈Fn2×Fn2

∑
(a,b)∈Fn2×Fn2

D̂(α,β)f(a, b)4

=
1

25m

∑
(α,β)∈Fn2×Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)F (x,y)+a·x+b·y

4

=
1

25m
(A+B + C),

where

A =
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,0)F (x,y)+a·x+b·y

4

,

=
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)a·x+b·y

4

= 24m,

B =
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,β)F (x,y)+a·x+b·y

4

,

=
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)β·φ(x)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

∑
x∈Fn2

(−1)β·φ(x)+a·x
∑
y∈Fn2

(−1)b·y

4

10



=
∑

β∈Fn2 \{0}

∑
a∈Fn2

2n
∑
x∈Fn2

(−1)β·φ(x)+a·x

4

= 22m
∑
β∈Fn2

∑
a∈Fn2

∑
x∈Fn2

(−1)β·φ(x)+a·x

4

− 22m
∑
a∈Fn2

∑
x∈Fn2

(−1)a·x

4

= 22m(3 · 24n − 2 · 23n − 24n), (cf. [6, p. 418])

= 23m+n+1(2n − 1),

C =
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)F (x,y)+a·x+b·y

4

=
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)a·x+β·φ(x+α)+h(x)+h(x+α)+(φ(x)+φ(x+α)+b)·y

4

=
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

∑
x∈Fn2

(−1)a·x+β·φ(x+α)+h(x)+h(x+α)
∑
y∈Fn2

(−1)(φ(x)+φ(x+α)+b)·y

4

= 22m
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
x∈∆(α,b)

(−1)a·x+β·φ(x+α)+h(x)+h(x+α)

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

 ∑
x∈∆(α,b)

(−1)a·x+β·φ(x)+b·β+h(x)+h(x+α)

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

 ∑
x∈∆(α,b)={xαb,xαb+α}

(−1)a·x+β·φ(x)+h(x)+h(x+α)

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

(
(−1)a·xαb+β·φ(xαb)+h(xαb)+h(xαb+α)

+(−1)a·(xαb+α)+β·φ(xαb+α)+h(xαb+α)+h(xαb)
)4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

(
(1 + (−1)a·α+b·β)(−1)a·xαb+β·φ(xαb)+h(xαb)+h(xαb+α)

)4

= 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

(
8 + 8(−1)a·α+b·β

)
= 22m

∑
(α,b)∈E2

∑
β∈Fn2

∑
a∈Fn2

8 + 22m+3
∑

(α,b)∈E2

∑
β∈Fn2

∑
a∈Fn2

(−1)b·β+α·a

= 23m+3 |E2| , since (α, b) 6= (0, 0), the sum
∑
β∈Fn2

∑
a∈Fn2

(−1)b·β+α·a = 0.

From Lemma 3.1 we have |E2| = 2n−1(2n − 1). So

‖f‖8U3
=

1

22m
(2m + 2n+1(2n − 1) + 8 |E2|) =

7 · 2n − 6

23n
,

11



and the claim is shown.

Corollary 3.4. Let ‖fi‖8U3
and ‖f‖8U3

be defined as in equation (11) and (14) respectively.
Then

‖fi‖8U3
− ‖f‖8U3

=
(2n − 1)(2e + 3)(2e − 2)

23n
.

Therefore, ‖fi‖8U3
≥ ‖f‖8U3

, with equality holding only when e = 1, that is, gcd(n, i) = 1.

Theorem 3.5. Let G ∈ Bm be a Maiorana–McFarland bent function of the form

G(x, y) = ψ(x) · y + h(x),

for all x, y ∈ Fn2 , where h ∈ Bn and ψ is a differentially 4-uniform permutation and not an
APN permutation on Fn2 . Then the Gowers U3 norm of the character form g = (−1)G is

‖g‖8U3
>

7 · 2n − 6

23n
.

