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ABSTRACT 

This study is a continuation of a previous work concerning the Mordabie Guided 

Airdrop System (AGAS), a parachute system that integrates low-cost guidance and 

control into fielded cargo air delivery systems. This thesis sought to expand upon the 

previous study and provide more information and research on this innovative and critical 

military system. Several objectives and tasks were completed in the course of this 

research and development. The simulation model used in the previous work for 

feasibility and analysis studies was moved fiom a MATLAJ3/SIMULINKB environment 

to a MATRIX-X@ environment in anticipation of AGAS hture use on an Integrated 

Systems, Incorportated AC-104 real-time controller. Further simulation and study for 

this thesis were performed on the new system. The new model implemented 

characteristics of the G-12 parachute, which eventually will be used in the actual flight 

testing of the AGAS airdrop. The system of pneumatic muscle actuators (PMAs) built by 

Vertigo, Incorporated and used on the AGAS was modeled on the computer also. The 

characteristics of this system and their effects on AGAS guidance and control were 

studied in depth. The control concept of following a predicted trajectory based on certain 

wind predictions and other ideas for control algorithms to minimize he1 gas usage, 

number of control actuations and final control error were also studied. Conclusions and 

recommendations for hrther study were drawn fiom this project. 
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I. INTRODUCTION 

The Affordable Guided Airdrop System (AGAS) has progressed significantly 

since its inception following the United States Air Force Advisory Board’s call for 

improvements in the area of supply airdrop in 1997 [Ref 13. The team of engineers and 

scientists from the US Army Soldier and Biological Chemical Command, Yuma Proving 

Grounds, Draper Laboratories, Planning Systems, Inc., Vertigo, Inc., Parks College 

Parachute Research Group, the Naval Postgraduate School, and several other research 

groups have contributed greatly to making this endeavor a very promising undertaking. 

The problems involved in supply airdrop can be traced back to World War 11. 

Airdrop by the Allies on the Western Front was often a guessing game, and with swirling 

winds and bad weather, many times the food and equipment would fall into the wrong 

hands. The Marines in the Chosin Reservoir during the Korean War lost practically all of 

their supply reinforcements to the Chinese because of inaccurate airdrop. Recent 

developments in the Persian Gulf, Haiti, Somalia, and Bosnia, and humanitarian efforts to 

third-world countries have experienced the same hstration. 

The main impetus behind the development of the AGAS system is affordability. 

Large-scale parafoil systems have already been developed as predecessors to this system. 

These systems have proven successkl. However, the AGAS system would take 

advantage of supplies already available to the military in the creation of an affordable, yet 

smart and reliable system. 
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The structural modeling of a parachute’s dynamics is a very difficult process. The 

parachute’s aerodynamics are governed by extremely complex equations [Ref 21. The 

difficulty in the guidance of a parachute and the modeling of this phenomenon are 

equally as difficult. Add in the variablilty of the winds, of which a parachute is much 

more influenced than a rigid aircraft, and one has quite a tricky problem. 

Much work and analysis have gone into the aerodynamic modeling of parachute 

dynamics. Most recently this problem has been studied by White and Wolf mef 31, Tory 

and Ayres wef 43, and Doherr and Salarias wef 51. For the AGAS, this problem is 

being researched by engineers at Draper Laboratories, Parks College Parachute Research 

Group, and the Naval Postgraduate School. 

The variability of winds and wind prediction are being studied by engineers at 

Planning Systems, Incorporated. The ultimate goal of this analysis is to provide an on- 

board weather communications and data processing system enabling the AGAS to deliver 

the parachute drops from very high altitudes in all weather and terrain Bef. 61. The 

variability of winds around even flat terrains where such variability is not expected has 

proven to make this analysis more difficult than anticipated, but a crucial piece to the 

puzzle. 

The guidance system is a collective effort of students, scientists, and engineers at 

the Naval Postgraduate School and Vertigo, Incorporated. Vertigo is providing design 

and analysis of the actuators used on the system. The Naval Postgraduate School is 

studying the optimization and testing of the parachute system, of which the body of this 

thesis is mostly devoted. 
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The initial objective of this project was to move the computer model of the C-9 

parachute's dynamics, sensor package, and control system completed by Scott Dellicker 

on MATLAB/SIMULINK@ to MATRIX-X/XMATWSystemBuild@. The purpose of this 

transition was one of anticipation. The real-time controller to be used with the AGAS 

system in actual testing is a guidance computer made by Integrated Systems (ISI) called 

the AC-104 system. This guidance computer will eventually be used to determine and 

activate desired control inputs based on control algorithms fed into the computer. 

MATRIX-P provides the ability to build a control scheme through the use of script code 

and easy-to-use building blocks in a software package called XMATH/SystemBuild@. 

This model of the controller can then be automatically transformed into downloadable C- 

code through a h4ATRlX-P program called AutoCode with very few constraints. The 

C-code control algorithm can then be executed by the AC-104 system. 

In order to verify the working of the control algorithms on 

XMAWSystemBuild@, the entire model of the parachute dynamics, sensors, and control 

system had to be converted from MATLAB@. M e r  this transformation, fbrther study on 

the feasibility of the control system, the accuracy of the parachute dynamics, analysis of 

the sensor models, and other studies were done on the XMATH/SystemBuild@ model 

wef  71. 
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Figure 1. Dynamics Model From Ref. [ 81 

A. PARACHUTE DYNAMICS MODELING 

Dellicker’s MATLAB@’ model of the C-9 parachute system’s dynamics, a 

subsystem aptly named ‘Dynamics”, is shown above in Figure 1. One goal of the project 

was to replicate this 3-degree-of-fieedom model of the parachute dynamics in XMATP, 

as well as transition fiom using C-9 physical parachute data (such as area and weight) to 

G-12 data. The discussion of this MATLAB@ model will not be done in great detail; 

rather, discussion will center upon the basic premise of what the model is trying to 

accomplish. Thus, the implementation of the blocks and code used in 

XMATWS ystemBuild@ to model the parachute’s behavior will be understood with 

greater clarity. 
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The MATLABQP subsystem "Dynamics77 describes the behavior of the parachute 

dynamics. It is a simplistic view of the parachute dynamics as a point-mass. 

equations of motion for this very simplistic view are (in state-space form): 

The 

. .  

U 

V 

W 

m+a,, 0 

0 m + a 3 ,  
0 m + a , ,  
0 

:I+[: 
w w  

+ 

where u, v ,  and w are linear accelerations in the x, y, and z directions in Ws2; u, v, and 

w are the corresponding airspeeds in Ws, a, is the apparent mass in slugs, m is the mass 

of parachute and payload in slugs, q is the dynamic pressure in lbdft2, CD is the 

coefficient of drag (dimensionless), S is the drag area of the parachute in R2, VT is the 

magnitude of the true airspeed in Ws, W is the weight of the payload and parachute in Ibf, 

and Fmol is the force effect of the control actuators in lbf (in only the x and y directions). 

This equation in its most basic form is a = m-'F. The apparent mass terms are computed 

from the following equations: 

a,, = a,, ; 

as, = 2 x a , ,  

where Dp is the profile diameter of the parachute equal to 213 of the reference diameter of 

the flat circular parachute. For the G-12 the reference diameter is equal to 64 square feet. 
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The dynamic pressure is calculated by q = X p V ; .  The density ( p ) changes with 

altitude; thus, q and the apparent mass change with altitude. 

The XMATH/SystemBuild@ model of the parachute dynamics (a model called 

“Vehicle Model”) is shown in Figure 2. The inputs to the system are the four actuator 

commands (commands to turn the actuator on or off), ‘TMAl-cmdqsi” through 

cTMA4-cmdqsi”. PMA stands for Pneumatic Muscle Actuator, the braided fiber tubes 

that can be pressurized or depressurized in order to lengthen or shorten a parachute riser 

as described in Dellicker’s thesis. The PMA commands go through a block called T M A  

model” (or ‘mew PMA model”) which characterize the dynamics of the PMAs. 

XMATP blocks into which other lower level blocks can be placed to model a certain 

behavior are known in SystemBuild@ as super blocks. They are similar to MATLAB@’ 

subsystem blocks. ‘TMAmodel” outputs the states of the four PMAs (ranging from 0 psi 

for a fblly vented PMA to a maximum pressure for a fully filled PMA) which then 

become inputs to the super block “Aerodynarnic~~~. The PMA model will be described 

more fully in a later section. 

