
and tends to force them apart. �Thus the differential rigidity � can
be used as an alternative to M p in indicating whether a beam is
prone or resistant to delamination.�

In Fig. 3 pmax is always negative except in the unlikely cases
where the upper layer is thinner than 0.091 mm; this implies a
resistance to delamination. Note, however, that generally thermo-
mechanical stress in ICs arises from a temperature reduction from
the curing temperature of an epoxy �usually 150°C or 175°C) to
room temperature, or to a test extreme such as �65°C. Thus the
case study example is in reality prone to peeling under normal
usage.

An investigation was also made into the effect on � and pmax of
varying E1 and E2 . This again showed that the range of possible
values for � was from �h1/2 to �h2/2. However, it was also
found that as the moduli of elasticity increased, the maximum
peeling stress pmax increased in proportion.

4 Conclusions
The sign of the interfacial free-edge peeling moment M p indi-

cates whether a bimaterial beam is prone or resistant to delamina-
tion under thermomechanical stress. This sign can be found with
one simple calculation when the layer properties and the tempera-
ture change are known. The relationship between the peeling mo-
ment M p and the differential rigidity � of the bimaterial beam was
examined. It was shown that there is a close relationship, and that
the sign of the differential rigidity is also a direct indicator of the
resistance—or the tendency—to peeling. Finally it was shown that
upper and lower limits to the value of the differential rigidity
exist; as the stiffness of one layer becomes dominant, the magni-
tude of the differential rigidity converges to one-half the thickness
of the opposite layer.
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Triple Coordinate Transforms for
Prediction of Falling Cylinder Through
the Water Column

Peter C. Chu, Chenwu Fan, Ashley D. Evans,
and Anthony Gilles
Naval Ocean Analysis and Prediction Laboratory,
Department of Oceanography, Naval Postgraduate School,
833 Dyer Road, Monterey, CA 93943

Triple coordinate systems are introduced to predict translation
and orientation of falling rigid cylinder through the water col-
umn: earth-fixed coordinate (E-coordinate), cylinder’s main-axis
following coordinate (M-coordinate), and hydrodynamic force fol-
lowing coordinate (F-coordinate). Use of the triple coordinate
systems and the transforms among them leads to the simplification
of the dynamical system. The body and buoyancy forces and their

moments are easily calculated using the E-coordinate system. The
hydrodynamic forces (such as the drag and lift forces) and their
moments are easily computed using the F-coordinate. The cylin-
der’s moments of gyration are simply represented using the
M-coordinate. Data collected from a cylinder-drop experiment at
the Naval Postgraduate School swimming pool in June 2001 show
great potential of using the triple coordinate transforms.
�DOI: 10.1115/1.1651093�

1 Introduction
Consider an axially symmetric cylinder with the centers of

mass �X� and volume �B� on the main axis �Fig. 1�. Let (L ,d ,�)
represent the cylinder’s length, diameter, and the distance between
the two points �X,B�. The positive �-values refer to nose-down
case, i.e., the center of mass �COM� is lower than the center of
volume �COV�. Three coordinate systems are used to model the
hydrodynamics of falling cylinder through the water column:
earth-fixed coordinate �E-coordinate�, cylinder’s main-axis fol-
lowing coordinate �M-coordinate�, and hydrodynamic force fol-
lowing coordinate �F-coordinate�. All the systems are three-
dimensional, orthogonal, and right-handed.

