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ABSTRACT

The purpose of this thesis is to investigate the value-added of the Navy’s
nowcast/forecast and GFO(GEOSAT Follow On) satellite to the naval antisubmarine
warfare (ASW) and anti-surface warfare. For the former, the nowcast/forecast versus
observational fields were used by the WAPP to determine the suggested presets for Mk
48 variant torpedo. The metric used to compare the two sets of outputs is the relative
difference in acoustic coverage area generated by WAPP(Weapon Acoustics Preset
Program). Output presets are created for five different scenarios, two anti-surface
warfare scenarios and three ASW scenarios, in each of two regions: the East China Sea
and South China Sea. Analysis of the output reveals that POM(Princeton Ocean Model)
outperforms MODAS(Modular Ocean Data Assimilation System)in all tactic scenarios.
For the latter, the MODAS (T, S) profiles were used by the WAPP to determine
suggested presets for MK 48 variant torpedo. The only difference in the MODAS fields
was the altimeter used to initialize the respective MODAS fields. The same metrics used
in the nowcast/forecast case were used to generate and compare the acoustic coverages.
Analysis of the output reveals that, in most situations, WAPP output is not very sensitive
to the difference in altimeter orbit.
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l. INTRODUCTION

A. BACKGROUND

The outcome of a battlefield engagement is often determined by the advantages
and disadvantages held by each adversary. On the modern battlefield, the possessor of
the best technology often has the upper hand, but only if that advanced technology is used
properly and efficiently. In order to exploit this advantage and optimize the effectiveness
of high technology sensor and weapon systems, it is essential to understand the impact on

them by the environment (Mancini, 2004).

Understanding the ocean environment is imperative and directly coupled to the
successful performance of ASW sensors and subsequent employment of an ASW weapon
system. In order to optimize the performance of ASW sensors and weapons systems, it is
crucial to gain an understanding of the acoustic wave propagation in the ocean. Having
an accurate depiction of the ocean environment is therefore directly related to gaining a
better understanding of the acoustic wave propagation.

How acoustic waves propagate from one location to another under water is
determined by many factors, some of which are described by the sound speed profile
(SSP). If the environmental properties of temperature and salinity are known over the
entire depth range, the SSP can be compiled by using them in an empirical formula to
calculate the expected sound speed in a vertical column of water. Two approaches are
used to increase the accuracy of ocean environmental depiction: (1) ocean

nowcast/forecast systems, and (2) satellite data assimilation.

The U.S. Navy has developed the ocean nowcast/forecast systems to determine or
predict representative SSP. The nowcast system is called Modular Ocean Data
Assimilation System (MODAS), which is built on the base of the optimal interpolation.
The forecast system is called the Navy Coastal Ocean Model (NCOM), which is built on
the base of the Princeton Ocean Model (POM). MODAS uses climatology as the initial
guess and assimilates satellite and in-situ measurements such as altimetry, conductivity-
temperature-depth (CTD), expendable bathythermographs (XBT), and ARGO casts.
NCOM forecasts the ocean environment using observational data such as temperature,
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salinity, and velocity. The capability of MODAS and POM to represent ocean
environment (SSP through T, S profiles) was verified using the CTD data collected from
the South China Sea Monsoon Experiment (SCSMEX) (Chu et al., 2001, 2004).
However, the value-added of the nowcast/forecast system on the Naval ASW has not

been investigated.

The satellites use radiometers to measure the thermal radiation emitted by the sea
surface (from which sea surface temperature is derived) and radar altimeters to measure
sea surface height (SSH). The satellite data assimilation of SSH into MODAS was
previously studied by Perry (2003) and Mancini (2004). Perry compared the acoustic
coverage of the Generalized Digital Environmental Model (GDEM) and MODAS, with
SSH data assimilation, and Perry found that MODAS provided more realistic acoustic
coverage than GDEM. Mancini compared the acoustic coverage of MODAS, without
SSH data assimilation, and MODAS, with SSH data assimilation. Mancini found that
MODAS, with SSH assimilation, provided more realistic acoustic coverage than
MODAS, without SSH data assimilation. However, value-added of the Navy’s Geo-
Satellite Follow-up (GFO) on the Naval ASW has not been studied.

B. PURPOSE

MODAS, with SSH data assimilation, gives a better depiction of the ocean
environment. Altimeters that have different exact overhead repeat period will have
different temporal and spatial resolutions. An altimeter’s capability to resolve mesoscale
features in the ocean is directly relate to the altimeters exact overhead repeat period.
MODAS fields derived from an altimeter with an exact overhead repeat pattern designed
to detect mesocale features should be different from MODAS fields derived from an
altimeter that is not designed to detect mesocale features, especially in regions of high
mesoscale variability. Large differences in the MODAS fields are related to different
depictions of the undersea environment. The differences in the depiction of undersea

environment may then change the outcome of a tactical engagement.

This thesis tries to answer the following questions: (1) What is the impact of the

nowcast/forecast ocean models on the Naval ASW? (2) What is the difference of the



impact between nowecast and forecast systems? What is the impact of the Navy’s satellite
(GFO) on the Naval ASW? To answer these questions, the Weapon Acoustic Preset
Program (WAPP) for the Mk 48 torpedo is used as the yardstick.

These questions are answered through studying the sensitivity of an ASW weapon
system of a naval ASW system, specifically the Mk 48 torpedo WAPP, to ocean
nowcast/forecast systems and to satellite altimeter orbit. The sensitivity analysis is
conducted by examining the relative difference (RD) in the output of WAPP when two
different SSP input fields. The only difference is how to establish these SSP fields such
as one from the nowcast system and other from the forecast system (nowcast/forecast
effect), or one from MODAS using TOPEX/POSEIDON (TPX) altimetry data and the
other from MODAS using GFO altimetry data. The parameters in WAPP are held
constant; therefore, any differences in the output were attributed to differences in the

input.
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1. AREA OF INTEREST

The two areas below (Figure 1) are selected for analysis because of the high
mesocale variability (Figure 2), tactical significance, and the availability of hydrographic
data in the South China Sea used to evaluate both MODAS and POM with South China
Sea Monsoon Experiment (SCSMEX) data (Chu et al., 2001, 2004). The northern box is

hereby referred to as the East China Sea (ECS) and is bound by 25° N, 30°N, 120°E, and
130°E. The southern box is hereby referred to as the South China Sea (SCS) and is bound
by 19°N, 23°N, 118°E, and 123°E.

30°N T gw T T T
| ; | e
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Figure 1. AOI for data analysis.

Data analysis was conducted in the ECS and SCS during the winter and summer
of 2001. Six days (5, 10, 15, 20 25 and 30) and two months (JAN 2001 and JUL 2001)
were selected for analysis in each box. A total of 24 cases (two areas of interest, two

months, and six days in each month) were analyzed.
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Figure 2. Composite of shipboard acoustic Doppler current profile (ADCP) during

1991-2001 in the vicinity of Taiwan. The left and right panel depict the complex
subsurface structure at 30 and 100 meters, respectively (from Laing et al., 2002)

SCSMEX was a multi-national experiment in the SCS which studied the water
and energy cycle of the Asian monsoon cycle (Chu et al., 2001). SCSMEX provided a
unique opportunity to evaluate both the Princeton Ocean Model (POM) and MODAS.
SCSMEX was conducted in the SCS from April through June 1998. During SCSMEX,
the hydrographic data set included over 1700 CTD (Figure 3) and mooring stations (Chu
etal., 2001).
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SCSMEX data has more than 1700 CTD observations. SCSMEX data
was used to evaluate both POM and MODAS (from Chu et al., 2001).

Figure 3.
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I11. SATELLITE ORBIT ANALYSIS

GFO and TPX satellites have different exact overhead repeat patterns; therefore,
GFO and TPX have different temporal and spatial resolutions. Orbit analysis was
conducted in the ECS and SCS during the winter and summer of 2001 for both GFO and
TPX satellites because of the high mesocale variability and the availability of
hydrographic data in the ECS and SCS to evaluate both MODAS and POM performance.

Since GFO has smaller horizontal resolution, it is better at detecting mesocale
features than TPX. The greatest difference in the MODAS fields generated by GFO and
TPX will be in areas with the high mesoscale variability. Jiang et al. (1996) showed that
spatially dense samples are preferred to temporal frequency samples in resolving
mesoscale features in their simulated altimetry experiment for GEOSAT and TPX
(Figure 4).

a) GEQSAT b} TOPEX

=

T Ol 313 8 18 @ 2 a 3 0

Figure 4. Resolution of mesoscale features such as the Western Boundary Currents
and eddies identified from (a) GEOSAT , and (b) TPX. It is noted that GEOSAT
has better resolution than TPX (from Jiang et. al., 1996).
A. GFO AND TPX ORBITS
The US Navy launched the GFO satellite in February 1998 from Vandenberg Air
Force Base. GFO has an exact overhead repeat (+/- 1 kilometer) of 17 days with an orbit

of 800 km, 108 degree inclination, 0.001 eccentricity, and 100-minute period.. The US
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Navy launched GFO to resolve mesoscale features. GFO is capable of tracking the
movement of El Nino and La Nina events across the Pacific and resolving eddies and

western boundary currents.