The inside of the super block “Aerodynamics” is shown in Figure 3. This block 

describes the equations of motion for the 3-DOF parachute model (Eq. 1). This model is 

described as 3-degree-of-freedom because only the x, y, and z positions of the parachute 

are affected by control inputs. The angular positions @, 0, and ly (around the x, y, and z 

axis, respectively), are not affected by control in this simplified model. 
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Figure 2. Vehicle Model 

Figure 3. Aerodynamics Model 
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At the beginning of the simulation the parachute experiences a few seconds of 

free fall before the canopy opens and the parachute settles to a constant CD. This opening 

period is modeled as a linear relationship between a ballistic (0 CD) and the constant CD 

in the drag coefficient block. The constant drag coefficient for the G-12 parachute was 

determined to be approximately 0.733 (from flight test). The following code describes 

this linear relationship and is part of the block script block “drag coefficient Cd’: 
/ 

outputs: Cd; 
environment : (TIME) ; 
parameters: (nominal - Cd, open time); 
float Cd, open time, nominal - Ed; 
if TIME > open-time then 

else 

endif; 

Cd = nominal - Cd; 

Cd = (nominal - Cd/open - time)*TIME; 

The “outputs” line in block-script decIares the outputs of the code. 

‘Environmentyy declares any variables that are automatically created by the simulation (in 

this case TIME, the simulation time). “Parameters” declares any variables used in the 

workspace. The next line declares the precision of each variable used in the code. The 

actual body of the code follows (a basic if-then statement) which sets the CD equal to the 

nominal CD (0.733) after the open time (5  seconds), or to a linear relationship between 0 

and the nominal CD for the open time of 5 seconds. 

The rest of the blocks in “Aerodynamics” h l l y  describe the equations of motion 

in Eq. 1. Control force is added to the equations in the super block ‘‘Force Rotation” (or 

“Force Rotation w/ Length Change”). In the parachute “Vehicle Model”, the vehicle 

weight is added to the equations in only the z direction. This weight is added only in the 
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z direction because of the assumption that the parachute does not pitch or roll, but has a 

constant rotation rate. The vehicle weight is read in from a global variable called 

“Vehicle-~eight’~ using a read-from-variable block. 

Once the forces on the parachute have been calculated by “Aerodynamics”, the 

acceleration must be calculated by dividing the total force vector by the mass vector of 

the parachute and payload @=ma, or in this case, a = m-’F). Figure 4 shows the 

calcuation of this mass vector in the super block ‘Mass Properties”. The block calculates 

the apparent masses in Eq. 2. They are then added to the mass of the parachute and 

payload (the vehicle weight divided by g = 32.174 ft/s2) to give the effective mass in the 

x, y, and z directions. The forces on the parachute body calculated in “Aerodynamics” 

are then divided by the effective masses in each axis to give the linear accelerations in 

each axis. 

Figure 4. Mass Properties Model 
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The “Mass Moments of Inertia” block gives the values of the inertia matrix ifthe 

model took into account the pitching and roIling of the parachute and displacements from 

the center of gravity (CGBX through CGBZ). As it stands, however, most of these 

values are not used, and the only value that is used is 133, the mass moment of inertia 

about the z body-axis. A random perturbation of the angular acceleration of the body 

about the z axis (a perturbation from its normally assumed constant value of 0 rad/s2) is 

generated through a “Uniform Random Number” block in the ‘Moment Calculations” 

block in “Aerodynamics” (see Fig. 3). This random perturbation is between -1 and 1 

radls2. It is then filtered to give the rotational disturbance. The rotational disturbance is 

then multiplied by the mass moment of inertia, 133, to give a moment disturbance about 

the z axis = 133a). The other moments, M11 and M22, moments about the x and y 

axis respectively, are set to zero to support the assumption of no pitch or roll. Upon close 

inspection of Fig. 2, however, this moment disturbance M33 is divided immediately by 133 

to give the angular acceleration disturbance once again. If the model took into account 

the affect of the control on the parachute moments, a moment caused by the control 

would be added to this moment disturbance at the point before dividing by 133, but as it 

stands, the model is a simplistic 3-DOF representation of parachute dynamics. 

The changing air density ( p ) with respect to altitude is calculated using a 

standard atmospheric table extracted from XMATH’s Aerospace Libraries@’. The altitude 

in meters (converted from feet) is fed into this table and several usehl air properties are 

interpolated from this altitude, including density. This ever-changing density is then fed 

10 



into blocks to calculate dynamic pressure (9) and apparent masses (a,) from their 

respective equations (converted from meters to feet). 

Once the linear and angular accelerations are calculated, they are integrated to 

give linear and angular velocities in body-axis coordinates. Initial conditions for the 

parachute are specified in integrator blocks. The parachute's initial velocity in x and y 

reflects the initial magnitude and direction of the aircraft's velocity upon releasing the 

parachute. The initial speed is 130 Ws, and the initial heading is 045 degrees for this 

model, but this initial velocity would change with a different aircraft velocity. The initial 

speed of the parachute in the downward z direction is 25 WS.  The initial angular velocity 

of the parachute is 1.8 deg/sec for ty , and zero for both 4 and 8 (no change in pitch or 

roll angle from 0 degrees). Angular velocity is then directly integrated again to give 

angular positions, the Euler angles in the x, y, and z axis, with the initial conditions for all 

three angles being zero. 

Integration of the linear accelerations actually gives the parachute's airspeed in 

Ws. In order to calculate the parachute groundspeeds (in body-axis coordinates), the 

wind velocity must be added to the airspeeds. This wind velocity must also be 

transformed from universal to body-axis coordinates before being added to the body-axis 

airspeeds to get body-axis groundspeeds: 

(3) B Vo=BV,+BVW 

B where BVG is the groundspeed vector, V, is the airspeed vector, and "V, is the wind 

speed vector, all in bod y-axis coordinates. The transformation matrix for converting 
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vectors (either position or velocity vectors) from universal (inertial) to body coordinate 

systems (iR) is [Ref 91: 

cos cos e sin y cos 8 - sin 8 
cosy sin @sin 4 - sin y cos4 sin @sin 4 sin y i- cosy cos4 cos8sin 4 
cos y sin 8 cos 4 + sin y sin 4 sin 8 cos # sin y - cosy sin 4 cos 8 cos 4 

and the transformation from body to universal coordinates is just the inverse: 

( 5 )  :R=:R-’ where y , 4 , and 8 are the parachute Euler angles. 

In the block “Aerodynamics”, the wind velocity in universal coordinates is 

interpolated from different wind files. The interpolation is indexed by altitude. Since the 

parachute model is referenced to a north-east-down (NED) coordinate system, and the 

wind files are referenced to a north-east-up 0 coordinate system, the z position must 

be multiplied by a gain of -1. The interpolated winds in x, y, and z are in universal and 

NEU coordinates, so they must be transformed to NED body coordinates by another -1 

gain block and the coordinate transformation block “Universal to Body Transform”, 

which performs the transformation in Eq. 4. The winds can then be added to the body- 

axis airspeeds in order to get body-axis groundspeeds. These groundspeeds are then 

transformed to universal coordinates through another transformation block that performs 

the matrix multiplication outlined in Eq. 5 .  

In universal coordinates, the groundspeed can be integrated to obtain x, y, and z 

positions in NED coordinates. The initial position read into this integrator is the initial x 

offset and y offset of the drop (from the intended drop point of 0,O) and the altitude of the 
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drop in NED coordinates, which is always equal to -9500 R (0 altitude is the ground 

point). These universal x, y, and z positions are the main outputs of the “Vehicle Model”. 

Finally, z position is again multiplied by a -1 gain block to be used in the wind 

files, the atmospheric tables, and to stop the simulation when the altitude of the parachute 

is zero (when it hits the ground). A logical expression and stop block perform this last 

task (see Fig. 2). When the statement output in the logical expression block (Y = U<=O) 

is TRUE, that is, when the input altitude is less than or equal to zero, the simulation is 

stopped. While the altitude was multiplied by -1 to perform these tasks, the output of the 

vehicle model is still the x, y, and z positions in NED coordinates. A diagram of the 

entire parachute dynamics modeling scheme is shown in Appendix B. 

B. GPS/HEADING SENSOR MODELING 

1. Global Positioning System (GPS) 

A simple GPS model was implemented in XMA@ based on the MATLAB@ 

model. This model simply created errors in the Cartesian (x, y, z) coordinates matching 

test data. Normally, errors in the ranges to the satellites as a result of several different 

error sources (such as receiver noise and satellite clock noise) would have to be modeled 

using numerical solutions such as a maximum likelihood estimation algorithm. However, 

these numerical solutions consume much simulation time and are therefore unsuitable for 

simulation on a simple personal computer, so they were not utilized. Instead, system 

identification tools were implemented. 

Both a model with selective availability on and one with selective availability off 

were modeled. A variable in the workspace, “saon”, determined whether selective 

13 



availability was on or off If saon was equal to 1, then the selective availability errors 

were chosen and the GPS error was greater. If saon was equal to 0, selective availability 

was off and the GPS was very accurate. 