2 Triple Coordinate Systems

2.1 E-Coordinate. The E-coordinate is represented by
FE�O,i,j,k) with the origin ‘‘O,’’ and three axes: x, y-axes �hori-
zontal� with the unit vectors �i,j� and z-axis �vertical� with the unit
vector k �upward positive�. The position of the cylinder is repre-
sented by the position of the COM,

X�xi�yj�zk, (1)

which is translation of the cylinder. The translation velocity is
given by

dX
dt �V, V��u ,v ,w �. (2)

2.2 M-Coordinate. Let orientation of the cylinder’s main-
axis �pointing downward� is given by iM . The angle between iM
and k is denoted by �2�	/2. Projection of the vector iM onto the
(x ,y) plane creates angle (�3) between the projection and the
x-axis �Fig. 2�. The M-coordinate is represented by
FM(X,iM ,jM ,kM) with the origin ‘‘X,’’ unit vectors (iM ,jM ,kM),
and coordinates (xM ,yM ,zM). In the plane consisting of vectors
iM and k �passing through the point M, called the IMK plane�, two
new unit vectors (jM ,kM) are defined with jM perpendicular to the
IMK plane, and kM perpendicular to iM in the IMK plane. The unit
vectors of the M-coordinate system are given by �Fig. 2�

jM�k�iM , kM�iM�jM . (3)

The M-coordinate system is solely determined by orientation of
the cylinder’s main-axis iM . Let the vector P be represented by EP
in the E-coordinate and by MP in the M-coordinate, and let M

E R be
the rotation matrix from the M-coordinate to the E-coordinate,

M
E R��2 ,�3�
� r11 r12 r13

r21 r22 r23

r31 r32 r33

��� cos �3 �sin �3 0
sin �3 cos �3 0

0 0 1
�

�� cos �2 0 sin �2

0 1 0
�sin �2 0 cos �2

� , (4)
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which represents (iM ,jM ,kM),

iM�� r11
r21
r31

� , jM�� r12
r22
r32

� , kM�� r13
r23
r33

� . (5)

Transformation of MP into EP contains rotation and translation,
EP�M

E R��2 ,�3�MP�X. (6)

Let the cylinder rotate around (iM ,jM ,kM) with angles
(�1 ,�2 ,�3) �Fig. 2�. The angular velocity of cylinder is calcu-
lated by

�1�
d�1

dt , �2�
d�2

dt , �3�
d�3

dt , (7)

and

�1��1 ,
d�2

dt �
d�2

dt ��2 ,
d�3

dt 

d�3

dt . (8)

If (�1 ,�2 ,�3) are given, time integration of �7� with the time
interval �t leads to

��1��1�t , ��2��2�t , ��3��3�t . (9)

The increments (��2 ,��3) are determined by the relationship
between the two rotation matrices M

E R(�2���2 ,�3���3) and
M
E R(�2 ,�3)

M
E R��2���2 ,�3���3�

�M
E R��2 ,�3�� cos���3� �sin���3� 0

sin���3� cos���3� 0
0 0 1

�
�� cos���2� 0 sin���2�

0 1 0
�sin���2� 0 cos���2�

� . (10)

2.3 F-Coordinate. The F-coordinate is represented by
FF(X,iF ,jF ,kF) with the origin X, unit vectors (iF ,jF ,kF), and
coordinates (xF ,yF ,zF). Let Vw be the fluid velocity. The water-
to-cylinder velocity is represented by Vr�Vw�V, that is decom-
posed into two parts,

Vr�V1�V2 , V1��Vr•iF�iF , V2�Vr��Vr•iF�iF ,
(11)

where V1 is the component paralleling to the cylinder’s main-axis
�i.e., along iM), and V2 is the component perpendicular to the
cylinder’s main-axial direction. The unit vectors for the
F-coordinate are defined by �column vectors�

iF�iM�� r11
r21
r31

� , jF�V2 /�V2�, kF�iF�jF . (12)

Fig. 3 Effect on � and pmax of varying upper layer thickness

Fig. 1 M-coordinate with the COM as the origin X and „im,jm…
as the two axes. Here, � is the distance between the COV „B…
and COM, „L,d… are the cylinder’s length and diameter.

Fig. 2 Three coordinate systems
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The F-coordinate system is solely determined by orientation of the
cylinder’s main-axis (iM) and the water-to-cylinder velocity. Note
that the M and F-coordinate systems have one common unit vec-
tor iM �orientation of the cylinder�.

