VECTOR CALCULUS

16.7
Surface Integrals

In this section, we will learn about:

Integration of different types of surfaces.



PARAMETRIC SURFACES
Suppose a surface S has a vector equation

r(u, v) =x(u,v) 1 +y(u, v) ] +z(u, v) k

(u,v)ebD



PARAMETRIC SURFACES

*We first assume that the parameter

domain D Is a rectangle and we divide “ | /r’

it into subrectangles R; with dimensions —D—xﬁf;:m

Au and Av.

*Then, the surface S is divided into ' ‘

corresponding patches S;.

‘We evaluate f at a point P;* in each
patch, multiply by the area AS; of the
patch, and form the Riemann sum
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SURFACE INTEGRAL Equation 1
Then, we take the limit as the number

of patches increases and define the surface

iIntegral of f over the surface S as:

|[ f(xy,2)ds = lim S S £ (R)AS,

S m,N—o0 i1 j=1

= Analogues to: The definition of a line integral
(Definition 2 in Section 16.2);The definition of a double
iIntegral (Definition 5 in Section 15.1)

= To evaluate the surface integral in Equation 1, we
approximate the patch area AS; by the area of an
approximating parallelogram in the tangent plane.



SURFACE INTEGRALS
In our discussion of surface area In

Section 16.6, we made the approximation

AS; = |ry xr,| Au Av

where:

ru:%ijtghgk rV:%H@jJr@k
ou ou- ou o oV oV

are the tangent vectors at a corner of S;.



SURFACE INTEGRALS Formula 2
If the components are continuous and r, and

r, are nonzero and nonparallel in the interior
of D, it can be shown from Definition 1—even

when D Is not a rectangle—that:

”f(x, y,Z2)dS :H f(r(u,v))|r,xr, |dA

S



SURFACE INTEGRALS
This should be compared with the formula

for a line integral:
[ fouy.2yds= [ f (r@) | r'@]d
Observe also that:

_UldSz”\ruxrv\dA:A(S)

S



SURFACE INTEGRALS Example 1
Compute the surface integral ” %2 dS |

where S Is the unit sphere >
X2+y2+2z2=1



SURFACE INTEGRALS Example 1
As In Example 4 in Section 16.6,

we use the parametric representation

X=sin@®cosH,y=sin®Psinb,z=cos P
O0<P=<1m7,0=6=<217

* That is,
r(®,0)=sinPcosBi+sinPsinBj+cos Pk

= we can compute: [, X I'g| = SIN @



SURFACE INTEGRALS Example 1
Therefore, by Formula 2,

”xzdS
_ ”(sin $cos0)* |r, xr, |dA
- JOZ”IO” (sin® gcos’ Gsingdgpde

= [ cos? 0da| sin® pdg

J0

- :02”1(14_ c0s 260) d@joﬂ (sin ¢ —sin gcos’ ¢) dg

2
3[6+4sin20] " [—cosg+icos’ g |

%
3



APPLICATIONS
For example, suppose a thin sheet

(say, of aluminum folil) has:

* The shape of a surface S.

* The density (mass per unit area)
at the point (x, y, z) as p(Xx, VY, 2).



CENTER OF MASS

Then, the total mass of the sheet
s: m=|[p(xy.2)ds
S

The center of mass is: ()_(, Y, E)

Q:%gx,o(x,y,z)ds



GRAPHS
Any surface S with equation z = g(Xx, y)

can be regarded as a parametric surface
with parametric equations

X =X y=y Zz=9(X,Y)

= S0, we have:

r, —|+(agjk r _J+(8gjk
OX oy



GRAPHS Equation 3

"Thus, | 995 99,y

7 OX  OX
(@T+ L 2+1
\Lox oy

Formula 2 becomes:
Hf(x,y,z)dS

) a), ()
_Ljf(x, Y, 9(X, y))V(axj J{@yj +1dA

and |r xr, |=




Example 2

GRAPHS

Evaluate H y dS where S is the surface

=X+y5,0<x<1,0<y=<?2

Z

S




GRAPHS Example 2
So, Formula 4 gives:

0z 0z
vas=ll, 1+(axj (ayj N
:EK y\/1+1+ 4y dy dx
:j:dxﬁjoz y\/1+2y? dy
()3 ayy] 122




GRAPHS

If S Is a plecewise-smooth surface—a finite
union of smooth surfaces S;, S, . . ., S, that
Intersect only along their boundaries—then
the surface integral of f over S Is defined by:

_Uf(x,y,z)dS



GRAPHS Example 3

Evaluate ” 2dS where Sis
the surfaceé whose:

= Sides S, are given by the cylinder x* + y? = 1.
= Bottom S, is the disk x? + y2 < 1 in the plane z = 0.