The selective availability errors in commercial GPS receivers contain induced 

errors, which restrict the use of the GPS full power and precision to only authorized users 

such as military and other Department of Defense units. Receivers not restricted to 

selective availability are capable of removing the induced errors through the processing 

of several cryptographic codes [Ref 101. The AGAS is desired to utilize a commercial 

GPS receiver for the purposes of cost reduction. As described in Dellicker’s thesis, these 

GPS selective availability errors were modeled using a system identification tool known 

as ARMAX [Ref 81. The re-creation of this selective availability model in X M A W  is 

shown in Fig. 5 .  The same discrete transfer functions and noise source blocks were used 

in this system. This transfer fbnction is as follows: 

z4 - 1 . 5 3 0 2 ~ ~  + 0 . 2 6 0 8 ~ ~  + 0,25662 + 0.0192 
z4 - 2 . 6 5 0 0 ~ ~  + 1 . 9 5 8 2 ~ ~  + 0.03372 - 0.3420 

(6) T. F. = 

Comparisons between MATLABa selective availability errors and XMATH? 
WhiteNoise 

1 3  12 
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__L - 
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WhiteNoiSe 
, 198 14 

I I I -  - %nun 
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- 

Figure 5 .  Selective Availability on Error Model 
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selective availability errors are shown in Fig. 6 and 7. 

In Dellicker's thesis, selective availabilty errors were measured with a mean of 

approximately zero meters in each axis and standard deviations of 17.2, 28.5, and 21.1 M 

in the x, y, and z axes respectively [Ref. 81. The old model, whose errors are sampled in 

Fig.7, showed a mean of 0-2 m and standard deviations of 13- 16 m. The new model 
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Figure 6. SysiemBuild@ Selective Availability Errors 
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Figure 7. &!L4TL.A.B@ Selective Availability EEWS 

showed a mean of 0-4 m and standard deviation of22-25 m. This new model provides 

an adequate picture ctfthe selective ~ v a i ~ a b ~ ~ ~ ~ ~  errors. A sampling of errors for the new 

model is shown in Fig. 6. 

fn Fig. 8, a typical simulation run, selective availability provides an adequate 

estimation of position, bsrt not quite as accurate as could be obtained with a DOD GBS 

receiver. 

With setective availability off, GPS accuracy goes up. A ~ompa~abIe niodef to 

the MATLAB@ version was i ~ ~ ~ e ~ e ~ ~ ~ ~  in > ~ ~ A T H @ ,  which included standard ~ E Q F S  

from GPS (clock error, atmospheric noise, etc.) md "jitter" errors. These two models itre 

shown in Figures 9 and 30. Results from the M A n B B  simulation of the GPS errors 
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and the X%LAT@ simulation compared well with MATLAB@. These simulations 

modeled the errors of a Honeywell Embedded GPSlInertial Xavigation System [Ref 81. 

Figure 8. Selective Availability Tme Position vs. GPS Position 

Figure 9. GPS SA offhhdef 
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Figure 10. GPS Jitter Model 

Once again, the modeled results in XMATH? compared well to the results from 

the MATLAB@ model. The following Figures 11 and 12 show the GPS errors for both 

models, which are typical values. 

Figure 11. SystemBuild@ GPS Errors 

18 



h g 10,  I I I I I I 1 
L e 
$ 0  
X 

-10 I J 
0 50 100 150 200 250 300 350 

-10 I J 
0 50 1 00 150 200 250 300 350 

-20 1 I 
0 50 I 00  150 200 250 300 350 

l ime  (sec) 

Figure 12. MATLAB@ GPS Errors 

The plot of GPS sensor position versus actual position for a typical simulation 

Such great accuracy in the selective with selective availabilty off is not needed. 

availability off receiver merits that the two are indistinguishable on such a plot. 

2. Heading Sensor/Compass 

The Attitude Heading Reference System (AHRS) is the magnetic compass 

modeled in this project. This system usually provides a static error component of + 2  

degrees and k 1 degree with wind velocity aiding. A dynamic component of + 2 percent 

is also present in this system, and similar compass systems show comparable results. 

Figures 13, 14 and 15 describe the XMATP model of the 9 s  used in this study, a 

graph of typical heading error as simulated by this model, and a graph of heading error 

with the MATLAB* model. 
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Figure 14. XMA'IXI? Modeled Heading Sensor Error 
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Figure 15. MATLAB@' Modeled Heading Sensor Error 

As a consequence of the GPS and heading sensor models, noisy x, y, and z 

positions and noisy heading ( w )  are outputs of these models. Since 4 and 8 are 

assumed zero throughout the parachute simulations, they are not measured and thefefore 

there are no pitch or roll angle sensors. The transition of the model to six degrees of 

freedom would incorporate these sensors. 

C. CONTROL SYSTEM MODELING 

1. Control Strategies 

The control system implements the control algorithm for the simulation. The 

objective of the parachute is to land at a target position, or to within 100 meters of this 

target position (approximately 300 feet). Probably the biggest unknown in the control of 

the parachute to the target position is the wind. The control system seeks to overcome 
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the wind and land the parachute in the correct position; however, the velocity of typical 

winds is much higher than the actuation system (the PMAs) of the parachute can 

overcome. Flight tests have shown that the most the PMA system can overcome is 

approximately a twelve-foot-per-second wind. Therefore, the control system can either 

steer the parachute toward a trajectory based on predicted winds, or ignore the prediction 

of the wind and head toward the final target position at all times. 

The predicted trajectory used by the control system is determined by a previous 

simulation based on the most recent wind data, most likely collected by a Radiosonde 

Wind Measuring System (RAW. For this model, the simulation based on this wind 

data is known as a Computed Air Release Point (CARP) simulation. The CARP 

simulation is the same as the vehicle model described previously. It is just a description 

of the parachute's dynamics subjected to the predicted winds from the RAW" balloon. 

There are no controls (set by a super block called "Null Controller") and the CARP 

predictor does not take into account the initial velocity of the parachute based on the 

aircraft's velocity. The CARP predictor is always released fiom the point [O; 0; -95001 

(x, y, and z position in NED coordinates). Otherwise, the vehicle models are the same 

(same constant 1.8 degree per second rotation rate, 0 pitch and roll, same equations of 

motion). The final position of this CARP parachute when it hits the gruund becomes the 

target position of the actual simulation. In final implementation, a target position on the 

ground for the actual parachute would be determined in advance, and the CARP 

simulation would then figure a predicted trajectory of the parachute based on the 

predicted winds from this target position, in effect determining the ideal release point for 
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the parachute. However, for simplicity the CARP is always dropped from the same 

position, and its landing point becomes the target. Random offsets fi-om this ever- 

constant initial CARP position are chosen for the actual parachute simulation. 

For the trajectory-seeking controller, the parachute follows the CARP’S path at 

every altitude station throughout its entire drop. For the target-seeking control strategy, 

the parachute aims at the final position of the CARP (the target position) at every altitude 

station throughout its entire drop. This is the only difference between these two control 

strategies . 

2. Parachute Control Logic 

Figure 16 shows the flow diagram lur the parachute controller. The controller 

determines which of four PMAs arranged in four axes (90 degrees apart) to activate. An 

activation of a PMA causes a movement of the parachute in a certain direction. This 

direction is toward the predicted trajectory determined by the CARP simulation or toward 

the target position on the ground at all times, depending on the control strategy used. The 

logic for the controller is as follows: sensed position from a GPS receiver is fed into a 

linear interpolation block that extrapolates the target position in x and y universal 

coordinates. The target position is the CARP trajectory determined from predicted winds 

and loaded into the model before the actual simulation, or the target position (also 

determined from CARP) at every altitude station (the controller aims at this target 

position at all times). This target is also known as the reference input. It is called 

“predicted - x” and “predictedy’ in the trajectory-seeking control strategy simulation and 

“target-x” and ‘Yarg&j” in the target-seeking control strategy simulation. 
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Figure 16. Flow D i a p m  for Parachute Control Logic 

control 

h error in x and y is determined from this reference input by subtracting the 

feedback signal of sensed position in x and sensed position in y (e = r - y in standard 

controf theory) @ef 111. The errors in x and fr’ are then coni7erted to body-axis 

coordinates in order to take into account the rotation of the parachute and the position of 

the PMAs relative to the line of sight of the predominant enor. The body-axis en5rs in x 

and y are each divided by the radial error (just the norm ofthese body-axis errors in x and 
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Predicted path 

Figure 17. Operating Angles 

y) in order to transform the body-axis errors into an error in the “operating angle” of each 

of the PMAs. A diagram is incorporated to better explain this concept. 

Figure 17 shows the arrangement of the PMAs on the body-axis of the parachute. 

Remember, north is in the positive x direction, and east is in the positive y direction in 

the north-east-down (NED) coordinate system. 