Let F
ER be the rotation matrix from the F-coordinate to the

E-coordinate,

F
ER��2 ,�3 ,�MF�
� r11 r12� r13�

r21 r22� r23�

r31 r32� r33�
� , �MF
�jM ,jF�,

(13)

which leads to

iF�� r11
r21
r31

� , jF�� r12�

r22�

r32�
� , kF�� r13�

r23�

r33�
� . (14)

Here, �MF is the angle between the two unit vectors (jM ,jF). Let
the vector P be represented by FP in the F-coordinate. Transfor-
mation of FP into EP contains rotation and translation,

EP�F
ER��2 ,�3 ,�MF�FP�X. (15)

Use of the F-coordinate system simplifies the calculations for the
lift and drag forces and torques acting on the cylinder. Since the
M and F-coordinates share a common axis iM�iF , the rotation
matrix from the F to M-coordinate systems is given by

F
MR�E

MR E
FR�M

E R�1��2 ,�3�F
ER��2 ,�3 ,�MF�

�� 1 0 0
0 e22 e23

0 e32 e33

� , (16)

is two-dimensional with the rotation matrix given by

F
ME��e2 e3� , e2��e22

e32
� , e3��e23

e33
� . (17)

Let the cylinder rotate around (iF ,jF ,kF) with the angular ve-
locity components represented by (�1� ,�2� ,�3�) �Fig. 2�. They are
connected to the angular velocity components in the M-coordinate
system by

�1���1 , ��2�

�3�
��M

F E��2
�3

� . (18)

3 Prediction of Hydrodynamic Characteristics
of Falling Cylinder

3.1 Translation Velocity. The translation velocity of the
cylinder �V� is governed by the momentum equation in the
E-coordinate system,

d
dt � u

v
w
���� 0

0
�1��w / �̄ �g

��
1

�̄� � Fx
Fy
Fz

� , (19)

where g is the gravitational acceleration; �̄ is the average cylinder
density; �w is the water density; � is the cylinder volume; and
�̄��m , is the cylinder mass; (Fx ,Fy ,Fz) are the hydrodynamic
force �including drag and lift forces� components. The drag and
lift forces are calculated using the drag and lift laws with the
given water-to-cylinder velocity (Vr) that is calculated using the
F-coordinate.

3.2 Cylinder’s Orientation. It is convenient to write the
moment of momentum equation

J• d�

dt �Mb�Mh , (20)

in the M-coordinate system with the cylinder’s angular velocity
components (�1 ,�2 ,�3) defined by �7�. Here, Mb and Mh are the
body and surface force torques. The moment of gyration tensor for
the axially symmetric cylinder is a diagonal matrix

J�� J1 0 0
0 J2 0
0 0 J3

� , (21)

where J1 , J2 , and J3 are the moments of inertia. The gravity
force, passing the COM, doesn’t induce the moment. The buoy-
ancy force induces the moment in the jM direction if the COM
doesn’t coincide with the COV �i.e., �
0�,

Mb����wg cos �2jM . (22)

The moment of the hydrodynamic force in iF direction is not
caused by the drag and lift forces, but by the viscous fluid. The
moment of the viscous force is calculated by �White �1��

Mv1��Cm1�1iF , Cm1
	�Ld2. (23)

When the cylinder rotates around jF with the angular velocity �2� ,
the drag force exerts the torque on the cylinder in the jF direction
(Md2) and in the kF direction (Md3). The lift force exerts the
torque on the cylinder in the jF direction (Ml2). The moment of
hydrodynamic force Mh

Mh�Mv1�Md2�Md3�Ml2 (24)

Table 1 Physical parameters of the model cylinders

Cylinder Mass �g� L (cm)
Volume
�cm3�

�m
�g m�3�

J1
�g m2�

�
�cm�

J2(J3)
�g m2�

322.5 15.20 191.01 1.69 330.5 0.00 6087.9
1 0.74 5783.0

1.48 6233.8
2 254.2 12.10 152.05 1.67 271.3 0.06 3424.6

0.53 3206.5
1.00 3312.6

3 215.3 9.12 114.61 1.88 235.0 0.00 1695.2
0.29 1577.5
0.58 1556.8

Table 2 Trajectory patterns

Trajectory
Pattern

Description

Straight Cylinder exhibited little angular change about z-axis. The
attitude remained nearly parallel with z-axis ��15 deg�.