= Top S; Is the part of the plane z = 1 + x that
lies above S..



GRAPHS Example 3
For S,, we use 6 and z as parameters
(Example 5 In Section 16.6) and write Its
parametric equations as:

X = cos 6
y=siné
Z =4
where:
» 00 <217
» 0<z<l+x=1+cos6




GRAPHS Example 3

Therefore,
i | k
r,xr,=|—sin@d cos@ 0 |=cosfl+sind]
0 0 1
and

r.xr. |=+/cos? @+sin2@ =1
‘ Lol z‘



GRAPHS Example 3
Thus, the surface integral over S, Is:

|[zds = [[z]r,xr, [dA
S, D
27 el+coso
:j j zdzd@
0 0
. 02”%(1+cose)2d<9
:%r”[lJr20059+%(1+00326’)]d6’

0
=120+ 2sin@+1sin26 |;"= 37”



GRAPHS Example 3
Since S, lies in the plane z = 0O,

we have:

gzdS
= | 0ds




GRAPHS Example 3
S, lies above the unit disk D and is

part of the plane z =1 + x.

= S0, taking
g(x,y)=1+x
In Formula 4
and converting to
polar coordinates,
we have the following
result.




GRAPHS Example 3
”zdS :”(1+ X) 1+(@j2 +(@T dA
: L V OX oy

2 el
:jo J'O(1+rcose)«/1+1+0rdrd6’

— \/fj;”ﬁ(r +r?cosd)drd@

:ﬁ_[oz”(%Jr%cosH)de
0 sin@]”

_ 2| 2 2R B

f_z 3 \) )




GRAPHS Example 3

Therefore,
szS:”zdS+”zdS+”zdS
S S, S, S3
:?ﬂ -0+ ﬁﬂ

2

(5+42)s



SURFACE INTEGRALS OF VECTOR FIELDS
Suppose that S Is an oriented surface with

unit normal vector n.

Then, imagine a fluid with density p(X, Yy, z)
and velocity field v(x, y, z) flowing through S.

= Think of S as an imaginary surface that doesn’t
Impede the fluid flow—Iike a fishing net across
a stream.

Then, the rate of flow (mass per unit time) per
unit area Is pv.



SURFACE INTEGRALS OF VECTOR FIELDS

If we divide S into small patches S;,

then S; Is nearly planar.




SURFACE INTEGRALS OF VECTOR FIELDS

So, we can approximate the mass of fluid
crossing S; In the direction of the normal n
per unit time by the quantity

(ov - N)A(S;)
where p, v, and n are
evaluated at some point on S;.

= Recall that the component of the vector pv
In the direction of the unit vector n is pv - n.



VECTOR FIELDS Equation 7
Summing these quantities and taking the limit,
we get, according to Definition 1, the surface
Integral of the function pv - n over S:

”pV-ndS
= ”p(x, V,2) V(X,¥,2)-n(X,y,2)dS

* This is interpreted physically as the rate of flow
through S.



VECTOR FIELDS
f we write F = pv, then F Is also a vector

field on R3. Then, the integral in Equation 7
Hecomes: J' F-ndS

S

A surface integral of this form occurs
frequently in physics—even when F Is not pv.

It Is called the surface integral (or flux integral)
of F over S.



FLUX INTEGRAL Definition 8
If F 1S a continuous vector field defined

on an oriented surface S with unit normal
vector n, then the surface integral of F over S

LjFodS:gF-ndS

IS:

* This integral Is also called
the flux of F across S.



FLUX INTEGRAL
If S Is given by a vector function r(u, v),
then n Is given by Equation 6.

* Then, from Definition 8 and Equation 2,
we have (D is the parameters’ domain):

I, Xr,
_UF ds = ”F . ><r|dS

:jj{F(r(u V) V}mxnlo|A

L

|
”F-dS:”F-(ruxrv)dA




FLUX INTEGRALS Example 4
Find the flux of the vector field

F(X,y,z)=ziI+y]+xKk
across the unit sphere :x? +y? +z2=1
*Using the parametric representation.
r(®,0)=sin®cosBi+sin®sin B +cos Pk
O<®=sT 0<6=<2m
F(r(®,0)) =cos @i +sin®sin @) +sin @ cos Ok



FLUX INTEGRALS Example 4
From Example 10 in Section 16.6,

re Xrg=sin?® cos B1i +sin? P sin 6 + sin @ cos P k

Therefore, F(r(®, 0)) - (ry X rg) = cos @ sin? @
cos 6 + sind @ sin? 6 + sin® ® cos @ cos 6

Then, by Formula 9, the flux is:

[[F-ds
= [[F-(r,xr,)dA

— J'OZ”J'O” (2sin’® gcos g cosé +sin® gsin® &) dgdo



FLUX INTEGRALS Example 4

= Zj:sin2 ¢cos¢d¢j02ﬂc036’d6’
+[sin® pdg| " sin? 0do

=0+ ["sin’ pdg[ "sin?0de

s

3

* This is by the same calculation as in Example 1.



