
16.7 

Surface Integrals 

In this section, we will learn about: 

Integration of different types of surfaces. 

VECTOR CALCULUS 



PARAMETRIC SURFACES 

Suppose a surface S has a vector equation 

 

r(u, v) = x(u, v) i + y(u, v) j + z(u, v) k  

 

   (u, v)    D 



PARAMETRIC SURFACES 

•We first assume that the parameter 

domain D  is a rectangle and we divide 

it into subrectangles Rij with dimensions 

∆u and ∆v.  

•Then, the surface S is divided into 

corresponding patches Sij. 

•We evaluate f at a point Pij* in each 

patch, multiply by the area ∆Sij of the 

patch, and form the Riemann sum 
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SURFACE INTEGRAL 

Then, we take the limit as the number  

of patches increases and define the surface 

integral of f over the surface S as:  

 

 

 Analogues to: The definition of a line integral  

(Definition 2 in Section 16.2);The definition of a double 

integral  (Definition 5 in Section 15.1) 

 To evaluate the surface integral in Equation 1, we 

approximate the patch area ∆Sij by the area of an 

approximating parallelogram in the tangent plane.  
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SURFACE INTEGRALS 

In our discussion of surface area in  

Section 16.6, we made the approximation  

 

     ∆Sij ≈ |ru x rv| ∆u ∆v 

where:  

 

 

are the tangent vectors at a corner of Sij. 
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SURFACE INTEGRALS 

If the components are continuous and ru and 

rv are nonzero and nonparallel in the interior  

of D, it can be shown from Definition 1—even 

when D is not a rectangle—that: 
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SURFACE INTEGRALS 

This should be compared with the formula  

for a line integral: 

 

 

Observe also that: 

( , , ) ( ( )) | '( ) |
b

C a
f x y z ds f t t dt  r r

1 | | ( )u v

S D

dS dA A S    r r



SURFACE INTEGRALS 

Compute the surface integral     , 

where S is the unit sphere  

x2 + y2 + z2 = 1. 

Example 1 
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SURFACE INTEGRALS 

As in Example 4 in Section 16.6,  

we use the parametric representation  

 

   x = sin Φ cos θ, y = sin Φ sin θ, z = cos Φ  

               0 ≤ Φ ≤ π, 0 ≤ θ ≤ 2π 

 That is,  

r(Φ, θ) = sin Φ cos θ i + sin Φ sin θ j + cos Φ k 

 we can compute: |rΦ x rθ| = sin Φ 

 

Example 1 



SURFACE INTEGRALS 

Therefore, by Formula 2, 
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APPLICATIONS 

For example, suppose a thin sheet  

(say, of aluminum foil) has: 

 

 The shape of a surface S. 

 

 The density (mass per unit area)  

at the point (x, y, z) as ρ(x, y, z).  



CENTER OF MASS 

Then, the total mass of the sheet  

is:  

The center of mass is:  
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GRAPHS 

Any surface S with equation z = g(x, y)  

can be regarded as a parametric surface  

with parametric equations 

x = x  y = y  z = g(x, y) 

 

 So, we have: 
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GRAPHS 

•Thus, 

 

and 

 

•Formula 2 becomes: 
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GRAPHS 

Evaluate              where S is the surface  

       z = x + y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 

 

   
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GRAPHS 

So, Formula 4 gives: 
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GRAPHS 

If S is a piecewise-smooth surface—a finite 

union of smooth surfaces S1, S2, . . . , Sn that 

intersect only along their boundaries—then  

the surface integral of f over S is defined by:  
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GRAPHS 

Evaluate            , where S is  

the surface whose: 

 

 Sides S1 are given by the cylinder x2 + y2 = 1. 

 

 Bottom S2 is the disk x2 + y2 ≤ 1 in the plane z = 0. 

 

 Top S3 is the part of the plane z = 1 + x that  

lies above S2. 

S
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GRAPHS 

For S1, we use θ and z as parameters 

(Example 5 in Section 16.6) and write its 

parametric equations as:  

 x = cos θ   

 y = sin θ   

 z = z 

where: 

 0 ≤ θ ≤ 2π 

 0 ≤ z ≤ 1 + x = 1 + cos θ 

Example 3 



GRAPHS 

Therefore, 
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GRAPHS 

Thus, the surface integral over S1 is: 
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GRAPHS 

Since S2 lies in the plane z = 0,  

we have: 

Example 3 
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GRAPHS 

S3 lies above the unit disk D and is  

part of the plane z = 1 + x. 

 

 So, taking  

g(x, y) = 1 + x  

in Formula 4  

and converting to  

polar coordinates,  

we have the following  

result. 

Example 3 



GRAPHS 
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GRAPHS 

Therefore, 
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SURFACE INTEGRALS OF VECTOR FIELDS 

Suppose that S is an oriented surface with  

unit normal vector n. 

Then, imagine a fluid with density ρ(x, y, z) 

and velocity field v(x, y, z) flowing through S. 

 

 Think of S as an imaginary surface that doesn’t  

impede the fluid flow—like a fishing net across  

a stream. 

Then, the rate of flow  (mass per unit time) per 

unit area is ρv. 

 



SURFACE INTEGRALS OF VECTOR FIELDS 

If we divide S into small patches Sij ,  

then Sij is nearly planar.  



SURFACE INTEGRALS OF VECTOR FIELDS 

So, we can approximate the mass of fluid 

crossing Sij in the direction of the normal n  

per unit time by the quantity 

    (ρv · n)A(Sij) 

where ρ, v, and n are  

evaluated at some point on Sij. 