Slant Cylinder exhibited little angular change about z-axis. The
attitude was 45 deg off z-axis ��15 deg�.

Spiral Cylinder experienced rotation about z-axis throughout the
water column

Flip Initial water entry point rotated at least 180 deg
Flat Cylinder’s angle with vertical near 90 deg for most of the

trajectory
Seesaw Similar to the flat pattern except that cylinder’s angle with

vertical would oscillate between greater �less� than 90 deg
and less
�greater� than 90 deg like a seesaw

Combin-
ation

Complex trajectory where cylinder exhibited several
of theabove patterns
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is represented in M-coordinate. Note that the M and F-coordinate
systems have the same x-axis, iM�iF . The equations for
(�1 ,�2 ,�3) are given by

d�1

dt ��a1�1 , (25)

d
dt ��2

�3
���B•��2

�3
���2 , (26)

where

a1

Cm1

J1
�8	�L/m ,

B
� 1
J2

0

0
1
J3

� •�Cm2e2e2
T�Cm3e3e3

T�Cmle2e3
T�,

(27)

Fig. 3 Cylinders’ track patterns observed during CYDEX
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�2
� 1
J2

0

0
1
J3

� •�M 1e2�M 3e3��
��g�w

J2
cos �2�10 � .

Here, Ml
1/2d�w /(1� f r)LV2
2� , M 3
1/2Cd2d�w /(1

� f r)V2
2L� , and f r is the added mass factor for the moment of

drag and lift forces. Equation �25� has the analytical solution

�1� t ���1� t0�exp��a1� t�t0�� , (28)

which represents damping rotation of the cylinder around the
main axis (iM). The Euler-typed forward difference is used to
solve the five Eqs. �19�, �26�, and �28�.

4 Model Evaluation
The Cylinder Drop Experiment �CYDEX� was conducted at the

Naval Postgraduate School �NPS� in July 2001 �Chu et al. �2�� to
evaluate the three-dimensional theoretical model. It consisted of
dropping cylinders whose physical conditions are illustrated in
Table 1 into the water and recording the position as a function of
time using two digital cameras at �30 Hz� as the cylinders fell 2.4
meters to the pool bottom. After analyzing the CODEX experi-
mental data, seven general trajectory patterns �Table 2� are iden-
tified: straight, slant, spiral, flip, flat, see-saw, and combination
�Fig. 3�. Dependence of the trajectory patterns on the cylinders’
physical parameters and release conditions are illustrated in Table
3. The theoretical model predicts the motion of cylinder inside

Fig. 4 Movement of Cylinder #1 „LÄ15.20 cm, �̄Ä1.69 g cmÀ3… with �Ä0.74 cm
and drop angle 45 deg obtained from „a… experiment, and „b… recursive model

Table 3 Trajectory patterns for nose-down dropping „�Ì0…
Cylinder Length �cm� 15.20 12.10 9.12

� �cm� 1.48 1.00 0.58

Drop angle 15 deg Straight �1� Straight �1�, Spiral �1� Spiral* �2�
Slant-straight* �3� Slant-straight* �2� Straight-slant �1�

Slant-straight �1�
Drop angle 30 deg Straight �1� Slant �1�, Spiral �1� Spiral* �5�

Slant-straight* �4� Straight �1�
Slant-straight* �2�

Drop angle 45 deg Slant* �2�, Straight �1� Straight �1� Spiral* �4�
Slant-straight �1� Spiral* �2� Slant-spiral �1�
Straight-spiral �1� Straight-spiral �1�

Slant-straight �1�
Drop angle 60 deg Straight** �5� Straight* �3� Spiral* �4�

Straight-spiral �1� Straight-spiral �1�
Straight-slant �1�

Drop angle 75 deg Straight** �5� Straight �2� Spiral �2�, Slant �1�
Straight-spiral �3� Straight-spiral �2�
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the water column reasonably well. Two examples are listed for
illustration.