Proof. Using similar arguments as in the proof of Theorem 3.3,

‖g‖8U3
=

1

25m
(A1 +B1 + C1),

where

A1 =
∑

(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,0)G(x,y)+a·x+b·y

4

= 24m,

B1 =
∑

β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,β)G(x,y)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
a∈Fn2

2n
∑
x∈Fn2

(−1)β·ψ(x)+a·x

4

≥ 23m+n+1(2n − 1), (cf. [6, p. 415]),

C1 =
∑

α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)G(x,y)+a·x+b·y

4

= 22m
∑
a∈Fn2

∑
β∈Fn2

2∑
i=1

∑
(α,b)∈E2i

 ∑
x∈∆(α,b)

(−1)a·x+β·ψ(x)+h(x)+h(x+α)

4

= C11 + C12,

C11 = 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E2

 ∑
x∈∆(α,b)

(−1)a·x+β·ψ(x)+h(x)+h(x+α)

4

= 23m+3|E2|,

C12 = 22m
∑
a∈Fn2

∑
β∈Fn2

∑
(α,b)∈E4

 ∑
x∈∆(α,b)

(−1)a·x+β·ψ(x)+h(x)+h(x+α)

4

.
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For each (α, b) ∈ E4, there exist four distinct elements x1, x1 + α, x2, x2 + α ∈ Fn2 such that
Dαψ(xj) = Dαψ(xj + α) = b where j = 1 and 2. For j = 1 and 2,

Sj = (−1)a·xj+β·ψ(xj)+h(xj)+h(xj+α) + (−1)a·(xj+α)+β·ψ(xj+α)+h(xj+α)+h(xj)

= (1 + (−1)a·α+β·b)(−1)εj ,

where εj = a · xj + β · ψ(xj) + h(xj) + h(xj + α). Further,

C12 = 22m
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(S1 + S2)4

= 22m
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(1 + (−1)a·α+β·b)4((−1)ε1 + (−1)ε2)4

= 22m
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(8 + 8(−1)a·α+β·b)(1 + (−1)ε1+ε2)4

= 22m+6
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(1 + (−1)a·α+β·b)(1 + (−1)ε1+ε2)

= 22m+6
∑
β∈Fn2

∑
(α,b)∈E4

∑
a∈Fn2

(1 + (−1)a·α+β·b + (−1)ε1+ε2 + (−1)a·α+β·b+ε1+ε2)

= 23m+6|E4|.

We note that
∑

a∈Fn2
((−1)a·α+β·b+(−1)ε1+ε2 +(−1)a·α+β·b+ε1+ε2) = 0, since α 6= 0, x1+x2 6= 0

and x1 + x2 + α 6= 0. Thus,

C1 = C11 + C12 = 23m+3(|E2|+ 8|E4|)
= 23m+n+2(2n − 1) + 3 · 23m+4|E4| > 23m+n+2(2n − 1),

and the claimed inequality follows.

Corollary 3.6. The Gowers U3 norm of a Maiorana–McFarland bent function constructed
by using a differentially 4-uniform permutation is always larger than the Gower norm of any
Maiorana–McFarland bent function obtained by using an APN permutation.

Proof. The proof is immediate from the results of Theorems 3.3 and 3.5.

Theorem 3.7. Let K be a bent function on Fm2 ∼= Fn2 × Fn2 , m = 2n, defined by

K(x, y) = φδ(x) · y, (15)

where φδ is a differentially δ-uniform permutation on Fn2 , where δ = 2t. The Gowers U3

norm of k(x, y) = (−1)K(x,y), (x, y) ∈ Fn2 × Fn2 , is ‖k‖8U3
≥ 7 · 2n − 6

23n
.