The 145’ angle opposite PMAs 3 and 1 in Figure 17 are the operating angles of 

those PMAs. All four PMAs have operating angles of 145’. The reason for this is as 

follows: suppose the trajectory the parachute is supposed to follow (the predicted 

trajectory f?om CARP) has a line of sight of approximately 225” (in the southwesterly 
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direction) as shown in the diagram. This is the reference trajectory and the calculation of 

the error in x is negative. Next, the radial error to this reference trajectory is calculated 

e 
and the error in x is divided by this radial error. If this calcuation of 2 is negative and 

llell 

less than -0.3, then PMA #3 is activated. An activation of PMA #3 will drive the 

parachute in the negative x direction, toward the predicted path. This is because an 

activation is a VENT of a PMA. A vent of a PMA causes a lengthening of a parachute 

riser, which in turn causes a spillage of air on the side of the vented PMA. This creates a 

drive in the opposite direction. 

IfPMA # 3 is activated on a %< -0.3, this corresponds to a “dead zone” where 
11.11 

the PMA is left idle of approximately 17.5” on both sides of the negative x half o f  the 

circle. This leaves an angle where the PMA operates at approximately 145”. Similar 

operating angles are calculated for the other PMAs. 

The logic performed to determine if a PMA needs to be possibly activated 

(vented) depends on whether the predominant error is in the PMA’s operating angle: 

0 if -0.3, error is in PMA # 3 operating angle 
llell 

if 2 > 0.3, error is in PMA # 1 operating angle 
lkll 
eY if - < -0.3, error is in PMA # 4 operating angle 
llell 
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if 5 0.3, error is in PMA # 2 operating angle 
llell 
These logic checks are performed by logical expression blocks in SystemBuild@. 

If the above expressions art? true, a 1 is output from these logical expression blocks 

(corresponds to TRUE). 

However, there needed to be constraints on the amount of radial error that merited 

a control activation. If there were no constraints, the PMAs would be constantly 

activating, which was not feasible. Therefore, a “tolerance cone” was built to apply these 

error constraints. Figure 18 contains an example of how this tolerance cone worked, 

G u i d a n c e  Concept  for Tolerance C o n e  I 
Feasibility Funnel  
(aircraft drops chutes within feasibility bounds) 

N o m i n a l  Fl ight  Profile ( N F P )  with n o  control 
(becomes moving waypoimt a s  function o f  altitude 

“Side”  V i e w  

T o p  V i e w  hb 

Then drift until outside o f  C E P .  I 

Figure 18. Tolerance Cone Guidance eagcept From Ref [ 121 
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taken from a presentation on the subject by the Boeing Corporation. In the diagram, the 

NFP stands for Nominal Flight Profile. This is a circular c’tube’’ surrounding the 

predicted path (a.k.a. reference path) at every point in the path‘s trajectory. This tube 

never changes with altitude. The CEP (Circular Error Probable) DOES change with 

altitude. It is an outer cone for the guidance concept. The largest part of the cone is at 

the top where there is a greater tolerance for error. This brings up the concept of the 

“feasibility funnel”. The “feasibility fbnnel” is a cone where, at each altitude in the cone, 

the circle in the horizontal plane describes an area out of which the aircraft cannot drop 

the parachute because it would never make it into the desired final CEP from outside this 

area. This area is totally determined by the drive of the parachute actuators. It assumes 

an exact wind prediction and zero mean random GPS and heading errors. In the Boeing 

diagram, the “feasibility funnel” describes the tolerance cone. However, this does not 

have to be the case. In the case of this study, the tolerance cone’s outer shell (the CEP) is 

an “upside-down wedding cake”. It is formed by a block script in XMATH@, with 

altitude as the input (a positive altitude in NEU coordinates) and the following code: 

inputs: u; 
outputs: y; 
f l o a t  u, y; 
if u>8000 then 

y=500; 
elseif u>6000 then 

y=400; 
elseif u>4000 then 

y = 3 0 0 ;  
elseif u>2000 then 

y=150; 
else 

y=60; 
endi f ; 
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Figure 19. Tolerance Cone used in Simulation 

All values are in feet. The inner shell of the tolerance cone (NFP) is always set at 

30 feet. This creates a tolerance cone that looks somewhat like the diagram in Figure 19 

and follows the predicted path at every waypoint. With the tolerance cone’s inner and 

outer shells set, the logic of the guidance concept is as follows: 

if the radial error is outside the NFP, the control system steers the parachute until it is 

inside the NFP 

the parachute is then allowed to drift until it is outside the changing-with-altitude 

CEP 
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once the parachute is outside the CEP, it is again steered until it is inside the “P. 

The decision-making process is clearly dependent on the state of the parachute’s 

error. Therefore, a tolerance cone state diagram needed to be built in SystemBuild@. The 

state diagram for the tolerance cone is shown in Figure 20. 

The inputs to the state diagram are the radial error (Ul) and the outer shell of the 

tolerance cone (U2). The dark arrow at the top of the diagram indicates the bubble the 

state diagram checks first. The state first enters the “controlled” bubble. If the radial 

error is greater than 30 R. (the NFP), the state continues to be in the ‘‘controlled” bubble, 

as indicated by the arrow flowing from and to the “controlled” bubble. 

drifting(Ul>30 and 

Figure 20. Tolerance Cone State Diagram 
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As the parachute is controlled and the error becomes smaller and smaller, the 

parachute goes inside the NFP, as indicated by the arrow flowing from the “controlled” 

bubble to the “inside NFP” bubble. The condition for this transition is if the radial error 

is less than or equal to 30 feet. As long as this is the case, the state stays in the “inside 

NFP” bubble and a 0 is output. Ifthe radial error goes outside the NFP but is still inside 

the CEP, the state transitions to the “drifting” bubble, indicating that the parachute is 

drifting in between these two “tubes”. The condition for this transition is if the radial 

error becomes greater than 30 feet but still less than the CEP (input U2). As long as this 

is true the state stays in the “drifting” bubble and a 0 is output. Next, if the radial error 

becomes greater than or equal to the CEP, the state once again transitions to the 

“controlled” bubble, and the process repeats. So, a 1 output from the state diagram 

means the parachute needs to be controlled toward the predicted path, and a 0 indicates 

that the parachute need not be controlled. 

In order for the control system to activate a control, the body axis error must be in 

the PMA’s operating angle, and the tolerance cone state diagram must allow a control 

input (see Fig. 16). Both the logical expression block that determines if the error is in the 

operating angle and the state diagram output a 1 or TRUE value if these questions answer 

true. Therefore, a simple 2-input AND logical expression with these two outputs as 

inputs to the AND block will determine if a control is on or off (1 for on, 0 for off). 

Figure 21 shows the realization of the controller in SystemBuild@. Once it is 

determined whether or not a PMA will be actuated or not, these signals must be 

converted to actual commands in psi. Remember, an actuation is a venting of the PMA, 
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so this is a command to send the PMA pressure to 0 psi. A 0 corresponds to taking the 

actuation off, or filling the PMA, so this is a command to send the PMA pressure to 

whatever the maximum pressure of the actuators is. For this study, the maximum PMA 

pressure ranged fiom 100 psi to 175 psi. In the SystemBuild@’ diagram, this number is set 

through a parameter called “pma-maxqressure”. The PMA command pressure is set 

through a simple algebraic expression: 

(7) 

where pma-on-off is equal to the 1 or 0 value corresponding to the PMA being actuated 

or turned OK Thus, the outputs of the controller are these PMA commands in psi, which 

become inputs to the PMA system model. The number of control actuations is also 

counted using an algebraic expression. This sets the drive of the actuators, which is 

dependent on the number of actuations at one time (based on flight tests). 

P M  - cmd - psi = pma - mm- press. - pma - m a -  press. x (pma -on - ofs) 

I I 

Figure 21. Controller 
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Figure 22 is a good example of the controller’s performance. In Figure 22; the 

parachute has a perfect wind prediction loaded into CARP (both the CARP and the actual 

simulation have the same wind profile). The top t~i7o plots are plots of 5 and 
llell 
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Figure 22. Control Logic with Good Wind Prediction 



5. Initially, the parachute drop point is offset in the x direction by 2500 feet (so the 
llell 

initial x error is -2500 feet). Because of this fact, the constant rotation rate, and the 

perfect wind prediction, the actuators drive in one direction (toward the negative x or 

eY south direction) as the parachute rotates, and the plots of 5 and - are smooth sine 
llell llell 

functions. This constant driving direction is shown in the third plot of the tolerance cone 

and the radial error. The 

parachute is offset by 2500 feet from the ideal drop point and just barely makes it to the 

final CEP with an exact wind prediction. This makes 2500 feet the approximate radius 

of the “area of attraction”. This area was determined using the script file “attraction”. 

The fourth plot shows the actuation history of the four PMAs. One can observe that the 

PMA activations follow the control logic described above. The circles with numbers 

mark the points on the first two plots where a certain PMA was activated. 

D. , ACTUATOR SYSTEM MODELING 

This plot also shows the so-called ‘Teasibility funnel”. 