NASA launched the TPX satellite on August 10, 1992 for a three-year mission
from Kourou, French Guiana. TPX has an exact overhead repeat (+/- 1 kilometer) of 10
days with an orbit of 1336 km, circular, and 66-degree inclination. TPX was initially
launched with 3-year mission that was extendable to six years. TPX ended up being in
orbit for 12 years. JASON-1 was launched in 2001 to replace TPX. JASON-1 shadowed

TPX and seamlessly replaced the TPX satellite altimeter.

GFO provides a better spatial resolution than TPX because GFO has a longer
exact overhead repeat than TPX (Figure 5). Conversely, TPX provides a better temporal
resolution than GFO because TPX has a shorter exact overhead repeat time than TPX. In
fact, TPX completes three exact overhead repeat cycles during Julian dates 001-030 of
2001, and GFO completes approximately 1.76 exact overhead repeat cycles during Julian
dates 001-030 of 2001.
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Figure 5. Equator Crossings GFO vs TPX. The blue orbital tracks on the top panel
depict GFO orbit for Julian dates 001-030 in 2001, and The black orbital tracks on
the bottom panel depict TPX orbit for Julian dates 001-030 in 2001. GFO has
better spatial resolution, and TPX has better temporal resolution.
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B. ORBIT ANALYSIS IN THE ECS AND SCS IN JANUARY 2001
Figures 6-8 depict the orbit tracks for GFO, TPX, and combined GFO and TPX

coverage for ECS and SCS during Julian dates 001-030 in 2001. GFO clearly provides
better spatial resolution than TPX because GFO has a spatially dense coverage than TPX

for the same time period, as depicted in Figures 5 and 8.

Figure 6. GFO orbital coverage of the ECS and SCS for Julian dates 001-030 in
2001.
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IV. NAVY’S OCEAN NOWCAST/FORECAST SYSTEMS

A. MODAS

MODAS is the US Navy’s premier dynamic climatology tool. MODAS operates
in both a static and dynamic mode. In static mode, MODAS generates a bi-monthly,
gridded climatology of temperature and salinity (Fox et al., 2002), which is similar to
NOAA’s World Ocean Atlas (WOA) climatology and the US Navy’s Generalized Digital
Environmental Model (GDEM). In the dynamic mode, MODAS provides the capability
of modifying the historical climatology with remotely sensed SSH and SST,
conductivity-temperature-depth (CTD), expendable bathythermograph (XBT), and air
dropped expendable bathythermograph (AXBT) temperature and salinity profiles.
MODAS can assimilate real-time observations and produce an “adjusted” climatology
that more closely represents the actual ocean conditions. The dynamic climatology then
provides the end user with nowecast depiction of the ocean’s environment (Fox et al.,
2002).

MODAS resolution ranges from Y2 degree to 1/8 degree in gridded output. Since
MODAS is comprised of temperature and salinity profiles in the above resolutions, the
Sound Speed Profile for each temperature and salinity pair for each grid point can be
calculated empirically, so MODAS provides a three dimensional output of temperature,
salinity, and SSP (Fox et al., 2002).

Dynamic MODAS assimilates in situ measurements of the temperature and
salinity by method known as Optimum Interpolation techniques (Fox et al. 2002). Ol is a
technique used for combining a first guess field and measured data by using a model of
how nearby data are correlated. The first guess fields used by MODAS for the Ol
calculations are the previous day’s field for SST and a large-scale weighted average of 35
days of altimetry for SSH. The static climatology is used for the SST first guess.
Therefore, synthetic temperature profiles are generated by projecting these fields
downward in the water column. The synthetic temperature profiles are projected to a
depth of 1500 m utilizing an empirical relationships of the historical data which relates

both SST and SSH to the subsurface temperature.
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Similarly, Ol is utilized in the salinity analysis, in situ salinity measurements can
then be combined using Ol to produce the final salinity analysis. The MODAS
methodology is outlined in Figure 9. The final temperature and salinity analysis are what

MODAS uses to produce the other derived fields, such as sound speed.

In Sitn
Eemate Tetrp
25T & Ohs
SEH Obd Tetrp

) :
2-D Gridded Surf Sub 3-D Temp Analysis
mel & aeH Fegression Profiles

| Terrp-5al
"| Regression

Figure 9. MODAS process flow. (from Mancini, 2004.)

B. EVALUATION OF MODAS USING SCSMEX DATA

Both observational and climatology where used in the verification of the value
added of MODAS (Chu et al., 2004). The observational data were used as the benchmark
to determine the error statistics for MODAS and climatology data. MODAS has added
value if the difference between MODAS and observational data is smaller than the

difference between climatological and observational data (Chu et al., 2004).

MODAS, climatological, and observational data are represented by

w (temperature, salinity). The difference in  between MODAS and observational data

is represented by
A (% Y5, 2,8) =y, (X% Y, 2D =y (X Y, 2,1) 1)
The difference in y between climatology and observational data is
A (%Y. 20 =v, (% ¥, 2.0~ v, (% ¥}, 2.0) ©)
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The bias, mean-square—error (MSE), and root-mean-square-error (RMSE)
between MODAS and observation are represented by

BM“M@z&ZZﬂWﬂﬁﬂﬁ 3)

MSE (m, 0) =%ZZ[Aml/l(Xiyyj D (4)

RMSE(m,0) = ./MSE(m, 0) (5)

and between the climatology and observation are represented by

mmmm=%ZZAm&WLo (6)

MSE(c, 0) :%ZZ[ACW(Xi,yj )P (7)

RMSE(c,0) = ,/MSE(c, 0) (8)

where N is the total number of horizontal points. To measure the model skill, we may
compute the reduction of MSE over the climatological nowcast (Murphy 1988; Chu et al.
2001),

~ MSE(m, 0)

SS=1 :
MSE(c,0)

©)

which is called the skill score. SS is positive (negative) when the accuracy of the nowcast
is greater (less) than the accuracy of the reference nowcast (climatology). Moreover, SS =
1 when MSE(m,0) = 0 (perfect nowcast) and SS = 0 when MSE(m,0)= MSE(c,0). To
compute MSE(c, o), we interpolate the GDEM climatological monthly temperature and
salinity data into the observational points (x;, y;, z, t).

Chu et al. (2004) show that MODAS has the capability to provide reasonably
good temperature and salinity nowcast fields. The errors have a Gaussian-type
distribution with mean temperature nearly zero and mean salinity of -0.2 ppt. The
standard deviations of temperature and salinity errors are 0.98°C and 0.22 ppt,

respectively. The skill score of the temperature nowcast is positive, except at depth
15



between 1750 and 2250 m. The skill score of the salinity nowcast is less than that of the
temperature nowcast, especially at depth between 300 and 400, where the skill score is
negative (Figure 11).

Thermocline and halocline identified from the MODAS temperature and salinity
fields are weaker than those based on SCSMEX data. The maximum discrepancy
between the two is in the thermocline and halocline. The thermocline depth estimated
from the MODAS temperature field is 10-40 m shallower than that from the SCSMEX
data. The vertical temperature gradient across the thermocline computed from the
MODAS field is around 0.14°C/m, weaker than that calculated from the SCSMEX data
(0.19°-0.27°C/m). The thermocline thickness computed from the MODAS field has less
temporal variation than that calculated from the SCSMEX data (40-100 m). The halocline
depth estimated from the MODAS salinity field is always deeper than that from the
SCSMEX data. Its thickness computed from the MODAS field varies slowly around 30
m, which is generally thinner than that calculated from the SCSMEX data (28-46 m).

Using the SCSMEX observational data, the MODAS has better capability in
‘nowcasting’ temperature than ‘nowcasting’ salinity (Figure 10) evaluation of MODAS
using SCSMEX demonstrates that MODAS provides reasonable ‘nowcast’ temperature
and salinity field when compared to climatology (Chu et al., 2004). Chu et al. 2004,
found that MODAS out performed climatology in temperature in depths less than 1750
meters (Figure 11) and that MODAS generally under predicted salinity fields in all
depths.
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Scatter diagrams of (a) MODAS versus observational temperature, (b)
MODAS versus observational salinity, (c) GDEM (climatology) versus
observational temperature , (d) GDEM(climatology) versus observational salinity.
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Figure 11. The RMSE between MODAS and observational data (solid) and between
GDEM (climatology) and observational data (dashed): (a) temperature (deg C),
and (b) salinity (ppt) (from Chu et al., 2004).