Positive � „Nose-Down…. Cylinder #1 (L�15.20 cm, �̄
�1.69 g cm�3) with ��0.74 m is injected to the water with the
drop angle 45 deg. The physical parameters of this cylinder are
given by

m�322.5 g, J1�330.5 g cm2, J2�J3�5783.0 g cm2.
(29a)

Undersea cameras measure the initial conditions

x0�0, y0�0, z0�0, u0�0, v0��1.55 m s�1,

w0��2.52 m s�1,
(29b)

�10�0, �20�60 deg, �30��95 deg, �10�0,

�20�0.49 s�1, �30�0.29 s�1.

Substitution of the model parameters �29a� and the initial condi-
tions �29b� into the theoretical model ��19�, �26�, �28�� leads to the
prediction of the cylinder’s translation and orientation that are
compared with the data collected during CYDEX at time steps
�Fig. 4�. Both model simulated and observed tracks show a slant-
straight pattern.

Negative � „Nose-Up…: Cylinder #2 (L�12.10 cm, �̄
�1.67 g cm�3) with ���1.00 cm is injected to the water with
the drop angle 30 deg. The physical parameters of this cylinder
are given by

m�254.2 g, J1�271.3 g cm2, J2�J3�3312.6 g cm2.
(30a)

Undersea cameras measure the initial conditions

x0�0, y0�0, z0�0, u0�0, v0��0.75 m s�1,

w0��0.67 m s�1,
(30b)

�10�0, �20�24 deg, �30��96 deg, �10�0,

�20��5.08 s�1, �30�0.15 s�1.

The predicted cylinder’s translation and orientation are compared
with the data collected during CYDEX at time steps �Fig. 5�. The
simulated and observed tracks show flip-spiral pattern. The flip
occurs at 0.11 s �0.13 s� after cylinder entering the water in the
experiment �model�. After the flip, the cylinder spirals down to the
bottom.

5 Conclusions
�1� Triple coordinate systems are suggested to predict the

translation and orientation of falling rigid cylinder through water
column: earth-fixed coordinate �E-coordinate�, cylinder’s main-
axis following coordinate �M-coordinate�, and hydrodynamic
force following coordinate �F-coordinate�. It simplifies the com-
putation with the body and buoyancy forces and their moments in
the E-coordinate system, the hydrodynamic forces �such as the
drag and lift forces� and their moments in the F-coordinate, and
the cylinder’s moments of gyration in the M-coordinate.

�2� Usually, the momentum �moment of momentum� equation
for predicting the cylinder’s translation velocity �orientation� is
represented in the E-coordinate �M-coordinate� system. Transfor-
mations among the three coordinate systems are used to convert
the forcing terms into E-coordinate �M-coordinate� for the mo-

Fig. 5 Movement of Cylinder #2 „LÄ12.10 cm, �̄Ä1.67 g cmÀ3… with �ÄÀ1.00
cm and drop angle 30 deg obtained from „a… experiment, and „b… recursive
model
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mentum �moment of momentum� equation. A numerical model is
developed on the base of the triple coordinate transform to predict
the cylinder’s translation and orientation.