Dellicker’s thesis modeled the actuators as instantaneous control inputs, meaning 

the model did not reflect the dynamic characteristics of the actuators, including valve 

opening and closing times, filling and venting dynamics, and control force coefficients of 

the actuators. This study sought to model these characteristics and assess the results of 

this actuator behavior. Much testing has been done in an attempt to characterize PMA 

behavior. The basic premise of the actuator model is to re-create this test data in real 

time as the simulation is running in order to best describe actuator dynamics. 
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Figure 23 shows a diagram of the actuator setup in the parachute payload from a 

presentation by Vertigo, Incorporated, the makers of the PMAs. The gas for filling the 

actuators comes from 4500 psi reservoirs (the diagram shows two, but in the simulation 

for this study, only a single 4500 psi reservoir is used). Each of the four actuators are 

then connected to this same reservoir of nitrogen gas through some piping or tubing 

leading to a fill valve. The fill valve is opened to allow gas to fill the actuators when a 

command to take an actuation off is received. When the pressure inside the PMA reaches 

a certain value, a pressure switch signals the fill valve to close. 

PMA 

Vent valve 

Relief valve 

Fill valve 

4500 psi 
reSerVOir  

Figure 23. Vertigo, Inc. Actuator System Concept From Ref [ 131 
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Since the fill valve works with high-pressure gas it has a small orifice and 

therefore opens and closes rather quickly upon receiving the correct electrical signal. The 

time to open and close the valve is roughly 100 ms. However, the decrease in pressure of 

the gas tank as more and more fills are completed slows down the actual filling process. 

This dynamic characteristic is modeled in XMATH@ based on collected actuator data. 

The vent valve opens to empty the actuator when a command to actuate is 

received. The vent valve has a large orifice and can open quickly to vent the PMA, but 

requires a certain time to vent the gas and close the orifice. Each opening of the vent 

valve requires approximately 100 ms, but the venting process and closing of the valve 

depends on the maximum pressure of the actuator fill. This process also takes a constant 

amount of time (approximately) because the pressure in the actuators is the same upon 

Valve Change in PMA PMA pressures 

Control em&. (psi) 

Table 

PMA Fill 
Time (sec) 

Reservoir Preaure 
( P 4  

G \ - Reservoir Pressure Charge 
per PMA Pressure Change 

lmR 

Figure 24. Actuator Modeling Concept 
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each vent. Many tests have been run on both the filling and venting process of the 

actuators, but for now only the modeling is described here. 

A basic diagram of the actuator modeling is shown in Figure 24. The four 

commands from the controller in psi (either 0 or the maximum actuator pressure) are fed 

into a block called ‘Valve Dynamics”. This block models the opening and closing of the 

valves for both filling and venting. This process takes approximately 100 ms. In these 

simulations, the opening and closing of the valves was taken to be a worst-case 166 rns 

(approximately) and was modeled as a first order lag with a time constant of 0.0333 

seconds. It takes about five time constants to reach the final value of a first order lag, so 

5 x 0.0333 = 0.1665 seconds is a rough estimate for the opening and closing of the valve. 

The Laplace equation for a first order lag for one PMA is: 

1 
ZS+l 

(8) X(s )  = -U(S) 

where X(s) is the Laplace of the output x(t) (the result of the valve dynamics), U(s) is the 

Laplace of the input u(t) (the commands), and z is the time constant. Expanding this 

Laplacian equation out to get it in differential equation form (for state-space methods): 

(9) (2s + l)X(S) = U(s)  

1 1 (10) sX(s)+-X(s)  = -U(s) 
z z 

1 1 (11) x( t ) -x (O)+-x( t )  =-u(r) 
z z 

1 1 (12) x( t )  = - -x(t)+-u(t)+x(O) 
z z 
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This final differential equation is then put in state-space form for an XMATH@ state- 

space block. The block needs specified initial conditions, x(O), and the matrices &, B, C, 

and D as follows: 

Y XI=[: :][:I 
where x , x , y , and u are all 4x1 vectors (1 element for each PMA and y is the output 

vector) and A, B, C, and D are 4x4 matrices describing the above differential equation 

[Ref 111. With a time constant z = 0.0333 seconds, the matrices become: 

’30 0 0 0 1  

(14) A =  

- 3 0  0 0 0 

0 -30 0 0 

0 0 - 3 0  0 

0 0 0 -30 

; B =  
0 3 0 0 0  

0 0 3 0 0  
; C = I (4x4); D = 0; 

0 0 0 301 

With an initial condition for each of the PMAS being filled (at the maximum actuator 

pressure), the state space block is complete and the valve dynamics are roughly 

described. 

The valve responses in psi become inputs to a “Time Constant Calculation” block. 

This block models the PMA filling and venting by first order lags. This is accomplished 

through a block script with the following code: 

inputs: (x, signal, time - fill, deflate - time); 
outputs: (xdot) ; 
environment: (INIT) ; 
parameters: pma max pressure; 
float signal(4); XG), xdot(4), k ( 4 ) ,  e(4), time - fill, tau, 
pma - max - pressure, deflate - time; 

tau = time - fi11/5; 
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1 

for i=1:4 do 
e(i) = signal(i) - x ( i ) ;  

if (e(i) >= 0.0) then 
k(i) = l/tau; 
else 
k(i) = l/(deflate - time/5); 
endif; 

if (x(i)<=O & ,  e(i)<O) I (x(i)>= pma - max - pressure & e(i)>O) 
then 
xdot(i) = 0; 
else 
xdot(i) = k(i) * ( signal(i) - x(i) ) ;  
endif; 

endfor; 

The inputs to this code are x (the current state of each of the PMAs), signal (the 

command signal after valve dynamics modeling), time-fill (the fill time based on how 

much pressure is left in the reservoir) and deflate time (the constant vent time based on 

what the maximum actuator pressure is, set before the simulation starts). The output of 

the code is xdot, the change in PMA pressure per unit time for each of the PMAs. So, 

there are a total of 10 inputs (4 each for x and signal) and 4 outputs (4 for each PMA). 

The code next calculates the value of T, the time constant when a PMA is filling, 

by dividing fill time by 5, since the time to reach the final value of a first order lag (the 

fill time) is approximately five time constants ( 5  x z = risetime ). Then for each PMA, 

the code calculates a value for e. This value is the signal command (what the PMA 

should be) minus the current state of the PMA. Ifthis value is greater than or equal to 0, 

the PMA is filling, and the variable k is set to l/tau. If it is less than 0, k is set to 

l/(deflate-timel5) where deflate-time/5 is the time constant if the PMA were deflating. 
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Next, an IF-THEN-ELSE statement sets the differential equation for the 

calculation of xdot. This differential equation for a first order lag is the same as Eq. 12, 

but rearranged: 

1 1 1 (15) x(t )=--x( t )+- -u(t )+x(O);  x(O)=O; k = - ;  signal=u(t) 
z z z 

(16) 

The IF-THEN-ELSE statement asks two questions: 

0 Is the state of the PMA less than or equal to 0 (it should not be less than 0) and is e 

less than 0, meaning the PMA is all vented and it is still being commanded to vent? 

Is the state of the PMA greater than or equal to the max pressure in the PMA (should 

not be greater than this max pressure) and is e greater than 0, meaning the PMA is all 

filled and is still being commanded to fill? 

x(t )  = k(signaZ - x )  

0 

Based on the answers to these questions, the xdot equation is formed. If either one of the 

two above questions is true, the change in pressure in the PMA, xdot, is ZERO. 

Otherwise, the above differential equation applies with the correct value of k already 

calculated (depending on whether the PMA is filling or venting), and the code is 

complete. 

The change in each of the PMA's pressures per unit time is then integrated (with 

initial condition being the PMA maximum pressure--recall that the PMAs start being all 

filled). The PMA pressures are then limited between 0 and the PMA maximum pressure 

by a SystemBuild@ limiter block, and this becomes the state of each of the four PMAs. 

These states are the primary outputs of the PMA model. 
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The fill time of the actuators is calculated by data interpolation on the remaining 

reservoir pressure. Therefore, the pressure left in the reservoir needs to be calculated. 

This is done by taking the changes in pressure per unit time for each of the PMAs (xdot), 

and feeding this through a gain reflecting the change in the reservoir pressure per a full 

PMA fill. This gain is actually a linear interpolation block with index being the 

remaining reservoir pressure. From remaining reservoir pressure one can interpolate how 

much gas will be expended from the reservoir on the next full PMA fill. This number is 

divided by the max PMA pressure to give the gain for this particular block. This change 

in reservoir pressure for that fill is divided by the max PMA pressure because the xdot 

input into this gain is a PART of this maximum pressure that is summing up to the 

maximum pressure over time. The small parts of this PMA max pressure multiplied by 

the gain will slowly add up to the pressure expended from the reservoir for that PMA fill. 

AAer being multiplied by the gain, each of the expenditures fiom the reservoir (for each 

PMA) are then multiplied by -1 and summed up to obtain the total pressure used by the 

reservoir to fill up the PMAs. 

