
Annales Univ. Sci. Budapest., Sect. Comp. 40 (2013) nn–nnn

THE EULER FUNCTION OF FIBONACCI AND

LUCAS NUMBERS AND FACTORIALS

Florian Luca (Morelia, Mexico)
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Abstract. Here, we look at the Fibonacci and Lucas numbers whose Euler
function is a factorial, as well as Lucas numbers whose Euler function is a
product of power of two and power of three.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and
Fn+2 = Fn+1+Fn for all n ≥ 0. Let (Ln)n≥0 be the companion Lucas sequence
satisfying the same recurrence with initial conditions, L0 = 2, L1 = 1. In our
previous paper [2], we noticed the relation

F1F2F3F4F5F6F7F8F10F12 = 11!

and proved that it is the largest solution of the Diophantine equation

Fn1Fn2 · · ·Fnk = m1!m2! · · ·m`!
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in positive integers n1 < n2 < · · · < nk and m1 ≤ m2 ≤ · · · ≤ m` where by
“largest” we mean that the number appearing in the left (or right) hand side
of the above equation is largest among all solutions. Here, we note that

φ(F21) = 7! and φ(L6) = 3!

and conjecture that the above solutions are the largest solutions of the equation

φ(Fn) = m!, respectively, φ(Ln) = m!

but have no idea how to attack this problem. Instead, we put

N = {n : φ(Fn) = m! for some positive integer m}

and prove the following properties of the set N . Put N (x) = N ∩ [1, x]. For a
positive real number x we write log x for the natural logarithm of x.

Theorem 1.1. The following hold:

(i) #N (x)� x log log x
log x

, and so N is of asymptotic density zero.

(ii) The only primes in N are 2 and 3.

In [1] it was shown that F9 = 34 and L3 = 4 are the largest Fibonacci and
Lucas numbers, respectively, whose Euler function is a power of 2. Here, we
show the following result.

Theorem 1.2. The only solutions in nonnegative integers of the equation
φ(Ln) = 2a3b are

(n, a, b) = (0, 0, 0), (1, 0, 0), (2, 1, 0), (3, 1, 0), (4, 1, 1), (6, 1, 1), (9, 2, 2).

We do not know how to find all the nonnegative solutions (n, a, b) of the
Diophantine equation

φ(Fn) = 2a3b.

Also, we noted that φ(L30) = 5!7!, but we do not even know how to prove that
the set of positive integers n such that

φ(Fn) = m1! · · ·m`! or φ(Ln) = m1! · · ·m`!

for some integers 1 ≤ m1 ≤ · · · ≤ m` is of asymptotic density zero. We leave
such questions for the reader.
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2. The proofs

2.1. The proof of Theorem 1.1

(i) Let x be a large real number and γ = (1 +
√

5)/2 be the golden section.
Let n ∈ N (x). Since(m

e

)m
< m! = φ(Fn) < Fn < γn ≤ γx,

it follows that for large x we have m ≤ x/ log x. Let us denote K = bx/ log xc.
For k = 1, . . . ,K, put

Nk(x) = {n ≤ x : φ(Fn) = k!}}.

Fix k and let n1 < n2 < . . . < nt be all elements in Nk(x). Since

1 ≤ Fn
φ(Fn)

� log logFn � log x,

we get that

Fnt
Fn1

=
(
Fnt
k!

)(
k!
Fn1

)
=
(

Fnt
φ(Fnt)

)(
φ(Fn1)
Fn1

)
� log x.

Since γn−2 ≤ Fn ≤ γn−1 holds for all n, we get that Fnt/Fn1 ≥ γnt−n1−1.
Hence,

γnt−n1−1 � log x yielding #Nk(x) ≤ nt − n1 � log log x.

Since certainly
N (x) =

⋃
1≤k≤K

Nk(x),

it follows that

#N (x) ≤
K∑
k=1

#Nk(x)� K log log x� x log log x
log x

,

which completes the proof of (i).