�3� Model-experiment comparison shows that the model well
predicts the cylinder’s translation and orientation. However, the
performance of the numerical model for ��0 is not as good as for
�
0.
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This note derives an analytical relationship for an inextensible
network when it buckles. According to the relationship, the ap-
plied compressive force can be determined according to the maxi-
mum absolute values of deflection and angle of deflection in the
network’s wrinkles. �DOI: 10.1115/1.1651094�

1 Introduction
If we pull both ends of a thin plastic sheet used for food pack-

aging, a set of wrinkles, parallel to the loading direction, appears.
Cerda and Mahadevan �1� and Cerda et al. �2� showed that the
wavelength of the wrinkles is proportional to the square root of
the sample size, and the tension can be determined according to
the wavelength of the wrinkles. Fabric, such as cloth, is usually
composed of two families of inextensible elastic fibers. The Pois-
son effect in the fabric may be different from that in the plastic
sheet. For example, if the two families of fibers are loosely con-
nected, then the Poisson effect may be neglected, while this can-
not be true for the plastic sheet. Therefore, the modeling of an
inextensible network may be different from that of a plastic sheet.
In this note, we demonstrate that the applied compressive force on
the fabric can be determined according to the maximum absolute
values of deflection and angle of deflection in its wrinkles.

The effects of bending stiffness of a fiber network or an elastic
surface have been well studied in the literature. Simmonds �3�
considered elastic surfaces with resistance to strain and flexure,

and Wang and Pipkin �4,5� studied inextensible nets with bending
stiffness. Hilgers and Pipkin developed a theory of elastic sheets
in a series of papers, �6–9�, by introducing the second derivatives
of the deformation as well as the first derivatives into the strain-
energy density. Hilgers �10� also examined dynamic effects. Luo
and Steigmann �11� established a model, a generalized plate/shell
theory, to take into account the effects of bending and twisting in
the inextensible networks for finite deformations in 3-space, and
verified the soundness of a special form of finite-deformation
plate theory developed by Wang and Pipkin in �4�. Wang and
Pipkin �4� used their theory to consider the Euler buckling prob-
lem of a flat inextensible network, and indicated that the govern-
ing equation of the flat sheet during the buckling is identical to
that for finite-amplitude oscillation of a simple pendulum. In this
work, we further explore the buckling problem to determine the
applied load on the inextensible network according to geometry of
its wrinkles.

2 An Analytical Relationship
Consider a flat sheet that initially occupies the region 0�x

�L , 0�y�H in the x-y plane. The sheet is composed of two
families of inextensible fibers, which initially lie parallel to the x
and y-axes; thus every line x�constant or y�constant in the re-
gion is regarded as a fiber. The two families of fibers are orthogo-
nal in the reference configuration. They are assumed to be con-
tinuously distributed and fastened together at their points of
intersection to prevent slipping of one fiber family relative to the
other. The sheet is treated as a continuum. Each fiber meets the
Bernoulli-Euler hypotheses: cross sections of each fiber remain
plane, suffer no strain, and are normal to the fiber in every con-
figuration. A uniform force T per unit length is applied to the edge
x�L as a dead load along the negative direction of x-axis �see
Fig. 1�, and edges y�0 and y�H are free from applied tractions
and couples and displacement restrictions. The possible boundary
conditions of physical meaning on the sides x�0 and x�L can be
classified into four categories: �i� both sides x�0 and x�L are
simply supported; �ii� the side x�0 is clamped and the side x
�L is free; �iii� both sides x�0 and x�L are clamped; and �iv�
the side x�0 is clamped and the side x�L is simply supported.
For any set of those boundary conditions, a solution is that the
family of fibers with x�constant remain straight lines, the family
of fibers with y�constant have identical deflections in the x-z
plane and have no deflections in the other planes, and the two
families of fibers are still orthogonal in the deformed configura-
tion �see Fig. 2�. Let �(x) denote the angle between the tangent to
the deflection curve and the x-y plane. Then it satisfies the equa-
tion, �4�,
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Fig. 1 Top view of the flat sheet before wrinkling

Fig. 2 Side view of a possible deformed configuration of the
sheet
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