The change in pressure of the reservoir is then integrated (with initial condition 

being the initial pressure of the reservoir) over time and remaining reservoir pressure in 

psi is output. Reservoir pressure becomes an input into the gain interpolation block 

discussed above and the fill time interpolation block. Fill time then becomes an input to 

the time constant calculation block. Completed fill cycles can also be interpolated from 

remaining reservoir pressme using a linear interpolation block. The complete PMA 

model used in simulation is shown in Figure 25. 
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Figure 25. PMA Model 

The PMA positions in psi become the inputs to the vehicle model described in the 

parachute system modeling. In that model, the PMAs provided an applied force on the 

parachute in a certain direction. This was accomplished in the ‘Torce Rotation w/ 

Length” block. This model is shown in Figure 26. 

The position of the PMAs is immediately transformed to a corresponding change 

m the length of the parachute risers through the linear interpolation block ‘‘Change in 

Length vs. Actuator Psi”, the values of which are obtained from collected data. There are 

two channels of PMAs going through two of these type blocks, and then going through 

another linear interpolation block labeled either “One or Less Control Inputs Cf” or “Two 

or More Control Inputs Cf”. The Cf of the PMAs is assumed to be dependent on the 
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Figure 26. Force Rotation with Length Change 

number of controls activated at one time. This assumption was made fiom the flight test 

data in Dellicker's thesis. He gathered fiom this data that when there was only one 

control input the glide ratio of the parachute was approximately 0.4, and when there were 

2 control inputs the glide ratio was approximately 0.2. Further flight test data could 

prove this assumption wrong, but for this project the assumption was used. On a full riser 

length change caused by one PMA, the glide ratio was assumed to be 0.4 and the force 

coefficient (or added force in pounds) was determined by trial and error to be 900 lbs. 

The same process was used to find the force coefficient for two full riser length changes 

caused by two PMA control inputs and was found to be 3 17 lbs. The block script block 

merely allows the 0.4 glide ratio force coefficient when there are one or less control 

inputs and the 0.2 glide ratio force coefficient when there are 2 or more control inputs 
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(there should never be more than 2 control inputs at one time). A graph of the changing 

glide ratio with number of controls is shown in Figure 27. [Ref 81 
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Figure 27. Number of Controls and Corresponding Glide Ratio 

The forces applied by the PMAs are then added to the nominal forces (the drag on 

the parachute) in the x and y directions to affect a movement of the parachute in the 

correct direction. This is the direction opposite the side the PMA is on. No force is 

added by the PMAs in the z direction. Further study could provide some information as 

to a force in this direction. Additional study could also better characterize the actual 

affect of the PMAs beside an applied force, possibly a rotation of the drag vector or 

added moments. 
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It was found during testing and simulation that useful information might be 

gathered fiom counting the number of completed fill cycles during each run. This 

information might lead to possible design specifications on the actuators. However, 

counting the number of fill cycles was a complex process. One way was to use a linear 

interpolation table as described above. Another way was to use a state diagram to keep 

account of the state of the PMAs and only increment counting when a fill was 

commanded. 

The state diagram ccCounter” is shown in Figure 28. The input to this state 

diagram (Ul) is the odof f  command of a PMA to activate or deactivate in the 

“Controller” super block. A 1 is the input if the PMA is commanded to be on, and a 0 is 

the input if the PMA is commanded to be off. 

f i l l  comand{NOT Ul) 
ent command(U1) [-13 

ent comand { U11 ’ r - 1 1  

Figure 28. Counter 
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The input enters the state diagram in the filled state bubble. The conditional 

statement for the transition fiom the filled state bubble and back to it again (a loop) is 

NOT U1. Any time a conditional statement is TRUE, the transition is made and the 

Mealy output for that transition becomes the output of the state diagram. In this example, 

the command to fill is a 0; NOT U1 is 1, or TRUE, so the transition is made back to the 

filled state bubble and a 0 (denoted by -1) becomes the output of the state diagram. If a 

command to vent the PMA, a 1, is given while the state is in the filled state bubble, a 

transition is made to the empty state bubble and a 0 becomes the output. A loop is also 

made for the vent command while this command continues to be made. If a command is 

given fkom the empty state bubble to the filled state bubble (a fill command), then the 

transition is made to the filled state bubble and a 1 becomes the output of the state 

diagram. This is the only time at which a PMA fill is counted. The cycle then repeats. 

Counters for each of the PMAs were built and the outputs of these state diagrams were 

added together, with a recursive loop created by a data store block in SystemBuild@. 

The state diagram encountered some problems, however. Because of fluctuations 

around the actuator “dead zones” and the tolerance cone caused by GPS and heading 

sensor error7 the command to fill or vent a PMA often times would be unstable at these 

points. In this case the counting of COMMANDS to fill a PMA provided inaccurate data 

as to the number of full actuator fills completed. To correct this problem a counter with 

pressure thresholds and whose inputs were the PMA pressure states was utilized. This 

type counter is shown in Figure 29. 
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The input to this state diagram is the pressure state of one of the PMAs in psi. 

This diagram is basically the same as the previous one except the conditional statements 

compare the PMA pressure to a set threshold. In this example the threshold is 170 psi, 

fill comma .nd{U1>170} 

>170) [-13 

7 0 1  [-13 

ent command(U1<=170}[-1 

Figure 29. Counter with Thresholds 

used with actuators that have a maximum pressure of 175 psi. The assumption here is 

that if the pressure state of one of the PMAs is above 170 psi, the PMA is considered 

filled. If this pressure starts to drop below the 170 psi threshold, the PMA is being 

vented. If after being vented the pressure then begins to rise above the threshold, the 

PMA is being filled, qnd this fill is counted by the state diagram. This cycle repeats and 

the fills are recursively counted through a data store. 

This threshold counter can have problems as shown in Figure 30. This plot 

compares different methods of counting actuations. It also has plots of actuator fill time 
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changing with time and remaining reservoir pressure changing with time during the 

simulation. Figure 3 1 shows the state of the PMAs during this same simulation, and the 

control logic used. 

Figure 30. Actuator Data fiom Simulation 
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Figure 3 1 .  Control Logic for Actuator Data Simulation 

The first plot in Fig. 30  shows the number of fill cycles completed with time using 

the odoff counter. This method drastically overestimates the number of actuator fills. 

While there are approximately 8 fills of the actuator (not including the initial four 

actuator fills) seen in Fig. 3 1, this method calculates this number to be around 50. This is 

because of the instability of the commands to fill or vent an actuator around the “dead 

zones”, as seen in Fig. 31. 

The second plot in Fig. 30  shows the calculation of actuator fills using data 

extrapolation. This plot INCLUDES the first four fills upon the parachute release. This 

method calculates the fill number at 14 (subtracting out the first 4 fills this would be lo), 

which overestimates somewhat. This is because this data is extrapolated from remaining 

reservoir pressure, taking into account all the half-fills, quarter-fills, etc. as seen in Fig. 

31. 

49 



The third plot in Fig. 30 shows calculation of actuator fills using the threshold 

counter, which only counts a fill if it reaches 170 psi. This method estimates the fill 

number at 8, which is probably the most accurate number of total actuations. However, 

this method has some drawbacks in that it does not count the half-fills and quarter-fills 

that do not make it to 170 psi. Probably a better measure of PMA fuel usage is not 

number of actuations, but remaining reservoir pressure. In the last plot in Fig. 30, the 

reservoir pressure for this simulation ran to less than 0 psi, meaning the tank ran out of 

gas. Future simulations should note the remaining reservoir pressure after parachute 

landing and use this value as a specification for actuator design. As a side note, the 

fourth plot in Fig. 30 shows the fill time of the actuators changing with simulation time. 
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ID. DATA COLLECTION 

A significant amount of data was collected for this project, mostly for modeling 

purposes, but also to assess the affect of certain behavior in actual parachute and PMA 

dynamics. Two aspects of the project had the greatest sense of intangibility: the wind 

prediction process and the effect of this process on the parachute, and the characterization 

of the PMAs. This section presents the collection of data for these two critical aspects of 

the simulation in detail. 

A. ACTEATORS 

The PMAs are braided fiber tubes with neoprene inner sleeves that can be 

pressurized or vented, as discussed previously. This allows for the parachute and 

actuators to be packed easily. A pressurization of an actuator causes a decrease in PMA 

length and a vent causes the PMA to return to its initial length. Figure 32 shows a picture 

of the P-MAS. 

Figure 32. Four Pneumatic Muscle Actuators (PhlAs) From Ref. [8] 
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One particularly crucial. area of study was an experiment to attempt to narrow 

down the exact amount of drive the control actuation of a FMA provided. One idea was 

to measure the change in length of a particular riser from its nominal length when a PMA 

was filled to a certain pressure. Figure 33 shows a plot of the data collected from one of 

these experiments. 