C. POM

POM is a general three dimensional gridded model that is time-dependent and
utilizes primitive equations to model general circulation with realistic topography and a
free surface (Chu et al., 2001, Mellor, 1998). POM was specifically developed to model
nonlinear processes and mesocale eddy phenomena. POM has been proven to be an
effective tool in investigating seasonal variability, multi-eddy dynamics, typhoon forcing,

and synoptic forcing in the SCS.
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D. EVALUATION OF POM USING SCSMEX DATA

Evaluation of the POM performance in the SCS was conducted by utilizing
SCSMEX data. The evaluation of POM using SCSMEX data showed that POM has the
capability to reasonably predict temperature fields and circulation patterns, but the POM
was not skillful in predicting the salinity fields. However, when data was assimilated into
the POM and allowed to run for one month, the hindcast capability of the POM increased
for both the temperature and salinity fields. Data assimilation (Figure 12) into the POM
therefore increased the POM’s skill in hindcast capabilities (Chu et al., 2001).
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Figure 12. POM with data assimilation. The RMSE between POM (m) and
SCSMEX observations (0) and between climo (c) and SCSMEX observations (0)
for temperature and salinity during May and June 98. (from Chu et. al., 2001)
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V. WEAPON ACOUSTIC PRESET PROGRAM FOR ASW

A. WAPP

1. Background

WAPP provides the US Submarine Fleet with an on-board automated tool for
generating the MK 48 and MK 48 ADCAP acoustic presets and visualizing the acoustic
coverage for a given torpedo scenario. WAPP is based on Graphic User Interface (GUI)
that allows the user to enter environmental, tactical, target, and weapon data. Once the
user identifies the above presets for the weapon, WAPP generates a ranked list-set of
search depth, search angle, pitch angle, laminar distance, ray trace, and an acoustic
coverage map. The output from the WAPP enables the war-fighter to assess the tactical
environment, acoustic environment, weapon presets, and current Target Motion Analysis
(TMA).

The MK 48 and MK 48 ADCAP torpedoes utilize High-frequency sonar for
search, detection, and homing on a given target. Accurate oceanographic environmental
data is needed to correctly predict the acoustic coverage of the MK48 and MK 48
ADCAP torpedoes. The Applied Physics Laboratory and University Washington
Technical Report 9407 (APL-UW TR 9407) High-Frequency Ocean Environmental
Acoustic Models Handbook was used in programming the WAPP. APL-UW TR 9407 is
the bible of High-Frequency modeling.  High-Frequency SONAR models must
incorporate volumetric sound scattering, sea state, shipping noise, biological ambient
noise, and bottom loss to predict acoustic propagation accurately. The affect on acoustic
propagation of above oceanographic parameters varies with frequency, so WAPP
neglects the Low-Frequency and Medium-Frequency propagation effects and solely
predicts the High-Frequency acoustic coverage for the MK 48 and MK 48 ADCAP
torpedoes.

2. WAPP Ocean Environment Input

Ocean environment data is ingested by the WAPP from various operational
oceanographic data sources, oceanographic models, and direct operator inputs. Base on
the Date-Time-Group (DTG) and position of the submarine, WAPP extracts the projected
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environment from the various data sources. Below Table 1 provides a summary of the

data sources used by WAPP.

WAPP Environment Data Sources

Data Source

Parameter

DBDB-V v4.2 (Level 2)

(Digital Bathymetric Data Base-Variable )

Bottom Depth

GDEM-V v3.0 (Generalized Digital Environment Model)
Sound Speed Profile
HIE (SN v5.3) (Historical Ice Edge)
Open Water/MIZ/lce Cover (Under Ice warfare)
SMGC v2.0 (Surface Marine Gridded Climatology)
Historic Wind Speed (Sea State)
BST v1.0 Bottom Sediment Type
VSS v6.3 Volume Scattering Strength Profile

Table 1. WAPP Environment Data Sources

The Environmental Data Entry Module (EDE), Figure 13, is the (GUI) that is
used by the operator to enter environmental parameters. The EDE is the interface for

entry and examination of the Sound Speed Profile (SSP) and entry of Sea State and

Bottom Type.
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Figure 13. EDE GUI

a. WAPP EDE Surface Conditions

Surface Conditions

Wind Speed (Kts): 5.00

Wave Height (m): A7

Sea State: 1—

Figure 14. WAPP EDE Sea Surface input
WMO Sea State Wind Speed (kts) Significant Wave Height
(m)

0 1.5 0
1 5 0.17
2 8.5 0.46
3 13.5 0.91
4 19 1.8
5 24.5 3.2
6 37.5 5.0
7 51.5 7.6
8 59.5 11.4
9 >64 >13.7

Table 2. WMO Convention (Sea State/Wind Speed/ Wave Height)

23




The sea surface condition is input directly by the operator into the EDE
(Figure 14), or the wind speed and wave height is calculated using the World

Metrological Organization convention (Table 2).

The sea surface condition impacts the WAPP predictions because acoustic
energy suffers forward reflection loss after interacting with the surface (NUWC 2005).
Additionally, the active SONAR pulse are reflected by the surface bubbles that increase
with sea state; consequently reverberation increases with sea state and target detection
decreases with sea state.

b. WAPP EDE Sea Bottom Conditions

Bottom Conditions
SSP Depth (m): I 500.00

Bottom Type: Sand — |

Figure 15. EDE Sea Bottom Condition

The sea bottom entry (Figure 15) consists of the SSP depth and bottom
type. The bottom depth is directly extracted from the SSP. The SSP in use determines
the depth. The bottom type button provides the operator the selection of the clay, mud,
sand, gravel, and rock. The bottom is characterized by the upper 10 cm of the bottom for
High-Frequency sonar. The Bottom Sediment Type (BST) is undergoing OAML
certification. Once the BST database is OAML certified, the bottom type will
automatically update in WAPP. Clay and mud bottom have the highest sound
attenuation, and the rock bottom has the highest reflection.

C. WAPP EDE Water Column and Sound Speed Profile Display

Depth Temp Vel  VSS  Sal

0 68.B0 4996.90 -75.00 35.00 |4
213.0  68.80 5000.40 -75.00 35.00
250.0 66,30 4988.40 -T75.00 35.00
00.0  63.50 4574.40 -T5.00 35.00
500.0 58.50 4549.80 -T75.00 35.00
Tpo.0  54.60 4931.10 -715.00 35.00
8000 54.00 4527.80 -75.00 35.00

1000.0 52.60 4%22.30 -T75.00 35.00
1500.0 48,30 4%02.50 -75.00 35.00

Figure 16. Water Column Table
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WAPP generates a water column characteristics table (Figure 16) in the
EDE with depth (ft or meters), temperature (degrees Celsius and Fahrenheit), volume
scattering strength (dB), and salinity (ppt). WAPP uses an empirical formula in
calculating the SSP given two of the three parameters (Temperature, Salinity, or SSP).

3. WAPP Acoustic Coverage Prediction
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Figure 17. Acoustic Presets Module

The Acoustics Presets Module (Figure 17) is the GUI that allows the operator to
set MK 48 tactical presets. The operators identifies tactics, target type (Surface or
Submarine), Search Depth, Pitch Angle, search ceiling and floor, Doppler mode, ping
interval, and search mode. Additionally, the operator can refine the Depth Zone of
Interest (DZ), acoustic target strength (NTS), acoustic radiated noise of the target (NZE),
and the anticipated target Doppler (Dead in Water, Low, High). Base on the variant of
the MK 48 selected by the operator and other ballistic parameters, WAPP displays the
ranked list-set calculated with the given environmental inputs, acoustic presets, target

type, and ballistic parameters.
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Figure 18. WAPP Acoustic Coverage Map

WAPP generates a graphical display (Figure 18) of the acoustic coverage base on
the inputs in the EDE and Acoustic Preset Module. The acoustic coverage map
graphically displays the ray trace, search ceiling and floor, laminar distance, and signal
excess.

4, WAPP Preset Process

The WAPP preset process begins once all input parameters have been selected in
the above described GUIs. The process is outlined in Figure 19 (NUWC, 2005, Mancini,
2004). First, valid search depth (SD) and search angle (SA) combinations are computed
by utilizing a search angle selection algorithm to identify the optimal pitch angle for each
search depth. Second, in series of time steps, the program traces a fan of rays that define
the torpedo beam pattern for each resulting SD/SA combination (NUWC, 2005). The
signal excess computation is mapped and gridded to the search region at each time step
The signal excess map is used to depicts the area coverage (AC)of the search region with
signal excess greater than 0 dB (Figure 18, white blocks) and 4 db (Figure 18, magenta
blocks). The laminar distance (Figure 18, blue line), signal excess ‘center of mass’, is
also depicted in the signal excess map. Third, WAPP then ranks the SD/SA
combinations based on tactical guidance for the weapon and given tactical scenario.
Finally, WAPP generates a recommendation based on the ranked list which preset

combination is best for the given scenario.
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Figure 19.

WAPP preset process (from Mancini, 2005)
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V1. SENSITIVITY OF WAPP TO OCEAN NOWCAST AND
FORECAST SYSTEMS

A. WAPP OUTPUT

Figure 20 outlines the flow chart for the WAPP sensitivity analysis for SCSMEX
MODAS and SCSMEX POM datasets. First, the SCSMEX MODAS and SCSMEX
POM temperature and salinity fields were fed into WAPP. WAPP then calculates the
sound speed from the respective temperature and salinity grid point pairs from the
respective model. The default values in WAPP for volume scattering strength and
surface and bottom roughness/reflectivity were used for each tactical scenario. Five
different tactical scenarios were selected. The tactical scenarios are selected using the
Acoustic Preset GUI (Figure 17). The five tactical scenario selected were high Doppler
anti surface warfare (HD ASUW), low Doppler anti surface warfare (LD ASUW), low
Doppler shallow anti submarine warfare (LD shallow ASW), high Doppler shallow anti
submarine warfare (HD deep ASW), and low Doppler shallow anti submarine warfare
(LD deep ASW). Shallow ASW is defined as maximum target depth of 213 meters, and
deep ASW is define as maximum target depth of 396 meters (NUWC, 2005).