(ii) Assume that p > 12 is in N . Then all prime factors q of Fp satisfy
the relation q ≡ (5|q) (mod p), where (a|q) is the Legendre symbol of a with
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respect to q. If q ≡ 1, 4 (mod p), then p | (q− 1) | φ(Fp). Since φ(Fp) = m! for
some integer m, we get that m ≥ p. Thus,

γp > Fp ≥ φ(Fp) ≥ p! ≥ (p/e)p,

an inequality which is false for any p > 12. A similar argument proves that Fp
is square free. Indeed, if q2 | Fp, then q | φ(Fp), therefore m ≥ q. Since q ≡ ±1
(mod p), we get that q ≥ 2p − 1 > p, and we get again that φ(Fp) ≥ q! > p!,
a contradiction. Thus, Fp is square free and q ≡ 2, 3 (mod 5) for all prime
factors q of Fp. Since the above congruence is true for all prime factors q of Fp,
we get that 5 - φ(Fp), so that m ≤ 4. Hence, φ(Fp) ≤ 4! = 24. This is false if
Fp is a prime, or if Fp has at least one prime factor > 23, or if Fp has at least
four distinct prime factors because (2 − 1)(3 − 1)(5 − 1)(7 − 1) > 24. Hence,
Fp < 233, leading to p ≤ 19. A quick search now completes the proof of (ii).�

Remark 1. The argument used to prove (ii) shows that for each fixed positive
integer a, there are only finitely many primes p such that ap ∈ N . To see why,
assume that p > 12 and ap ∈ N . Then every prime factor q of Fap either is a
prime factor of Fa, or is a primitive prime factor of Fdp for some divisor d of
a. In the second case, either q ≡ 1 (mod p), and we get

γap > Fap > φ(Fap) ≥ p! ≥ (p/e)p therefore p < eaγ,

or q ≡ 2, 3 (mod 5). If this last scenario happens for all prime factors q of Fap
which are not prime factors of Fa, we then deduce that ν5(m!) = ν5(φ(Fa)),
where ν5(m) is the exponent of 5 in the factorization of m. Since certainly
ν5(m!) ≥ bm/5c, we get that bm/5c ≤ ν5(φ(Fa)), so that m ≤ 5ν5(φ(Fa)) + 4.
This in turn puts an upper bound on ap. For example, for a ∈ {2, 3, 4}, we
get that either p < e4γ, therefore p ≤ 19, or m ≤ 4ν5(φ(Fa)) + 4 = 4, so
φ(Fap) ≤ 4!, which again gives that p ≤ 19, and a quick search reveals that the
only such values of ap in N are 4 and 21.

Remark 2. The conclusions of the above theorem (with the same bounds
and primes membership in N ) as well as the above Remark 1 still hold if we
replace the Fibonacci numbers by Lucas numbers. One just uses the inequalities
γn−1 ≤ Ln ≤ γn+1 valid for all n ≥ 1.

2.2. The proof of Theorem 1.2

Assume that n = 2αm for some odd positive integer m. We start by showing
that α ≤ 2. Assume that α ≥ 4. Since

L2α = L2
2α−1 − 2,
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it follows that L2α ≡ 3 (mod 4). In particular, there exists a prime factor q of
L2α such that q ≡ 3 (mod 4). Reducing the relation L2

2α − 5F 2
2α = 4 modulo

q, we get that (−5|q) = 1. Since q ≡ 3 (mod 4), we deduce that (−1|q) = −1,
therefore (5|q) = −1. It follows that q ≡ −1 (mod 2α). Write q = 2a3b + 1.
Then since q ≡ 3 (mod 4), we get that a = 1. Thus, 2α | (q+1), or 2α−1 | 3b+1,
and this is impossible for α ≥ 4 because ν2(3b+1) = 1, 2 according to whether
b is even or odd. This shows that α ≤ 3. The case α = 3 is not possible since it
would lead to L8 | Ln, hence 23 | φ(L8) | φ(Ln), a contradiction. We now look
at the prime factors of m. Since 107 | φ(L27), 41 | φ(L18) and 11 | φ(L36), it
follows that 33 - m. In fact, if α ∈ {1, 2}, then 32 - m.