Proof. Using similar arguments as in Theorem 3.3,

‖k‖8U3
=

1

25m
(A
′
1 +B

′
1 + C

′
1),

13



where

A
′
1 =

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,0)K(x,y)+a·x+b·y

4

= 24m,

B
′
1 =

∑
β∈Fn2 \{0}

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(0,β)K(x,y)+a·x+b·y

4

=
∑

β∈Fn2 \{0}

∑
a∈Fn2

2n
∑
x∈Fn2

(−1)β·φδ(x)+a·x

4

≥ 23m+n+1(2n − 1), (cf.[6, p.415]),

C
′
1 =

∑
α∈Fn2 \{0}

∑
β∈Fn2

∑
(a,b)∈Fn2×Fn2

 ∑
(x,y)∈Fn2×Fn2

(−1)D(α,β)K(x,y)+a·x+b·y

4

= 22m
∑

a,β∈Fn2

t∑
i=1

∑
(α,b)∈E2i

 ∑
x∈∆(α,b)

(−1)a·x+β·φδ(x)

4

= C
′
11 + C

′
12 + · · ·+ C

′
1t,

where,

C
′
1j = 22m

∑
a,β∈Fn2

∑
(α,b)∈E2j

 ∑
x∈∆(α,b)

(−1)a·x+β·φδ(x)

4

, 1 ≤ j ≤ t.

Now we claim that C
′
1j ≥ 23m+3(j|E2j |), for all j ∈ {1, 2, · · · , t}. Since C

′
11 = 23m+3|E2| and

C
′
12 ≥ 23m+3(2|E4|), for each (α, b) ∈ E2j , there exist 2j distinct elements x1, x1 +α, x2, x2 +

α, . . . , xj , xj + α ∈ Fn2 such that Dαφδ(xs) = Dαφδ(xs + α) = b, s ∈ {1, 2, . . . , j}. Let

Ss = (−1)a·xs+β·φδ(xs) + (−1)a·(xs+α)+β·φδ(xs+α) =
(

1 + (−1)a·α+b·β
)

(−1)εs ,

where εs = a · xs + β · φδ(xs), for all s ∈ {1, 2, . . . , j}. Thus,

C
′
1j = 22m

∑
a,β∈Fn2

∑
(α,b)∈E2j

(S1 + S2 + · · ·+ Sj)
4

= 22m
∑

a,β∈Fn2

∑
(α,b)∈E2j

(
1 + (−1)a·α+b·β

)4
((−1)ε1 + (−1)ε2 + · · ·+ (−1)εj )4

= 22m+3
∑

a,β∈Fn2

∑
(α,b)∈E2j

(
1 + (−1)a·α+b·β

)
((−1)ε1 + (−1)ε2 + · · ·+ (−1)εj )4 .
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First,

((−1)ε1 + (−1)ε2 + · · ·+ (−1)εj )4

=
(
1 + (−1)ε1+ε2 + (−1)ε1+ε3 + · · ·+ (−1)ε1+εj

)4
=1 + 4

(
(−1)ε1+ε2 + (−1)ε1+ε3 + · · ·+ (−1)ε1+εj

)
+ 6

(
(−1)ε1+ε2 + (−1)ε1+ε3 + · · ·+ (−1)ε1+εj

)2
+ 4

(
(−1)ε1+ε2 + (−1)ε1+ε3 + · · ·+ (−1)ε1+εj

)3
+
(
(−1)ε1+ε2 + (−1)ε1+ε3 + · · ·+ (−1)ε1+εj

)4
.

Next, (
(−1)ε1+ε2 + (−1)ε1+ε3 + · · ·+ (−1)ε1+εj

)4
=
(
1 + (−1)ε2+ε3 + (−1)ε2+ε4 + · · ·+ (−1)ε2+εj

)4
=1 + 4

(
(−1)ε2+ε3 + (−1)ε2+ε4 + · · ·+ (−1)ε2+εj

)
+ 6

(
(−1)ε2+ε3 + (−1)ε2+ε4 + · · ·+ (−1)ε2+εj

)2
+ 4

(
(−1)ε2+ε3 + (−1)ε2+ε4 + · · ·+ (−1)ε2+εj

)3
+
(
(−1)ε2+ε3 + (−1)ε2+ε4 + · · ·+ (−1)ε2+εj

)4
.