DeRa Length vs Set Pressure 

Figure 33. Change in Length of Riser vs. PMA Set Pressure 

Zn this experiment, a certain pressure was set on an actuator and the change in 

length of the riser attatched to the Ph4.4 was measured. The PMA also had either 400 or 

500 pounds attached to it, as shown by the two plots. At 0 psi, the P h U  is at its nominal 

length: so the delta length is equal to zero at that point. The remaining data was 

interpolated from 100 psi to 0 psi. It was  SO assumed that there was a linear 
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relationship between a change in length of the parachute riser and the force in pounds that 

this length change provided. In other words, at a fit11 throw of the riser (maximum length 

change at the maximum actuator pressure) the force provided was zero. At the actuator 

nominal length (its length when vented), the force provided was either 900 or 317 

pounds, depending on how many control inputs vvere issued at that time. The rest of the 

data was linearly interpolated. This force based on riser length change is implemented in 

the parachute model in the block 'Force Rotation with Length Change". This assumption 

is probably inaccurate, but until wind tunnel or actual experiments are done on parachutes 

with changing riser lengths the assumption stands. 

Vertigo, Inc. ran several tests on its actuators to characterize their behavoir. They 

found that the opening and closing of the fill valve took approximately 100 ms, but the 

filling time took progressively longer with decreasing reservoir pressure. The vent valve 

opening and closing time also took approximately 100 ms, but the venting process took a 

longer time, a constant 1.8 seconds. They also ran tests and took data to characterize the 

Increasing F i l l  Time with Decreasing Rescnroir Pressure 
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Figure 34. Increasing Fill Time vs. Reservoir Pressure (Vertigo Test) From Ref [14] 
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increasing fill time of the PMAs with decreasing reservoir pressure. The maximum 

pressure of the actuators during these tests was 150 psi. They found this relationship to 

be largely linear, as shown in Figure 34. 

Yurna Proving Crclunds (WG) ran these same tests with actuators acquired from 

Vertigo and obtained differing results. They filled the actuators to 100, 150, and 175 psi 

with 4500 psi tanks and a 500 Ib load for as many cycjes as possible and found that the 

fill times increased but the relationship was other than linear. Figure 35 summarizes 

these results. 

Fill Time vs Tank P r e s s u r e  

Set p r e s s u r e  

100 psi - dark blue (dots) 
__ _ ^ _ _ .  . .__ 
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5300 4500 COO0 3500 3300 2500 2000 1500 1300 500 0 

Tank Pressure  (psi)  

Figure 35. Fill Time vs. Tank Pressure (VPG Test) 

Figure 36 presents the data in a different format with fill time and reservoir 

pressure changing as a function of fill cycle number. Two different methods were used to 



calculate the fill time. The first method used pressure transducer data that was digitized 

and recorded at a 10 Hz rate. This method measured the elapsed time from first detection 

of increased pressure to the first measurement that crossed the set pressure value. The 

other method used recorded video to measure the elapsed time from first motion to end of 

motion of the actuator. The fill times from this method are in general longer than those 

calculated from pressure data. 
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Figure 36. Fill Time and Tank Pressure vs. Fill Cycle Number 

This figure also shows that at higher actuator fill pressures a much lower number of fill 

cycles is allowed. 
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YPG also found that the time to deflate a PMA did not exactly take the 1.8 

seconds tested previously. The chart in Table 1 shows that the average deflate time for 

each of the set pressures was approximately 0.78 seconds. The column for fill cycle 

number has the numbers for each actuator fill for each of the set pressures, and the 

column just to the right has the deflation times for each run number for each of the set 

pressures. 

18 0.801 
19 0.735 
20 0.7 

. 21 0.734 
22 0.868 

Table 1. Table of Deflation Times 

From the data on remaining tank pressure for each fill number, the change in tank 

pressure for a particular reservoir pressure could be calculated by just taking the next 
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point's reservoir pressure and subtracting the current reservoir pressure. This data is 

shown in plot form in Figure 37. The more straight lines are remaining reservoir 

pressure. The less stable lines are change in tank pressure. The data collected by W G  

on remaining reservoir pressure, fill time vs. resemoir pressure, change in tank pressure 

vs. reservoir pressure, and average deflation time for the 175 psi actuators was used in 

simulation. 

Several flight tests were run with actuators instatled on the parachute and 

controlled from the ground in an attempt to characterize the force coefticients of the 

actuators. As of this date, the data collected from these flight tests seemed to have had 

problems or were inconclusive. An idea for an experiment to determine the drive 

induced by the actuators is to have one actuator vented throughout the entire parachute 

Tank Pressure and Pressure Change vs Fill # 

Figure 37. Change in Tank Pressure vs. Fill Number 
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fall and to measure the glide ratio of the parachute on this fall. Another experiment 

would be to have two actuators vented during the entire fall of the G-12 and compare the 

two glide ratios. Force coefficients can then be determined from this data as before. 

B. WINDS 

Wind data profiles had been collected previously, but for studies on the effect of 

progressively older wind predictions new data had to be collected. Wind information was 

gathered fiom the YPG “Tower IVf” drop zone using eleven Radiosonde Wind Measuring 

System (RAWIN) balloons released at one-hour intervals throughout the day on 7 March 

2000. The first balloon was launched at 0600 and the last balloon was launched at 1600. 

Wind data could not be collected at a faster rate because of the limitations of the RAWIN 

system. The entire process of launching the balloon and collecting and processing the 

data takes approximately one hour. The magnitude and direction of the wind measured by 

these balloons is shown in Figures 38 and 39. 

In Figure 38, the solid red line is the magnitude of the wind at altitudes from 

25,000 fi. down to the ground for the balloon launched at 0600. The rest of the thinner 

colored lines are the magnitudes of the winds at hourly balloon launches after the first 

launch. For the altitude range of interest, which was zero to 10,000 ft., the horizontal 

wind velocity changed by up to approximately 20 Wsec during the time span of this 

experiment. 

In Figure 39, once again the balloon launched at 0600 is shown in the red heavy 

line. The others are the thinner colored lines. For the altitude range of interest the wind 
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Figure 3 9. Measured Wind Direction 
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directon changed by as much as approximately 180 degrees during the time span of this 

experiment. The wind direction changes become especially drastic at lower altitudes. 

This plot also shows that as balloon launches were made during the day, the winds 

changed from being more southeasterly winds (meaning coming FROM the southeast or 

pointed 000 to -090 in the plot) to being more northeasterly winds (pointed -090 to -1 80 

in the plot). 

A simulation was run in which non-controlled parachutes (CARP simulations) 

were dropped fi-om the same point (0 x position, 0 y position, -9500 R in NED 

coordinates) and subjected to the winds measured at each hour. Figure 40 shows a plot of 

these different trajectories. 

Non-Controlled Parachutes Subjected to Uifterent Winds 

Figure 40. Non-Controlled Parachutes Subjected to Hourly Winds 
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The plot shows that at Hour 0 (the red line most toward the right side of the 

graph), the wind forced the parachute in a southwest direction. The plot of wind 

direction shows a huge direction change in the southwest direction toward the lower 

altitudes, so this is consistent. However, as the drops go on during the day, the impact 

points become more south of this first impact point. This is consistent with the wind 

direction data showing the winds shifting fiom pushing the parachute towards the 

northwest to pusbng the parachute to the southwest. The plot also shows that such wind 

changes cause a dd%mmce in impact points of the C w s  qf more than 5000 A. at 10- 

hour-old wind predictions. 
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IV. SIMULATION 

A. PROCESS 

Two sets of simulations were run as trade-off studies to assess the affect of two 

crucial aspects of the parachute control design: (1) a simulation comparing two control 

strategies at random wind predictions and offsets fiom the ideal drop point, and (2) a 

comparison of simulations using different actuator models to assess the affect of longer 

fill times. Programs were developed using XMATH/MathScript@ computing language to 

run these simulations and are included in Appendix A. The SystemBuild@ model 

described in previous chapters was utilized as a model of the parachute, sensors, 

actuators, and control system. 

B. RESULTS 

A first assessment comparing the two control strategies was run in a file called 

“agesims”. In this simulation, 175 psi actuators were used. The predicted wind file for 

the CARP trajectory was the first hour prediction from 0600 7 March 2000. Selective 

availability was off (a more accurate GPS) and there was no offset fiom the ideal release 

point for the controlled parachutes. The target point for all the simulations was the point 

at zero altitude and 0 x and 0 y position. A strategy that sought the predicted trajectory 

from CARP at all times (the so-called “trajectory-seeking” control strategy) was run and 

a strategy that sought the target position at all altitude stations (“target-seeking”) was run. 