Second, WAPP outputs a ranked list-set of different SD/SA combination and
acoustic coverage generated for the aforementioned tactical scenario for the respective
MODAS and POM temperature and salinity fields. Third, a configuration management
program which included a statistical software package was employed to compare the
generated list set. Any differences in the output were attributed to differences in the input
(NUWC, 2005).
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Figure 20. Flow chart of the sensitivity study of the model (POM and MODAS,
respectively), temperature and salinity datasets, versus SCSMEX observational
datasets, temperature and salinity datasets. The SCSMEX evaluation datasets of
Models (POM and MODAS, respectively) versus Observations are ingested into
WAPP to generate two sets (POM vs Obs, and MODAS vs OBS) of weapon
acoustic preset (Acoustic Coverage). Computing the relative difference between
the two acoustic coverages gives the sensitivity of the FORECAST and
NOWCAST models (POM and MODAS, respectively).

Finally, the relative difference was calculated using a statistical package, which
produced absolute values of the relative differences (RD) in area coverage (AC) for the
identical SD/SA combination generated by WAPP,

AC_—-AC
RD = —| m °| (10)
AC,
and
AC, -AC,
RD=——2°__ "2 (11)
AC

p

Here, the subscripts m denotes MODAS, p denotes POM and o denotes
observation.(Mancini, 2004)

30



WAPP generated SD/SA combinations that were the same and some that were
different. The SD/SA combinations that were the same but had a different acoustic
coverage were attributed to differences in the oceans environment (NUWC, 2005). The
SD/SA combinations that were different and had different acoustic coverage were

attributed to differences in torpedo target motion analysis (TMA) and ballistics.

A histogram of RD displays the number of same SD/SA combinations with area
coverage relative differences in specified ranges, or bins. The probabilities of RD being
greater than 0.1 and 0.15

4, =Prob (RD>0.1), u, =Prob (RD > 0.15),

are used for the determination of the sensitivity (Mancini, 2004).

Figures 21 and 22 below depict the distribution of the RD for the HD Deep ASW
scenario for both POM and MODAS. The WAPP output for MODAS in the HD Deep
ASW has a mean RD of 11.3, a standard deviation of 4.88, probability of RD>0.10 is
43.75 percent, and probability of RD>0.20 is 3.25 percent. The WAPP output for POM
in the HD Deep ASW has a mean RD of 8.98, a standard deviation of 2.95, probability of
RD>0.10 is 6 percent, and probability of RD>0.20 is 0.25 percent. Table 3 below

summarizes the general statistics for all 10 tactical scenarios.
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Figure 21. Wapp output for the relative difference between MODAS and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 11.3, standard deviation is 4.88,
Prob (RD> 0.10) is 43.75%, and Prob (RD>0.15) is 3.25.

POM vs OBS HD Deep ASW
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Figure 22. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figures 23 and 24 also provide a depiction of the probability curves for MODAS
and POM, respectively. The probability curves for both MODAS and POM
demonstrated the RD is greatest in the ASUW scenarios. The probability curves also
demonstrate that probability of the RD>10 for MODAS is greater than POM. For
example, the probability of the RD>10 for POM for the three ASW tactical scenarios is
less than 10 percent; on the other hand, the probability of the RD>10 for MODAS for the

three ASW tactical scenarios is greater than 10 percent.
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Figure 23. MODAS RD for 5 Tactical Scenarios
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Figure 24. POM RD for 5 Tactical Scenarios

The mean RD probability curves for MODAS and POM have the same general
shape (Figure 25). The mean RD for POM is less than the MODAS mean RD for all
scenarios (Table 3). The difference for mean RD for the three ASW scenarios for POM
is generally 2% less than the MODAS mean RD. The difference for the mean RD for the
three ASUW scenarios for POM is generally 5% less than the MODAS mean RD. POM
therefore adds more value to the ASW weapons system than MODAS, as summarized in
Table 3.
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Figure 25. MODAS and POM Mean RD

Scenario Prob Prob Mean RD Std Dev

(RD>0.1) (RD>0.15)

(%) (%0)
MODAS HD Deep ASW 43.75 3.25 11.3 4.88
POM HD Deep ASW 6 0.25 8.98 2.95
MODAS LD Deep ASW 23.75 15 9.66 441
POM LD Deep ASW 3 0.75 7.59 3.56
MODAS LD Shallow ASW | 25.75 3 10.04 4.76
POM LD Shallow ASW 3.25 1 7.58 3.62
MODAS HD ASUW 81 71 19.83 7.89
POM HD ASUW 54 21.21 12.73 5.79
MODAS LD ASUW 735 65.25 18.04 7.76
POM LD ASUW 55 13.25 12.08 5.51

Table 3. Statistics summary of WAPP output for all tactical scenarios for MODAS and
POM vs. Observations. For any given tactical scenario, POM (bold) has a smaller
RD than MODAS.
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VII. SENSITIVITY OF WAPP TO SATELLITE ORBIT

Figure 26 outlines the flow chart for the WAPP sensitivity analysis for MODAS-
GFO and MODAS-TPX datasets. MODAS fields initialized independently with GFO
altimetry and TPX sea surface height (SSH) data were compared. The only difference
between the MODAS field was the altimetry data. Once again, it is assumed that
MODAS fields initialized by GFO (MODAS-GFOQO) will be more accurate than MODAS
fields initialized by TPX (MODAS-TPX). The MODAS-GFO and MODAS-TPX fields
were ingested into WAPP to examine the sensitivity of the USW weapon system. The
MODAS-GFO fields were used as the benchmark to determine the error statistics for
MODAS-TPX. The chief aim of this study is to identify the WAPP sensitivity to
altimeter orbit. If there is a large relative difference between MODAS-GFO and
MODAS-TPX fields in WAPP, WAPP is sensitive to altimeter orbit.

TPX MODAS WAPP
Acoustic

A 4

GFO Acoustic gfflfative
(SSH) —»| Coverage :

Figure 26. Flow chart of the sensitivity study of WAPP to TPX and GFO Sea Surface
Height (SSH).

A. MODAS INPUT DIFFERENCE
MODAS-GFO and MODAS-TPX data are represented by y (temperature,

salinity, sound speed (SS)). The difference iny between MODAS-TPX and MODAS-
GFO data is:

Anp (%Y 2,8) =y (% Y5, 2,0 =g (X Y5, 2,1) (12)

The bias, mean-square—error (MSE), and root-mean-square-error (RMSE) for MODAS,
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BIAS(mt, mg) =%ZZAmz//(xiyyj,z,t) (13)

MSE(mt,mg) =~ 3" S [A,w/(x . 2.0F (14)

RMSE (mt, mg) = \/MSE(mt, mg) (15)

where, N is the total number of horizontal points (Chu et al., 2004).

A total of 24 cases were analyzed. A case is comprised of an AOI (ECS or SCS),
month (JAN or JUL), and day (5, 10, 15, 20, 25, or 30). Each was individually analyzed.
The case for January 05, 2001 is a representative case of entire data set. The results of
the remainder of the cases can be found in the appropriate appendix. The results are also

summarized in table format in the conclusion section.

First, a statistical analysis was conducted on the on the MODAS-TPX and
MODAS-GFO fields (SS, temperature, and salinity) before the respective MODAS fields
were input into WAPP. The scatter plot (Figure27) for sound speed (SS) in the SCS on
January 05, 2001 demonstrates a clustering around the SS =SS  line. The SS

difference between MODAS-TPX and MODAS-GFO demonstrate a Gaussian-type
distribution with a mean SS difference of -0.123 m/s and a standard deviation of 2.76
m/s. This result indicates that MODAS-GFO SS is generally faster than MODAS-TPX
SS. The RMSD of SS between MODAS-TPX and MODAS-GFO increases from 1m/s at
the surface to maximum of 5 m/s at 170 m and then decreases to approximately 0 m/s at
1000 m.
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Figure 27. SCS MODAS sound speed statistics for January 05, 2001. Scatter plot
MODAS-TPX vs MODA-GFO (a), Sound speed difference histogram (b), Sound
speed bias (c), and sound speed RMDS (d).