Now assume that p > 3 is a prime factor of m. Then L2αp has the same
property that its Euler function is divisible only by primes which are at most
3. Let q > 2 be any prime factor of L2αp which is not a prime factor of L2α .
If α = 0, then reducing the formula L2

p − 5F 2
p = −4 modulo q, we get that

(5|q) = 1. This shows that q ≡ 1 (mod p), therefore p | φ(Lp), which is a
contradiction because p > 3. This shows that the only acceptable solutions
when α = 0 are n = 3, 9. Assume now that α ≥ 1. Reducing the formula
L2

2αp − 5F 2
2αp = 4 modulo q we get (−5|q) = 1. If q ≡ 1 (mod 4), then we

get q ≡ 1 (mod p), leading to p | φ(L2αp), which is a contradiction for p > 3.
So, we get that n ∈ {2, 4, 6, 12} and the solution n = 12 is not convenient.
So, we need to treat the case when q ≡ −1 (mod 4) for all prime factors q of
L2αp/L2α , which leads to the conclusion that q = 2 · 3bq + 1. Moreover, q ≡ −1
(mod p), therefore 2 · 3bq + 1 = aqp− 1 for some even integer aq. Further, it is
clear that L2αp/L2α is square free. Thus, we get that

L2αp = L2αq1q2 · · · q`,

where qi = 2 ·3bqi +1 for i = 1, . . . , `. We may assume that 1 ≤ bq1 < · · · < bq` .
We thus get that

3b1 | L2αp − L2α = 5F2α−1(p−1)F2α−1(p+1).

Now Fm is a multiple of 3 if and only if 4 | m. Moreover, in this case, ν3(Fm) =
= ν3(m)+1. Since exactly one of p−1 and p+1 is a multiple of 3, and exactly
one of these two numbers is a multiple of 4, it follows that

min{ν3(F2α−1(p−1), F2α−1(p+1)} ≤ 1,
max{ν3(F2α−1(p−1), F2α−1(p+1)} ≤ 1 + max{ν3(p− 1), ν3(p+ 1)}.

In particular, we deduce that if bq1 ≥ 2, then 3bq1−2 | (p − 1)/2 or 3bq1−2 |
| (p+ 1)/2. On the one hand, writing

p =
2 · 3bq1 + 2

aq1
, we get that 3bq1−2 | aq1 + 1, or 3bq1−2 | aq1 − 1.
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Since (p+ 1)/2 ≥ 3bq1−2, we get that

3bq1 + 1
a1

=
p

2
> 3bq1−2 − 1.

On the one hand, if aq1 ≥ 10, then 3bq1 + 1 > 10(3bq1−2 − 1), or 11 ≥ 3bq1−2,
or bq1 ≤ 4. On the other hand, if aq1 ≤ 8, then 3bq1−2 divides one of aq1 − 1 or
aq1 + 1, a number which is at most 9, so again bq1 ≤ 4. Thus, bq1 ∈ {1, 2, 3, 4},
so the only possibilities are q1 ∈ {7, 19, 163}. The case q1 = 7 leads to α = 2,
then p = 7, which is false because 72 cannot divide L2αp. The case q1 = 19
leads to p | q1 − 1, which is false because p > 3. The case q1 = 163 leads to
p | 164, so p = 41. However, in this case since q = 163 divides L2ap, we get
that α = 1. In this case, 31 | φ(L82), and we get a contradiction. So, we indeed
conclude that n cannot be divisible by any prime p > 3, which completes the
proof of the theorem. �
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