FLUX INTEGRALS
The figure shows the vector field F In
Example 4 at points on the unit sphere.

—
L




VECTOR FIELDS
If, for instance, the vector field in Example 4

IS a velocity field describing the flow of a fluid
with density 1, then the answer, 417/3,

represents:

* The rate of flow through the unit sphere
IN units of mass per unit time.



VECTOR FIELDS
In the case of a surface S given by a graph

Z = g(X, y), we can think of x and y as
parameters and use Equation 3 to write:

F-(rxxry):(Pi+Qj+Rk)-(—Z—ii—%j+kj



VECTOR FIELDS Formula 10
Thus, Formula 9 becomes:

og 0
ijF-dsszj Pa?( Q£+R dA

* This formula assumes the upward orientation of S.
* For a downward orientation, we multiply by —1.



VECTOR FIELDS Example 5
Evaluate

j F-dS
where:

" F(X,y,Z2)=yiI+X]+zKk
= S Is the boundary of the solid region E

enclosed by the paraboloid z = 1 — x2 — y?
and the plane z = 0.



VECTOR FIELDS Example 5
S consists of:

= A parabolic top surface S;.
= A circular bottom surface S,.




VECTOR FIELDS Example 5
Since S Is a closed surface, we use the
convention of positive (outward) orientation.

* This means that S, is oriented upward.

»= S0, we can use Equation 10 with D being
the projection of S, on the xy-plane, namely,
the disk x? + y2 < 1.



VECTOR FIELDS Example 5
On S,

P(X,y,2)=y
QX Yy, z) =X
R(X,y,z)=z=1-—Xx%—-V?
Also,
8_g:_2X 8_g:_2y



VECTOR FIELDS Example 5
So, we have:

(—P@—g— 59+RjdA
OX oy
[—y(=2X) = X(=2Yy) +1—x* — y*]dA

(L+4xy — x* —y?)dA



VECTOR FIELDS Example 5

2 1 2 - 2

:JO j0(1+4r cos@dsinfé—r-)rdrdé
2 1 -

:jo jo(r—r3+4r3c03¢93|n¢9)drd¢9

:IOZﬂ(%cosé’sin 0)do
=+ (27)+0

d
2



VECTOR FIELDS Example 5
The disk S, Is oriented downward.

So, Its unit normal vector iIs n = —k
and we have:

”F'dS:gF‘(—k)dS =_[)J-(—z)dA

S)

=ijOdA:O

sincez=0o0n S..



VECTOR FIELDS Example 5
Finally, we compute, by definition,j E.dS
as the sum of the surface integrals S

of F over the pieces S; and S.:

ijF-dsng-dsng-ds



APPLICATIONS

Although we motivated the surface integral

of a vector field using the example of fluid
flow, this concept also arises in other physical
situations.



ELECTRIC FLUX
For instance, If E Is an electric field

(Example 5 in Section 16.1), the surface

iIntegral
|[E-ds

S

IS called the electric flux of E through
the surface S.



GAUSS’S LAW Equation 11
One of the iImportant laws of electrostatics is

Gauss’s Law, which says that the net charge

enclosed by a closed surface S Is:
Qs j _[ E.dS
S

where &, IS a constant (called the permittivity

of free space) that depends on the units used.
= In the Sl system, &, = 8.8542 x 10-*? C?/N - m?



GAUSS’S LAW
Thus, If the vector field F in Example 4

represents an electric field, we can conclude
that the charge enclosed by S is:

Q = 41re,/3



HEAT FLOW
Another application occurs In

the study of heat flow.

* Suppose the temperature at a point (X, y, 2)
In a body Is u(x, y, 2).



HEAT FLOW
*Then, the heat flow Is defined as

the vector fleld F = —K Vu

where K Is an experimentally determined
constant called the conductivity of the
substance.

*Then, the rate of heat flow across
the surface S in the body is given by
the surface integral HF.dS h, _KI'VU .ds

S S