The horizontal difference in SS between MODAS-TPX and MODAS-GFO is
depicted in both Figures 28 and 29. Figure 28 depicts the horizontal difference at four
depths (75m, 200m, 400m, and 600 m) in the SCS, and the red asterisks indicate the
position of the SSPs in Figure 29. Figure 29 is a plot of the SSPs for MODAS-TPX and
MODAS-GFO at the indicated position for all depths. For example, in Figures 29(d) and
29(g), MODAS-TPX SSP is faster than MODAS-GFO, and Figure 28 indicates a positive
horizontal difference in SSP for the respective positions of Figures 29(d) and 29(g). The
general shape of the SSP is the same for both MODAS-TPX and MODAS-GFO;
however there is an offset in SSPs for MODAS-TPX and MODAS-GFO.
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Figure 28. SCS MODAS horizontal difference in SSPs for January 05, 2001. The
horizontal difference in SSP (m/s) between MODAS-GFO and MODAS-TPX is
depicted at four depths (75m, 200m, 400m, and 600 m). The red asterisk
indicates position of SSP in Figure 29.
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Figure 29. SCS MODAS SSPs for January 05, 2001. The MODAS-TPX SSP is red
and MODAS-GFO is blue. The respective SSP is plotted in the position where
there was a large positive or negative difference in SSP (red asterisks in Figure

28).

MODAS-TPX and MODAS-GFO SSPs had the largest difference in January 05,
2001 in the SCS, and the difference between MODAS-TPX and MODAS-GFO SSPs
continued to decrease through out the month of January 2001. Figures 30 and 31 depict
the horizontal difference is SS for January 30, 2001. Both Figures 30 and 31 show that
horizontal SS difference between MODAS-TPX and MODAS-GFO is decreasing for the
SCS. In fact, by inspection of the SSPs for January 05 (Figure 30) and January 30
(Figure 31), the SSPs for MODAS-TPX and MODAS-GFO are converging.
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Figure 30. SCS MODAS horizontal difference in SSPs for January 30, 2001. The
horizontal difference in SSP (m/s) between MODAS-GFO and MODAS-TPX is
depicted at four depths (75m, 200m, 400m, and 600 m). The red asterisk
indicates position of SSP in Figure 31.
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Figure 31. SCS MODAS SSPs for January 30, 2001. The MODAS-TPX SSP is red
and MODAS-GFO is blue. The respective SSP is plotted in the position where
there was a large positive or negative difference in SSP (red asterisks in Figure

30).
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Figure 32. SCS MODAS salinity statistics for January 05, 2001. Scatter plot
MODAS-TPX vs MODA-GFO (a), salinity difference histogram (b), salinity bias
(c), and salinity speed RMSD (d).

The scatter plot for salinity (Figure 32) demonstrates a clustering around the

Sng = Sy line. The errors for temperature demonstrate a Gaussian-type distribution with

a mean salinity difference of 0.00114 psu and a standard deviation of 0.0244 psu. This
result indicates MODAS-GFO salinity is statically identical to the MODAS-TPX salinity.
The RMSD of salinity between MODAS-GFO and MODAS-TPX increases from 0.02
psu at the surface to maximum of 0.06 psu at 300 m and then decreases to 0.05 psu at
1000 m.
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Figure 33. SCS MODAS temperature statistics for January 05, 2001. Scatter plot
MODAS-TPX vs MODA-GFO (a), temperature difference histogram (b),
temperature bias (c), and temperature RMDS (d).

The scatter plot for temperature (Figure 33) demonstrates a clustering around the

T, =T line. The errors for temperature demonstrate a Gaussian-type distribution with a

mean temperature difference of 0.0248°C and a standard deviation of 0.628°C. This
result indicates MODAS-GFO temperature is warmer MODAS-TPX temperature. The

RMSD of temperature between MODAS-GFO and MODAS-TPX increases from 0.25°C

at the surface to maximum of 1.25°C at 200 m and then decreases to 0.20°C at 1000 m.
B. WAPP OUTPUT DIFFERENCE

The MODAS-GFO and MODAS-TPX temperature and salinity fields were fed
into WAPP. WAPP then calculated the sound speed from the respective temperature and
salinity grid point pairs from the respective MODAS fields. The default values in WAPP
for volume scattering strength and surface and bottom roughness/reflectivity were used
for each tactical scenario. Five different tactical scenarios were selected. The tactical

scenarios are selected using the Acoustic Preset GUI (Figurel7). The five tactical
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scenario selected were high Doppler anti surface warfare (HD ASUW), low Doppler anti
surface warfare (LD ASUW), low Doppler shallow anti submarine warfare (LD shallow
ASW), high Doppler shallow anti submarine warfare (HD deep ASW), and low Doppler
shallow anti submarine warfare (LD deep ASW). Shallow ASW is defined as maximum
target depth of 213 meters, and deep ASW is define as maximum target depth of 396
meters (NUWC, 2005). In other words, each of the 24 cases has 5 tactic scenarios (120
tactic scenarios were analyzed), and each tactic scenario was comprised of over 14,000
MODAS-TPX and MODAS-GFO grid point pairs.

Second, WAPP outputs a ranked list-set of different SD/SA combination and
acoustic coverage generated for the aforementioned tactical scenario for the respective
MODAS-GFO and MODAS-TPX grid point pairs. The same configuration management

program used to evaluate POM and MODAS was employed to generate the list set.

Finally, the relative difference was calculated using a statistical package, which
produced absolute values of the relative differences (RD) in area coverage (AC) for the
identical SD/SA combination generated by WAPP,

AC_—-AC

RD:“‘Q—”“‘.
AC

mg

Here, the subscripts mg denotes MODAS-GFO and mt denotes MODAS-TPX.

WAPP generated SD/SA combinations that were the same and some that were
different. The SD/SA combinations that were the same but had a different acoustic
coverage were attributed to differences in the ocean’s environment (NUWC, 2005). The
SD/SA combinations that were different and had different acoustic coverage were
attributed to differences in torpedo target motion analysis (TMA) and ballistics. So, any
differences in the output were attributed to differences in the input because all other

parameters were constant (NUWC, 2005).

Initially, it was assumed that a RD in acoustic coverage of 20% will significantly
change the outcome of a tactical engagement. Figure 34 depicts two cases where there is
a 20 % difference of acoustic coverage in the torpedo acoustic cone (NUWC, 2005). The
two cases depicted in Figure 34 are a screen capture of torpedo engagement simulation in
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MATLAB conduct by the Naval Undersea Warfare Command (NUWC, Newport). Each
dot is a probable contact and is red until the acoustic cone of the torpedo passes over the
dot. The dot turns yellow when the torpedo has a detection opportunity. The torpedo
then enters into its detection, acquisition, and verification phases. If a dot remains in the
acoustic cone long enough to complete the detection, acquisition, and verification phases,
the torpedo will likely enter homing, a green dot.

In the first case (Figure 34a), 94.2% of tracks enter the acoustic cone and 46.7%
enter homing with an overall coverage score of 47.7 %. In the second case (Figure 34b),
when the acoustic coverage was reduce by 20%, 89.6% of tracks enter the acoustic cone
and only 16.3% enter homing with an overall coverage score of 33.8%. In other words, a
relative difference greater than 20% leads to an engagement that is 1/3 as likely to lead to
mission success. So, a relative difference of 20% is large enough to change an
engagement. A speculative regression curve that is bound by the by first and second case
infers that a RD of between 10 and 15 percent would yield an overall coverage score
between 47.7% and 33.8%.

Figure 34. Horizontal acoustic coverage map. The two case depicted a typical
acoustic cone for a torpedo (a) and an acoustic cone reduced by 20% (b). A red
indicates a probable contact. A red dot turns yellow when the torpedo has a
detection opportunity. If a dot remains in the acoustic cone long enough to
complete the detection, acquisition, and verification phases, the torpedo will
likely enter homing, a green dot.
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Data analysis proved that most the cases studied herein had a low probability that
the RD is greater than 20%. A histogram of RD displays the number of same SD/SA
combinations with area coverage relative differences in specified ranges, or bins, and the
probabilities of RD being greater than 0.1 and 0.15

44, =Prob (RD>0.10), z, =Prob (RD>0.15),

are then used for the determination of the sensitivity.

1. WAPP Results

The results for the 24 cases analyzed have the same general trend. Similar to the
results from Mancini, 2004, the ASUW scenarios had larger relative differences than the
ASW scenarios. Mancini found the probability values (RD) decrease with increasing
tactic depth band. In all scenarios, the probability values decreased with increasing tactic
band; Figure 35 depicts that all three ASW scenarios have lower probability values than
the ASUW scenarios for January 05, 2001.

MG vs MT RD JAN 05, 2001( 5 Scenarios)
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Figure 35. Probability curve SCS January 05,2001

The histogram of the HD ASW scenario (Figure 36), lowest probability value, on
January 05, 2001 had a mean RD of 4.60 with a standard deviation of 2.58, or the mean
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value of the relative difference between the two acoustic coverages generated by
MODAS-TPX and MODAS-GFO in the HD ASW scenario is 4.60%. The histogram HD
ASUW (Figure 37), highest probability value, for January 05, 2001 has mean RD of 6.60

with a standard deviation of 4.88

ST b D W

Figure 36. Wapp output for the relative difference between MODAS-TPX and
MODAS-GFO for the HD deep ASW scenario. Mean is 4.60, standard deviation
is 2.58.
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Figure 37. Wapp output for the relative difference between MODAS-TPX and
MODAS-GFO for the HD ASUW scenario. Mean is 6.60, standard deviation is
4.88.