After (j − 2) similar steps, we get,(
(−1)εj−2+εj−1 + (−1)εj−2+εj

)4
=
(
1 + (−1)εj−1+εj

)4
= 8 + 8(−1)εj−1+εj .

Therefore, ((−1)ε1 + (−1)ε2 + · · ·+ (−1)εj )4 = (j − 2) + 8 + P1 = j + P , where P = P1 +
6 is the sum of some positive integer and terms of the form (−1)

∑
l∈E εl , E ⊆ [j] with

some multiplicity. Since for any E ⊆ [j],
∑

a∈Fn2
(−1)(

∑
l∈E xl)·a,

∑
a∈Fn2

(−1)(
∑
l∈E xl+α)·a,∑

β∈Fn2
(−1)(

∑
l∈E φδ(xl))·β and

∑
β∈Fn2

(−1)(
∑
l∈E φδ(xl)+b)·β are nonnegative integers,

C
′
1j = 22m+3

∑
a,β∈Fn2

∑
(α,b)∈E2j

(
1 + (−1)a·α+b·β

)
(j + P )

= 22m+3
∑

a,β∈Fn2

∑
(α,b)∈E2j

(
j + P + j(−1)a·α+b·β + P (−1)a·α+b·β

)
= 22m+3

∑
a,β∈Fn2

∑
(α,b)∈E2j

j + 22m+3
∑

a,β∈Fn2

∑
(α,b)∈E2j

(
P + P (−1)a·α+b·β

)
≥ 22m+3

∑
a,β∈Fn2

∑
(α,b)∈E2j

j = 23m+3(j|E2j |),

as
∑

a∈Fn2

∑
β∈Fn2

(
P + P (−1)a·α+b·β) ≥ 0. Thus,

C
′
1 = C

′
11 + C

′
12 + · · ·+ C

′
1t

≥ 23m+3(|E2|+ 2|E4|+ · · ·+ t|E2t|)
= 23m+n+2(2n − 1),

and the theorem follows.
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The proof of the next corollary follows directly from Theorem 3.3 and Theorem 3.7.

Corollary 3.8. The Gowers U3 norm of a Maiorana–McFarland bent function defined as in
Theorem 3.7 is always larger than the norm of a Maiorana–McFarland bent function obtained
by using an APN permutation.

4 Gowers U3 norm for a class of cubic monomial function

This section is aimed at demonstrating how we envision the use of Gowers U3 norm to
identify the classes of functions with potentially high second-order nonlinearity. This section
also shows that the largest second-order nonlinearity may not be observed within the class of
bent functions. We consider a class of cubic monomial function similar to those considered
by Canteaut, Charpin and Kyureghyan [2].

Theorem 4.1. Let m = 3r, r > 1 be a positive integer. Let Fr ∈ Bm be a cubic Boolean
function defined by

Fr(x) = Trn1 (λx22r+2r+1), (16)

for all x ∈ F2m where λ ∈ F∗2r and fr(x) = (−1)Fr(x), for all x ∈ F2m. Then the Gowers U3

norm of fr is

‖fr‖U3 =
2m + 2r(2m − 1)

22m
.

Proof. The Gowers U3 norm of fr can be written as

‖fr‖8U3
=

1

24m

∣∣∣∣∣∣
∑

a,b,h,x∈F2m

(−1)Da,b,hFr(x)

∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣
∑

a,b∈F2m

∑
h,x∈F2m

(−1)Da,bFr(x)+Da,bFr(x+h)

∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣
∑

a,b∈F2m

 ∑
x∈F2m

(−1)Da,bFr(x)

2∣∣∣∣∣∣
=

1

24m

∣∣∣∣∣∣∣∣2
2m

 ∑
a∈F2m

1 +
∑

b∈F2m\{0}
a=0

1 +
∑

a∈F2m\{0}
b=0

1

+
∑

a,b∈F2m\{0}
a6=b

 ∑
x∈F2m

(−1)Da,bFr(x)

2
∣∣∣∣∣∣∣∣

=
1

24m

∣∣∣∣∣∣∣∣2
2m(3 · 2m − 2) +

∑
a,b∈F2m\{0}

a6=b

 ∑
x∈F2m

(−1)Da,bFr(x)

2
∣∣∣∣∣∣∣∣ .

