SURFACE AREAS

Let's choose (u_{i}^{*}, v_{j}^{*}) to be the lower left corner of $R_{i j}$.
For simplicity, we start by considering a surface whose parameter domain D is a rectangle, and we divide it into subrectangles $R_{i j}$.

PATCH

The part $S_{i j}$ of the surface S that corresponds to $R_{i j}$ is called a patch and has the point $P_{i j}$ with position vector $\mathbf{r}\left(u_{i}^{*}, v_{j}^{*}\right)$ as one of its corners.

SURFACE AREAS

-Let $\mathbf{r}_{u}{ }^{*}=\mathbf{r}_{u}\left(u_{i}{ }^{*}, v_{j}{ }^{*}\right)$ and $\mathbf{r}_{v}{ }^{*}=\mathbf{r}_{v}\left(u_{i}{ }^{*}, v_{j}{ }^{*}\right)$ be the tangent vectors at $P_{i j}$
-The figure shows how the two edges of the patch that meet at $P_{i j}$ can be approximated by vectors.

SURFACE AREAS

These vectors, in turn, can be approximated by the vectors $\Delta u \mathbf{r}_{u}{ }^{*}$ and $\Delta v \mathbf{r}_{v}{ }^{*}$ because partial derivatives can be approximated by difference quotients.

- So, we approximate $S_{i j}$ by the parallelogram determined by the vectors $\Delta u \mathbf{r}_{u}{ }^{*}$ and $\Delta v \mathbf{r}_{v}{ }^{*}$.

This parallelogram is shown here.

- It lies in the tangent plane to S at $P_{i j}$.

SURFACE AREAS

-The area of this parallelogram is: $\left|\left(\Delta u \mathbf{r}_{u}^{*}\right) \times\left(\Delta \nu \mathbf{r}_{v}^{*}\right)\right|=\left|\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}\right| \Delta u \Delta v$ So, an approximation to the area of S is:

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left|\mathbf{r}_{u}^{*} \times \mathbf{r}_{v}^{*}\right| \Delta u \Delta v
$$

- Our intuition tells us that this approximation gets better as we increase the number of subrectangles.
-Also, we recognize the double sum as a Riemann sum for the double integral

$$
\iint_{D}\left|r_{u} \times r_{v}\right| d u d v
$$

- This motivates the following definition.

SURFACE AREAS

Definition 6

Suppose a smooth parametric surface S is:

- Given by $\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$

$$
\text { (covered once } \quad(u, v) \in D
$$

- Then, the surface area of S is

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

- where: $\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k}$

$$
\mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}
$$

SURFACE AREAS
 Example 10

Find the surface area of a sphere of

 radius a.- In Example 4, we found
$x=a \sin \Phi \cos \theta, \quad y=a \sin \Phi \sin \theta, \quad z=a \cos \Phi$
where the parameter domain is:

$$
D=\{(\Phi, \theta) \mid 0 \leq \Phi \leq \pi, 0 \leq \theta \leq 2 \pi)
$$

Example 10

We first compute the cross product of

 the tangent vectors:$$
\begin{aligned}
& \mathbf{r}_{\phi} \times \mathbf{r}_{\theta} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial \phi} & \frac{\partial y}{\partial \phi} & \frac{\partial z}{\partial \phi} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta}
\end{array}\right| \quad=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a \cos \phi \cos \theta & a \cos \phi \sin \theta & -a \sin \phi \\
-a \sin \phi \sin \theta & a \sin \phi \cos \theta & 0
\end{array}\right| \\
& =a^{2} \sin ^{2} \phi \cos \theta \mathbf{i}+a^{2} \sin ^{2} \phi \sin \theta \mathbf{j}
\end{aligned}
$$

$$
+a^{2} \sin \phi \cos \phi \mathbf{k}
$$

Thus, $\left|r_{\phi} \times r_{\theta}\right|$

$$
\begin{aligned}
& =\sqrt{a^{4} \sin ^{4} \phi \cos ^{2} \theta+a^{4} \sin ^{4} \phi \sin ^{2} \theta+a^{4} \sin ^{2} \phi \cos ^{2} \phi} \\
& =\sqrt{a^{4} \sin ^{4} \phi+a^{4} \sin ^{2} \phi \cos ^{2} \phi} \\
& =a^{2} \sqrt{\sin ^{2} \phi}=a^{2} \sin \phi
\end{aligned}
$$

since $\sin \Phi \geq 0$ for $0 \leq \Phi \leq \pi$.
Hence, by Definition 6, the area of the sphere is:

$$
\begin{aligned}
A=\iint_{D}\left|r_{\phi} \times r_{\theta}\right| d A & =\int_{0}^{2 \pi} \int_{0}^{\pi} a^{2} \sin \phi d \phi d \theta \\
& =a^{2} \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \\
& =a^{2}(2 \pi) 2=4 \pi a^{2}
\end{aligned}
$$

SURFACE AREA OF THE GRAPH OF A FUNCTION

Now, consider the special case of a surface S with equation $z=f(x, y)$, where (x, y) lies in D and f has continuous partial derivatives.

- Here, we take x and y as parameters.
- The parametric equations are:

$$
x=x \quad y=y \quad z=f(x, y)
$$

Equation 7

Thus, $\mathbf{r}_{x}=\mathbf{i}+\left(\frac{\partial f}{\partial x}\right) \mathbf{k} \quad \mathbf{r}_{y}=\mathbf{j}+\left(\frac{\partial f}{\partial y}\right) \mathbf{k}$
and $\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y}\end{array}\right|=-\frac{\partial f}{\partial x} \mathbf{i}-\frac{\partial f}{\partial y} \mathbf{j}+\mathbf{k}$
And, so, we have: $\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+1}$

$$
=\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}
$$

Then, the surface area formula in Definition 6 becomes:

$$
A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

GRAPH OF A FUNCTION

Example 11

Find the area of the part of
the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=9$.

- The plane intersects the paraboloid in the circle

$$
x^{2}+y^{2}=9, z=9
$$

GRAPH OF A FUNCTION

Example 11

 Therefore, the given surface lies above the disk D with center the origin and radius 3 .

GRAPH OF A FUNCTION

Example 11

Using Formula 9, we have:

$$
\begin{aligned}
A & =\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A \\
& =\iint_{D} \sqrt{1+(2 x)^{2}+(2 y)^{2}} d A \\
& =\iint_{D} \sqrt{1+4\left(x^{2}+y^{2}\right)} d A
\end{aligned}
$$

GRAPH OF A FUNCTION

Example 11

Converting to polar coordinates,

 we obtain:$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{3} r \sqrt{1+4 r^{2}} d r \\
& \left.=2 \pi\left(\frac{1}{8}\right) \frac{2}{3}\left(1+4 r^{2}\right)^{3 / 2}\right]_{0}^{3} \\
& =\frac{\pi}{6}(37 \sqrt{37}-1)
\end{aligned}
$$