The mean RD for all five tactical scenarios for January 2001 in the SCS (Figure
38) and the ECS (Figure 39) are decreasing as function of time. The mean RD for all
cases in both the ECS and SCS are less than 6.60 %
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VIIl. CONCLUSION

The chief aim of this study was to determine the sensitivity of an USW system to
altimeter orbit. Two area of interest with high mesoscale variability were analyzed. A
key assumption of this study is that GFO has better spatial resolution than TPX;
therefore, it was assumed that MODAS fields initialized with GFO sea surface heights
are more accurate than MODAS fields initialized with TPX sea surface heights. A
second assumption is that greatest relative difference in acoustic coverage in WAPP will

be in areas of high mesoscale variability.

Both MODAS and POM were evaluated with observational data from SCSMEX.
The availability of the SCSMEX evaluation of MODAS and POM provided an
opportunity to test of the sensitivity of WAPP to the respective models. POM
outperformed MODAS in all five tactical scenarios (Table 3). POM had smaller relative
differences in acoustic coverage than MODAS. The results make sense since POM is a
physics based model that uses the primitive equation to forecast the sub-surface structure
of the ocean; on the other hand, MODAS is a dynamic climatology which is a statistically
based model. The purpose of evaluating the sensitivity of both MODAS and POM in
WAPP was to compare the relative difference between the respective model and ‘ground
truth” (SCSMEX observational data). The sensitivity analysis of MODAS and POM also
confirmed that probability values decrease with increasing tactic depth, in agreement with
Mancini, 2004.

Tables 4 and 5 are a summary of the sensitivities of the all the tactic scenarios in
January for both the ECS and SCS. In the 60 tactic scenarios in Tables 4 and 5, the mean
RD for all tactic scenarios is less than 6.68 (SCS 0110 HD ASUW). Furthermore, the
probability that the RD is greater that 15 is less than 4.01% (SCS 0110 HD ASUW) for
all 60 tactic scenarios in January, and the probability that the RD is greater that 10 is less

than 17.01% for all 60 tactic scenarios in January.
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Prob(RD>10)|Prob(RD>15) | Mean RD SD
SCS 0105 HD Deep ASW 2.72 0.00 4.60 2.59
SCS 0110 HD Deep ASW 3.04 0.08 4.87 2.73
SCS 0115 HD Deep ASW 2.08 0.08 4.50 2.60
SCS 0120 HD Deep ASW 0.56 0.00 4.16 2.25
SCS 0125 HD Deep ASW 0.80 0.00 3.97 2.31
SCS 0130 HD Deep ASW 0.32 0.00 3.86 2.10
Prob(RD>10)|Prob(RD>15) | Mean RD SD
SCS 0105 LD Deep ASW 3.77 0.00 4.69 2.75
SCS 0110 LD Deep ASW 3.69 0.08 4.81 2.87
SCS 0115 LD Deep ASW 2.72 0.08 4.61 2.66
SCS 0120 LD Deep ASW 1.28 0.08 4.44 2.46
SCS 0125 LD Deep ASW 1.04 0.08 4.15 2.36
SCS 0130 LD Deep ASW 0.88 0.00 4.14 2.29
Prob(RD>10)|Prob(RD>15) | Mean RD SD
SCS 0105 LD Shallow ASW 6.01 0.24 5.23 3.30
SCS 0110 LD Shallow ASW 5.85 0.32 5.28 3.21
SCS 0115 LD Shallow ASW 3.77 0.32 5.11 3.05
SCS 0120 LD Shallow ASW 2.16 0.16 4.60 2.71
SCS 0125 LD Shallow ASW 2.88 0.24 4.37 2.81
SCS 0130 LD Shallow ASW 3.37 0.24 4.59 2.87
Prob(RD>10)|Prob(RD>15) | Mean RD SD
SCS 0105 HD ASUW 15.71 2.72 6.60 4.88
SCS 0110 HD ASUW 15.63 4.01 6.68 5.19
SCS 0115 HD ASUW 13.86 2.32 6.44 4.82
SCS 0120 HD ASUW 10.74 0.80 5.79 4.14
SCS 0125 HD ASUW 6.97 0.40 5.22 3.60
SCS 0130 HD ASUwW 7.77 0.48 5.51 3.52
Prob(RD>10) |Prob(RD>15) | Mean RD SD
SCS 0105 LD ASUw 13.38 1.84 6.23 4.58
SCS 0110 LD ASUwW 13.06 0.96 6.22 4.18
SCS 0115 LD ASUwW 11.22 1.20 6.02 4.21
SCS 0120 LD ASUwW 7.45 0.80 5.23 3.67
SCS 0125 LD ASUwW 5.21 0.72 4.59 3.47
SCS 0130 LD ASUwW 4.49 0.80 4.73 3.47

Table 4. WAPP output differences between GFO and TPX for the SCS January 2001
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Prob(RD>10) |Prob(RD>15) | Mean RD SD
ECS 0105 HD Deep ASW 0.94 0.00 3.40 2.75
ECS 0110 HD Deep ASW 0.80 0.00 3.11 2.55
ECS 0115 HD Deep ASW 0.37 0.00 3.03 2.24
ECS 0120 HD Deep ASW 0.09 0.00 2.81 1.99
ECS 0125 HD Deep ASW 0.14 0.00 2.68 2.00
ECS 0130 HD Deep ASW 0.09 0.00 2.59 1.98
Prob(RD>10) [Prob(RD>15) | Mean RD SD
ECS 0105 LD Deep ASW 5.29 0.89 4.38 4.45
ECS 0110 LD Deep ASW 5.90 0.89 4.27 4.58
ECS 0115 LD Deep ASW 9.08 2.15 5.03 6.30
ECS 0120 LD Deep ASW 6.18 2.76 4.44 6.22
ECS 0125 LD Deep ASW 5.52 2.29 4.16 6.03
ECS 0130 LD Deep ASW 4.92 2.43 3.94 5.79
Prob(RD>10) [Prob(RD>15) | Mean RD SD
ECS 0105 LD Shallow ASW 5.81 0.84 4.71 4.68
ECS 0110 LD Shallow ASW 6.51 0.94 4.28 4.78
ECS 0115 LD Shallow ASW 9.97 2.15 5.08 6.47
ECS 0120 LD Shallow ASW 6.98 2.81 4.42 6.39
ECS 0125 LD Shallow ASW 6.23 2.29 4.16 6.18
ECS 0130 LD Shallow ASW 5.52 2.43 3.95 5.91
Prob(RD>10) |Prob(RD>15) | Mean RD SD
ECS 0105 HD ASUW 5.76 1.08 3.90 4.60
ECS 0110 HD ASUwW 5.24 0.89 2.99 4.59
ECS 0115 HD ASUW 4.12 0.80 2.76 4.29
ECS 0120 HD ASUW 3.28 0.05 2.53 3.76
ECS 0125 HD ASUW 2.39 0.14 231 3.49
ECS 0130 HD ASUW 3.32 0.19 2,51 3.87
Prob(RD>10) |Prob(RD>15) | Mean RD SD
ECS 0105 LD ASUW 17.51 3.60 6.57 7.72
ECS 0110 LD ASUw 15.03 3.89 6.32 7.84
ECS 0115 LD ASUW 13.90 3.89 5.84 7.18
ECS 0120 LD ASUW 10.96 3.09 5.03 6.64
ECS 0125 LD ASUW 8.47 1.69 4.35 5.79
ECS 0130 LD ASUW 7.82 1.22 4.16 5.46

Table 5. WAPP output differences between GFO and TPX for the ECS in January 2001
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In conclusion, there is small probability(less than 18 %) that the RD is greater 10
between MODAS-TPX and MODAS-GFO for all scenarios. It appears that the USW
weapon system is not overly sensitive to altimeter orbit. That is not to say, that altimeter
orbit is not important. Jaing et al., 1996, showed that spatially dense altimeter sampling
is preferred over temporal frequency sampling to resolve mesoscale features. The
resolving of mesoscale features in essential to the warfighter at the strategic level. At
strategic level, the warfighter is concerned with placement of assets, where to conduct
operations, where the enemy submarine is hiding and so on. The US Navy’s USW
weapons is technological advance, so it appears that, in the case of different altimeter
orbits, the USW weapon system is adequately robust to overcome the difference in

between the two altimeters.
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APPENDIX A. MODAS AND POM TACTICAL SCENARIO
HISTOGRAMS
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Figure 40. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figure 41. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figure 42. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figure 43. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD=0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figure 44. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figure 45. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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Figure 46. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.