 Recall that the component of the vector ρv  

in the direction of the unit vector n is ρv · n. 



VECTOR FIELDS 

Summing these quantities and taking the limit, 

we get, according to Definition 1, the surface 

integral of the function ρv · n over S:  

 

 

 

 

 This is interpreted physically as the rate of flow 

through S. 
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VECTOR FIELDS 

If we write F = ρv, then F is also a vector  

field on  R3. Then, the integral in Equation 7  

becomes: 

 

A surface integral of this form occurs 

frequently in physics—even when F is not ρv. 

It is called the surface integral (or flux integral) 

of F over S.  

  

S
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FLUX INTEGRAL 

If F is a continuous vector field defined  

on an oriented surface S with unit normal 

vector n, then the surface integral of F over S 

is: 

 

 

 This integral is also called  

the flux of F across S. 

Definition 8 
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FLUX INTEGRAL 

If S is given by a vector function r(u, v),  

then n is given by Equation 6. 

 Then, from Definition 8 and Equation 2,  

we have (D is the parameters’ domain):  

 

 

 

 

 So, 
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FLUX INTEGRALS 

•Find the flux of the vector field  

  F(x, y, z) = z i + y j + x k  

across the unit sphere :x2 + y2 + z2 = 1  

•Using the parametric representation: 

r(Φ, θ) = sin Φ cos θ i + sin Φ sin θ j + cos Φ k 

    0 ≤ Φ ≤ π     0 ≤ θ ≤ 2π 

F(r(Φ, θ)) = cos Φ i + sin Φ sin θ j + sin Φ cos θ k 

Example 4 



FLUX INTEGRALS 

From Example 10 in Section 16.6, 

rΦ x rθ = sin2 Φ cos θ i + sin2 Φ sin θ j + sin Φ cos Φ k 

Therefore, F(r(Φ, θ)) · (rΦ x rθ) = cos Φ sin2 Φ 

cos θ  + sin3 Φ sin2 θ + sin2 Φ cos Φ cos θ 

Then, by Formula 9, the flux is: 
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FLUX INTEGRALS 

 This is by the same calculation as in Example 1. 
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FLUX INTEGRALS 

The figure shows the vector field F in 

Example 4 at points on the unit sphere. 



VECTOR FIELDS 

If, for instance, the vector field in Example 4  

is a velocity field describing the flow of a fluid 

with density 1, then the answer, 4π/3, 

represents:  

 

 The rate of flow through the unit sphere  

in units of mass per unit time. 



VECTOR FIELDS 

In the case of a surface S given by a graph  

z = g(x, y), we can think of x and y as 

parameters and use Equation 3 to write: 
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VECTOR FIELDS 

Thus, Formula 9 becomes: 

 

 

 

 

 This formula assumes the upward orientation of S. 

 For a downward orientation, we multiply by –1. 
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VECTOR FIELDS 

Evaluate    

 

where: 

 

 F(x, y, z) = y i + x j + z k 

 S is the boundary of the solid region E  

enclosed by the paraboloid z = 1 – x2 – y2  

and the plane z = 0.  

Example 5 
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VECTOR FIELDS 

S consists of:  

 A parabolic top surface S1. 

 A circular bottom surface S2. 

Example 5 



VECTOR FIELDS 

Since S is a closed surface, we use the 

convention of positive (outward) orientation.  

 

 This means that S1 is oriented upward. 

 

 So, we can use Equation 10 with D being  

the projection of S1 on the xy-plane, namely,  

the disk x2 + y2 ≤ 1. 

Example 5 



VECTOR FIELDS 

On S1, 

   P(x, y, z) = y  

   Q(x, y, z) = x 

   R(x, y, z) = z = 1 – x2 – y2 

Also,  
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VECTOR FIELDS 

So, we have: 
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VECTOR FIELDS 
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VECTOR FIELDS 

The disk S2 is oriented downward. 

So, its unit normal vector is n = –k  

and we have: 

 

 

 

 

since z = 0 on S2. 
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VECTOR FIELDS 

Finally, we compute, by definition,   

as the sum of the surface integrals  

of F over the pieces S1 and S2: 
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APPLICATIONS 

Although we motivated the surface integral  

of a vector field using the example of fluid 

flow, this concept also arises in other physical 

situations. 



ELECTRIC FLUX 

For instance, if E is an electric field  

(Example 5 in Section 16.1), the surface 

integral  

 

 

is called the electric flux of E through  

the surface S. 
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GAUSS’S LAW 

One of the important laws of electrostatics is 

Gauss’s Law, which says that the net charge 

enclosed by a closed surface S is: 

 

 

where ε0 is a constant (called the permittivity 

of free space) that depends on the units used. 

 In the SI system, ε0 ≈ 8.8542 x 10–12 C2/N · m2 
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GAUSS’S LAW 

Thus, if the vector field F in Example 4 

represents an electric field, we can conclude 

that the charge enclosed by S is:  

 

   Q = 4πε0/3 



HEAT FLOW 

Another application occurs in  

the study of heat flow.  

 
 

 Suppose the temperature at a point (x, y, z)  

in a body is u(x, y, z). 



HEAT FLOW 

•Then, the heat flow is defined as  

the vector field   F =  –K ∇u 

where K is an experimentally determined 

constant called the conductivity of the 

substance. 

•Then, the rate of heat flow across  

the surface S in the body is given by  

the surface integral  
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