Since deg(Da,bFr) is at most 1, Da,bFr is either balanced or constant. We find those nonzero
a, b ∈ F2m with a 6= b such that Da,bFr(x) is constant for all x ∈ F2m .

Da,bFr(x) = Trm1 (λ(a2rb+ab2
r
)x)+Trm1

(
λ
(

(a22rb2
r+1 + a2r+1b2

2r
) + (a22r + b2

2r
)(a2rb+ ab2

r
)
))
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Da,bFr(x) is constant for all x ∈ F2m if and only if

λ
(
a2rb+ ab2

r)
= 0⇔ a2rb+ ab2

r
= 0⇔

(
b

a

)2r−1

= 1⇔ b

a
∈ F2r \ F2 ⇔ b = βa

where β ∈ F2r \ F2. Thus, given any a ∈ F∗2m , b can be chosen in 2r − 2 ways. Therefore, the
total number of ways in which a, b can be chosen is (2m − 1)(2r − 2). Thus,

‖fr‖U3 =
2m + 2r(2m − 1)

22m
,

which shows the theorem.

We compare Gowers U3 norms of a cubic Maiorana–McFarland bent function, f say,
constructed by using APN permutations as in Theorem 3.3, and cubic monomial Boolean
functions considered above. Let m = 2n = 3r, i.e., n = 3r

2 .

‖fr‖8U3
− ‖f‖8U3

=
2m + 2r(2m − 1)

22m
− 7 · 2n − 6

23n

=
2m + 2m+r − 2r − 7 · 2m + 6 · 2n

22m

=
6 · 2n + 2m(2r − 6)− 2r

22m
.

It can be directly checked that if r = 2, then ‖fr‖8U3
< ‖f‖8U3

and if r ≥ 3, then ‖fr‖8U3
>

‖f‖8U3
. This suggests that the second-order nonlinearity of fr is greater than the one of f if

m = 6 and for m ≥ 10 such is not the case.
There are three known affine inequivalent classes of cubic bent functions in 6 variables [13].

It is also known that all the cubic bents are affine equivalent to Maiorana-McFarland bent
functions. By direct computation we have found that their second-order nonlinearities are 8,
12 and 16. Motivated by low Gowers U3 norm of F2, obtained by substituting r = 2 in (16),
we have computed the second-order nonlinearity of F2. We find that while it is not bent,
having nonlinearity 22, its second-order nonlinearity has the maximum possible value in B6,
namely 18. However, the reversal of the inequality sign for r ≥ 3 indicates that this trend
will not extend to 12 variables, i.e., for r = 4.

5 Further comments

The problem of constructing Boolean functions in n variables with highest possible second-
order nonlinearity is connected to the covering radius problem of second-order Reed–Muller
codes. Both these problems are difficult and remain far from being settled. In this paper we
locate some functions with low Gowers U3 norms, since this is also a measure of resistance to
second-order approximation of a Boolean function. This norm seems to be dependent more
on the differential uniformity of the permutations associated to the Maiorana–McFarland
bent functions rather than the algebraic degrees. Similarly, in the recent past, Tang, Carlet
and Tang [14] have demonstrated that lower bound of second-order nonlinearities of the
Maiorana–McFarland bents obtained by using APN permutations is greater than or equal to
the functions considered by Gangopadhyay et al. [9]. It should be interesting to check whether

17



the Maiorana-McFarland APN-based functions have the largest second-order nonlinearity
among the class of bent functions.
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