QES vs POM HD ASUW

ir|
m —
= = —
=L
¥ 0 0B E PO MH I AE L
-
]
0 I I
e 1 — — —
o = — —

o 2 5 o] % a 25 1) =0 el

Relative Ol fferenon

Figure 47. Wapp output for the relative difference between POM and SCSMEX
(OBS) for HD deep ASW scenario. Mean is 8.98, standard deviation is 2.95,
Prob (RD= 0.10) is 6%, and Prob (RD= 0.15) is 0.25%.
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APPENDIX B. MODAS HORIZONTAL SSP DIFFERENCE
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Figure 48. ECS MODAS horizontal difference in SSPs for January 10, 2001.
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Figure 49. SCS MODAS horizontal difference in SSPs for January 10, 2001.
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Figure 50. ECS MODAS horizontal difference in SSPs for January 15, 2001.
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Figure 51. SCS MODAS horizontal difference in SSPs for January 15, 2001.
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Figure 54. ECS MODAS horizontal difference in SSPs for January 25, 2001.

Figure 55. SCS MODAS horizontal difference in SSPs for January 25, 2001.
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Figure 56. ECS MODAS horizontal difference in SSPs for January 30, 2001.
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Figure 57. SCS MODAS horizontal difference in SSPs for January 30, 2001.
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Figure 58.
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SCS MODAS horizontal difference in SSPs for July 05, 2001.
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Figure 60. ECS MODAS horizontal difference in SSPs for July 10, 2001.
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Figure 61. SCS MODAS horizontal difference in SSPs for July 10, 2001.
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Figure 62. ECS MODAS horizontal difference in SSPs for July 15, 2001.
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Figure 63. SCS MODAS horizontal difference in SSPs for July 15, 2001.
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Figure 64. ECS MODAS horizontal difference in SSPs for July 20, 2001.
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Figure 65. SCS MODAS horizontal difference in SSPs for July 20, 2001.
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Figure 66. ECS MODAS horizontal difference in SSPs for July 25, 2001.
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Figure 67. SCS MODAS horizontal difference in SSPs for July 25, 2001.
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Figure 68. ECS MODAS horizontal difference in SSPs for July 30, 2001.
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Figure 69. SCS MODAS horizontal difference in SSPs for July 30, 2001.
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Figure 70. SCS MODAS SSP January 10, 2001
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Figure 72. SCS MODAS SSP January 20, 2001
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Figure 73. SCS MODAS SSP January 25, 2001
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Figure 74. SCS MODAS SSP January 30, 2001
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Figure 75. ECS MODAS SSP January 10, 2001
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Posltlon: 28.5M, 128E Position: 20.2M, 128E Pooltion: 29.5M, 125E
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Figure 76. ECS MODAS SSP January 15, 2001
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Posltlon: 28.5M, 128E Position: 20.2M, 128E Pooltion: 29.5M, 125E
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Figure 77. ECS MODAS SSP January 20, 2001
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Posltlon: 28.5M, 128E Position: 20.2M, 128E Pooltion: 29.5M, 125E
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Figure 78. ECS MODAS SSP January 25, 2001
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Posltlon: 28.5M, 128E Position: 20.2M, 128E Pooltion: 29.5M, 125E
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Figure 79. ECS MODAS SSP January 30, 2001
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Positlon: 22N, 118.5E

Posklon: 22N, 118.2E
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Figure 80. SCS MODAS SSP July 05, 2001



Positlon: 22N, 118.5E

Posklon: 22N, 118.2E
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Figure 81. SCS MODAS SSP July 10, 2001



Position: 22N, 118.5E Position: 22N, 119.5E Position: 22N, 120E
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Figure 82. SCS MODAS SSP July 15, 2001
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Figure 83. SCS MODAS SSP July 20, 2001



Positlon: 22N, 118.5E

Posklon: 22N, 118.2E
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Figure 84. SCS MODAS SSP July 25, 2001



Positlon: 22N, 118.5E

Posklon: 22N, 118.2E
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Figure 85. SCS MODAS SSP July 30, 2001
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Figure 86. ECS MODAS SSP July 05, 2001
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Figure 87. ECS MODAS SSP July 10, 2001
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Figure 88. ECS MODAS SSP July 15, 2001

89
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Figure 89. ECS MODAS SSP July 20, 2001
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Figure 90. ECS MODAS SSP July 25, 2001
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Figure 91. ECS MODAS SSP July 30, 2001
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APPENDIX D. MODAS INPUT STATISTICS

E Scater Plot {depth <1000 m} Histogram
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Figure 92. SCS MODAS sound speed January 10, 2001
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E Scatier Plot {depth <1000 m) Histogram
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Figure 93. SCS MODAS temperature January 10, 2001
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Figure 94. SCS MODAS salinity January 10, 2001
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Figure 95. SCS MODAS sound speed January 15, 2001
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Figure 96. SCS MODAS temperature January 15, 2001

95



Scatier Piot (depth <1000 m) Histogram

B 15000
348 g
E Maan = -0
80 =0.0223
= 34.6 g 10000 RMED = 00225
= 344
3 5 5000
34.2 R
§ £
3 = 0
= 3 34.5 35 04 02 0 02 04
MODCAS Salinlty (psu) GFO Sallnky Differsnce (pau)
Blas Root Mean Square Difference (RMSD)
0 0
£ E
£ -500 £ -500
8 &
-1000 -1000
L.01 Q.00 0 000 O o 0.02 0.04 0.06
Salinltty Blas (psu} Salintty RMSD (peu)

Figure 97. SCS MODAS salinity January 15, 2001
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Figure 98. SCS MODAS sound speed January 20, 2001
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Figure 99. SCS MODAS temperature January 20, 2001
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Figure 100.  SCS MODAS salinity January 20, 2001
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Figure 101.  SCS MODAS sound speed January 25, 2001
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Figure 145.  ECS MODAS salinity July 05, 2001
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Figure 146.  ECS MODAS sound speed July 10, 2001
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Figure 147.  ECS MODAS temperature July 10, 2001
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Figure 148.  ECS MODAS salinity July 10, 2001
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Figure 149.  ECS MODAS sound speed July 15, 2001
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Figure 150.  ECS MODAS temperature July 15, 2001
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Figure 151.  ECS MODAS salinity July 15, 2001
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Figure 153.  ECS MODAS temperature July 20, 2001
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Figure 154.  ECS MODAS salinity July 20, 2001
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Figure 155.  ECS MODAS sound speed July 25, 2001
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Figure 156.  ECS MODAS temperature July 25, 2001
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Figure 157.  ECS MODAS salinity July 25, 2001
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Figure 158.  ECS MODAS sound speed July 30, 2001
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Figure 159.  ECS MODAS temperature July 30, 2001
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Figure 160.  ECS MODAS salinity July 30, 2001
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APPENDIX E. JULY WAPP OUT SENSITIVITY SUMMARY

RD>10 RD>15 Mean SD
SCS 0705 HD Deep ASW 0.962 0.080 3.964 3.055
SCS 0710 HD Deep ASW 1.282 0.000 4.130 3.172
SCS 0715 HD Deep ASW 1.362 0.000 3.929 3.185
SCS 0720 HD Deep ASW 0.721 0.000 3.753 2.939
SCS 0725 HD Deep ASW 0.642 0.000 3.748 2.903
SCS 0730 HD Deep ASW 1.122 0.000 3.928 2.922
RD>10 RD>15 Mean SD
SCS 0705 LD Deep ASW 1.202 0.000 4.143 3.151
SCS 0710 LD Deep ASW 1.282 0.000 4.226 3.226
SCS 0715 LD Deep ASW 1.442 0.000 4.187 3.349
SCS 0720 LD Deep ASW 1.282 0.000 3.993 3.264
SCS 0725 LD Deep ASW 0.802 0.000 3.957 3.039
SCS 0730 LD Deep ASW 1.683 0.000 4.100 3.106
RD>10 RD>15 Mean SD
SCS 0705 LD Shallow ASW 6.571 0.321 4.896 4.440
SCS 0710 LD Shallow ASW 6.891 0.160 4.979 4.475
SCS 0715 LD Shallow ASW 4.728 0.240 4.674 4.162
SCS 0720 LD Shallow ASW 4.247 0.401 4.348 4.066
SCS 0725 LD Shallow ASW 6.576 0.241 4.855 4.394
SCS 0730 LD Shallow ASW 3.606 0.000 4.599 3.840
RD>10 RD>15 Mean SD
SCS 0705 HD ASUw 12.500 1.522 5.640 5.776
SCS 0710 HD ASUwW 22.676 2.724 7.458 7.418
SCS 0715 HD ASUW 27.083 3.205 7.831 7.647
SCS 0720 HD ASUw 17.628 2.163 5.900 6.898
SCS 0725 HD ASUwW 7.298 0.080 4.141 4.310
SCS 0730- HD ASUW 8.333 0.881 4.789 4.816
RD>10 RD>15 Mean SD
SCS 0705 LD ASUwW 8.013 1.923 4.951 5.855
SCS 0710 LD ASUW 9.535 1.683 5.550 6.042
SCS 0715 LD ASUW 12.580 2.644 6.034 6.719
SCS 0720 LD ASUW 9.054 2.083 5.049 5.848
SCS 0725 LD ASUW 5.373 1.203 4.367 4.866
SCS 0730 LD ASUW 6.490 1.282 4.773 5.036

Table 6. WAPP sensitivity summary for the SCS July 2001
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RD>10 RD>15 Mean SD
ECS 0705 HD Deep ASW 0.609 0.000 2.432 3.131
ECS 0710 HD Deep ASW 0.702 0.000 2.320 3.030
ECS 0715 HD Deep ASW 0.890 0.000 2.450 3.156
ECS 0720 HD Deep ASW 0.890 0.000 2.495 3.166
ECS 0725 HD Deep ASW 1.358 0.000 2.566 3.388
ECS 0730 HD Deep ASW 1.592 0.000 2.756 3.580
RD>10 |RD>15 |Mean SD
ECS 0705 LD Deep ASW 0.702 0.047 2.565 3.242
ECS 0710 LD Deep ASW 0.655 0.094 2.428 3.205
ECS 0715 LD Deep ASW 1.264 0.094 2.707 3.501
ECS 0720 LD Deep ASW 1.124 0.140 2.673 3.508
ECS 0725 LD Deep ASW 1.358 0.047 2.735 3.502
ECS 0730 LD Deep ASW 1.217 0.000 2.869 3.572
RD>10 |RD>15 |Mean SD
ECS 0705 LD Shallow ASW 2.809 0.562 3.136 4.316
ECS 0710 LD Shallow ASW 1.919 0.187 2.909 3.888
ECS 0715 LD Shallow ASW 2.622 0.234 3.088 4.071
ECS 0720 LD Shallow ASW 3.277 0.281 3.258 4.320
ECS 0725 LD Shallow ASW 3.324 0.375 3.374 4.362
RD>10 |RD>15 |Mean SD
ECS 0705 HD ASUW 11.096 2.856 4.407 6.680
ECS 0710 HD ASUW 10.908 3.792 4.427 7.353
ECS 0715 HD ASUW 12.079 3.652 4.585 7.281
ECS 0720 HD ASUW 12.406 3.277 4.685 7.362
ECS 0725 HD ASUW 15.403 4.120 5.264 7.745
ECS 0730 HD ASUW 16.854 4.728 5.719 8.061
RD>10 |RD>15 |Mean SD
ECS 0705 LD ASUW 11.470 7.163 5.241 9.402
ECS 0710 LD ASUW 13.062 7.116 5.178 9.530
ECS 0715 LD ASUW 12.266 7.116 5.232 9.362
ECS 0720 LD ASUW 13.764 6.039 5.226 8.955
ECS 0725 LD ASUW 15.543 7.350 5.798 9.715
ECS 0730 LD ASUW 16.339 7.678 6.157 9.933

Table 7. WAPP sensitivity summary for the ECS July 2001

130




LIST OF REFERENCES

Applied Physics Laboratory University of Washington (APL-UW). APL-UW High-
Frequency Ocean Environmental Acoustic Models Handbook (TR 9407). Seattle,
Washington: APL-UW, 1994.

Chu, P. C.,S. H. Lu, Y. C. Chen and C. Fan. “Evaluation of the Princeton Ocean Using
South China Sea Monsoon Experiment (SCSMEX) Data.” J. Atmos. Oceanic Technol.,
2001,

Chu, P. C., W. Guihua and C. Fan. “Evaluation of the U. S. Navy’s Modular Ocean Data
Assimilation System (MODAS) Using South China Sea Monsoon Experiment
(SCSMEX) Data.” Journal of Oceanography, 2004.

Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes and C. M. Lee. “The Modular
Ocean Data Assimilation System (MODAS).” Journal of Atmospheric and Oceanic
Technology 19 (February 2002): 240-252.

Fox, D. N., C. N. Barron, M. R. Carnes, M. Booda, G. Peggion, and J. Gurley. “The
Modular Ocean Data Assimilation System.” Oceanography 15 (No. 1 2002a): 22-28.

Fox, Dan N. MODAS Homepage: http://www7320.nrlssc.navy.mil/modas/ Accessed 25
December 2005.

Jacobs, G. A., M. R. Carnes, D. N. Fox, H. E. Hurlburt, R. C. Rhodes, W. J. Teague, J. P.
Blaha, R. Crout and O. M. Smedstad, Naval Research Laboratory Report NRL/MR/7320-
96-7722, Warfighting Contributions of the Geosat Follow-On Altimeter, 1996.

Jacobs, G. A., C. N. Barron, M. R. Carnes, D. N. Fox, H. E. Hurlburt, P. Pistek, R. C.
Rhodes and W. J. Teague, Naval Research Laboratory Report NRL/FR/7320-99-9696,
Navy Altimeter Requirements, 1999.

Jiag, S. and M. Ghil, “Tracking Nonlinear Solutions with Simulated Altimetric Data in a
Shallow-Water Model.” J. Phys. Oceanogr: Vol. 27, No. 1, pp. 72-95, 1996.

Liang, W. -D., T. Y. Tang, Y. J. Yang, M. T. Ko and W.-S. Chuang, “Upper-ocean
currents around Taiwan.” Deep-Sea Research Il 50 (2003):1085-1105.

Mancini, S., “Sensitivity of satellite altimetry data assimilation on a naval anti-submarine
weapon system” Master’s Thesis, Naval Postgraduate School, Monterey, California, 2004
p. 77.

Mellor, G. L., 1998 “Users Guide for a Three-Dimensional, Primitive Equation
Numerical Ocean Model”. Available on the Princeton Ocean Model web site.

131


http://www7320.nrlssc.navy.mil/modas/

Murphy, A. H., 1988, “Skill score based on the mean square error and their relationships
to the correlation coefficient. Mon Wea. Rev., 116, 2416-2424.

Naval Undersea Warfare Center (NUWC). WAPP overview, PowerPoint view graphs,
2005.

132



10.

11.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, VA

Dudley Knox Library
Naval Postgraduate School
Monterey, CA

Dr. Charlie Barron
Naval Research Laboratory
Stennis Space Center, MS

CDR Eric Gottshall
ONR-Global
London, UK

Dr. Daniel Fox
Naval Research Laboratory
Stennis Space Center, MS

PMW 180
SPAWAR
San Diego, CA

Mr. Steve Haeger
Naval Oceanographic Office
Stennis Space Center, MS

CDR Van Gurley
Naval Oceanographic Office
Stennis Space Center, MS

RDML Timothy McGee

Commander, Naval Meteorology and Oceanography Command

Stennis Space Center, MS

Mr. Bruce Northridge

Commander, Naval Meteorology and Oceanography Command

Stennis Space Center, MS
VADM Roger Bacon

Naval Postgraduate School
Monterey, CA

133



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Oceanography Chair
Naval Postgraduate School
Monterey, CA

Mr. David Cwalina
Naval Undersea Warfare Center
Newport, RI

Mr. Roberts Rhodes
Naval Research Laboratory
Stennis Space Center, MS

Dr. Greg Jacobs
Naval Research Laboratory
Stennis Space Center, MS

METOC
Fleet Anti-Submarine Warfare Command
San Diego, CA

Oceanographer of the Navy
CNO-N7C
Washington D.C.

Dr. Peter Chu
Naval Postgraduate School
Monterey, CA

CDR Rebecca Stone
Naval Postgraduate School
Monterey, CA

CDR Ben Reeder
Naval Postgraduate School
Monterey, CA

CDR Denise Kruse
Naval Postgraduate School
Monterey, CA

LT Guillermo Amezaga

Naval Postgraduate School
Monterey, CA

134



	I. INTRODUCTION
	A. BACKGROUND
	B. PURPOSE

	II. AREA OF INTEREST
	III. SATELLITE ORBIT ANALYSIS
	A.   GFO AND TPX ORBITS
	B.   ORBIT ANALYSIS IN THE ECS AND SCS IN JANUARY 2001

	IV.   NAVY’S OCEAN NOWCAST/FORECAST SYSTEMS
	A. MODAS
	B. EVALUATION OF MODAS USING SCSMEX DATA
	C. POM
	D. EVALUATION OF POM USING SCSMEX DATA

	WEAPON ACOUSTIC PRESET PROGRAM FOR ASW
	A. WAPP
	1.   Background
	2.   WAPP Ocean Environment Input
	a.   WAPP EDE Surface Conditions
	b.  WAPP EDE Sea Bottom Conditions
	c.   WAPP EDE Water Column and Sound Speed Profile Display

	3.  WAPP Acoustic Coverage Prediction
	4.   WAPP Preset Process


	VI. SENSITIVITY OF WAPP TO OCEAN NOWCAST AND FORECAST SYSTEM
	A. WAPP OUTPUT

	VII. SENSITIVITY OF WAPP TO SATELLITE ORBIT
	A. MODAS INPUT DIFFERENCE
	B. WAPP OUTPUT DIFFERENCE
	1.   WAPP Results


	VIII. CONCLUSION
	APPENDIX A.  MODAS AND POM TACTICAL SCENARIO HISTOGRAMS
	APPENDIX B.  MODAS HORIZONTAL SSP DIFFERENCE
	APPENDIX C.  MODAS SSP
	APPENDIX D.  MODAS INPUT STATISTICS
	APPENDIX E.  JULY WAPP OUT SENSITIVITY SUMMARY
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