Figures 41 and 42 are 3-D plots of these runs. Table 2 compares the impact errors fiom 

the target for each of the succeeding runs using the later wind file as an actual wind. 
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Time of 
Drops 

7:OO AM 
8:OO AM 
9:OO AM 

1O:OO AM 
11 :00 AM 
12:OO PM 

1:OO PM 
2:OO PM 
3:OO PM 
4:OO PM 

The predicted trajectories in Figures 41 and 42 are represented by red lines. In the 

target-seeking strategy, this is simply a line extending vertically upward fiom the target 

point. The plots show that since the early wind files did not change much fiom the 

predicted wind file, the errors for those drops 2 or less hours fiom the wind prediction 

were very good. The wind direction changed very much afterwards, however, and the 

parachute was not able to overcome the bad wind estimate. Since the wind changed to 

blow more towards the south, most of the impact points occurred south of the desired 

impact point, as shown in the 3-D plots. The parachute was following a trajectory that 

did not account for thismdden wind change. Also, the wind changes were up to 20 Wsec 

in the opposite direction (south) the parachute control system thought the wind was going 

to blow (north). At a maximum 0.4 glide ratio and constant descent rate of 25 feet/sec, 

the greatest change in velocity the drive of the actuators can overcome is 10 Rlsec. The 

parachute cannot possibly overcome a wind of this magnitude with the bad wind 

prediction. The data in most cases supports the fact that for this simulation an older wind 

TrajectorySeeking Error (ft) TargetSeeking Error (ft) 

13.5058 860.934 
36.1 824 881.149 
1744.5 2266.81 

2323.83 2790.61 
3383 3674.62 

4721.48 4883.06 
4542.89 4695.46 
4524.03 4943.23 
71 06.98 71 78.22 
6604.91 6528.56 
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prediction accounts for larger impact errors. For the comparison of the two control 

strategies, when the wind prediction was good (i.e. at 7:OO AM and 8:OO AM) the 

trajectory-seek strategy worked better. However, in one case where the wind prediction 

was bad (i.e. 4:OO PM), the target-seek strategy was slightly better. This test merits more 

investigation and a greater number of simulations with different combinations of wind 

profiles and offsets from the desired drop point. 

For the next set of simulations, this exact study was repeated but with random 

offsets fiom the ideal drop point and a random selection of wind profiles from the 11 

already discussed. This simulation was run through a script file called 

“runmanysimsnewwind”. In this file, each of the wind files from 0700 to 1600 were used 

as actual winds for the parachute. They were set based on the number of simulations 

desired. For each of the actual winds, a uniform randomly distributed wind file for the 

predicted winds was chosen fiom the wind files PREVIOUS to the actual wind file. So 

for the actual wind file at 0700 the only choice for a predicted wind was the one at 0600, 

etc. Offsets were also chosen randomly. The offsets in x and y position from the ideal 

drop point were normally distributed about a mean of zero. The maximum offset, 

determined from the “area of attraction” simulation to be approximately 2500 feet 

radially or 1767.8 feet in x and y, was set at four standard deviations. This corresponds 

to the pilot missing the ideal drop point by the maximum offset about 1 in 1000 times. 

The %ajectory-seeking” and “target-seeking” control algorithms were both run for the 

same offset and winds and several sources of data collected on the two through a called 
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script file called "runsim". Once again the target position was the (0,O) point on the 

ground and selective availability was off. 

1000 simulations were desired for this study. Because of problems with the 

personal computers running the simuiations, only 437 simulations were able to be mn, 

and of these 437 simulations most of them were biased toward more recent (less than 2 

hours old) wind information. Fipre 43 is a histogram ofthe age of the winds used in the 
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Figure 43. Distribution of -4ges of Wind Predictions (437 samples) 

simulations. Figures 44 and 45 are polar plots for the "trajectory-seek" and "target-seek" 

control strategies, respectively. 

Each of the circular rings in these polar plots represents 2,000 ft. The black stars 

in Figures 44 and 45 are the ideal drop points. They are all east ofthe target point, which 
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is consistent with the fact that all the winds for the most part blow toward the west. The 

red dots are the actual release points scattered around the ideal drop points. The blue 

triangles are where the controlled parachutes landed. Most of the drops landed south of 

the target zone, which is consistent with the wind changins from blowing toward the 

north to toward the south. 

It may seem that many of the controlled parachutes fell outside the CEP, or ideal 

circular area around the target of 100 meters. However, a closer look shows surprising 

information. Figure 46 and 47 show the two zoomed in on the CEP, with only the impact 

points of the controlled parachutes plotted. 

These figures show that the density of impact points within the CEP was actually 

high. Figure 48 shows the statistics of the control errors (as well as errors for non- 

controlled parachutes subjected to the same winds). It is assumed that this accuracy is 

due to the majority of wind estimates being 2 or less hours old. The domain of the 

histogram is in meters, with 100 m CEP being the goal ofthe parachute drops. For this 

set of simulations, over 50% of the drops using “trajectory-seek” reached this goal. 

Figure 46. Trajectory-Seek Impact Points Zoomed In 
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Figure 47. Target-Seek Impact Points Zoomed In 
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Figure 48. Distribution of Parachute Landing Miss Distances 



For a worse case scenario, the same study was conducted but the wind from time 

0800 was chosen as the predicted wind, and random ACTUAL winds were chosen from 

the wind files after this predicted wind. Thirty simulations were run and their trajectories 

plotted using a script file called “runmanysimsandplot0”. These simulations provided 

worse impact errors, presumably because the wind fiom these hours had more drastic 

changes. Also, there were no computer problems during the simulation, so there was no 

bias in the results as before. Figure 49 shows plots of the trajectories zoomed in on the 

impact points. These plots show more drastic errors for both the “target-seeking” and 

‘:trajectory-seeking,’ control strategies. 

Figure 49. Thidy Trajectories for Trajectory-Seek and Target-Seek Strategies 

Table 3 is a comparison of statistical data for the two control stratesies, including 

data on number of actuator fills for the study in which the wind predictions were biased 

to the earlier winds of the day. 
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Table 3. Statistical Data on Control Strategy Comparison 

This data only confirms what was already expected. The "trajectory-seek" 

strategy performed better with the more precise wind estimations. The number of fills is 

a design benchmark for the actuators. These fills were counted using the threshold 

counter described in the section on actuators. It is assumed that the "trajectory-seek" 

strategy completes more fills on average because it does more error correction around a 

moving trajectory. The "target-seek" strategy merely aims at a single target throughout 

its entire drop. 

Figure 35 in the section on data collection showed the experimental data collected 

by YPG on the PMA fill time changing with decreasing reservoir pressure currently 

installed on the AGAS (the 175 psi actuators). For performance research related to 

actuator characteristics, a set of actuator models was created with the baseline model 

representing the system in its current form. Four additional models were created: two 

models with better fill time characteristics with decreasing tank pressure, and two models 
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with worse fil l  time characteristics. These models were created by simply fitting 

exponential lines through data points with worse and better fill time characteristics. The 

baseline model was named “average?” and the other four models were named “best,” 

“better,” “worse,” and “worst,” respectively. A plot of fill time with respect to tank 

pressure for these models is shown in Figure 50. 
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Figure 50. Fill Time vs. Tank Pressure for Five Actuator Models 

For this study 500 total simulations were run, 100 for each of the different 

actuator fill time models. A script file called ccrunrnanyactsims3” set the wind for the 

predicted trajectory at the 1100 RAW“ balloon launch. The actual wind was set at the 

1300 launch. These particular winds were picked because the average amount of time 
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given for a wind prediction before airdrop is approximately two hours. Also, these two 

winds were very similar, eliminating another random variable in this actuator study. The 

offsets from the ideal drop point were once again normally distributed around a mean of 

zero with the max offset at four standard deviations. In essence, the offset was the only 

variable aside fiom small errors in GPS and compass. The file set up 100 iterations, with 

each iteration simulating the "trajectory-seek" control strategy for each of the five 

actuator models. Each of the five simulations used the same offset, wind, and sensor 

seeds (using SA off GPS). The file called another file named "runactsim2", which ran 

the simulations and collected data. Table 4 is a statistical analysis of the actuator study. 

I worst 1 203.0 (22.8 (m5(10.6 I 1.2 I ~ 13 I 83.0 I 18.4 I 112.31 
Table 4. Actuator Characteristic Research Simulation Results 

From these results, two observations were made. First, it seems that the changing 

fill time characteristics among the different models seemed to have little effect on the 

miss distance achieved. Also, the actuator models that had a lower overall PMA fill time 

used more PMA fills. This observation was thought to be due to the manner in which the 

fills were counted. Remember, witk the threshold counter, one complete fill was counted 

when the PMA filled to slightly How its maximum pressure (170 psi). For those 

actuator models where the fill times were very long, it is possible thd, aR& a Ph4.A is 
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commanded to fill, the same PMA was commanded to deflate again before its pressure 

reached the threshold for a fill to be counted. Such inconsistency in counting actuator 

fills probably means that a more accurate method of providing a benchmark for actuator 

design is measuring remaining tank pressure upon impact. Also, the fact that the winds 

were set to a good prediction (2 hours old) may not be a good way to assess the affect of 

higher or lower fill times. A possible new experiment would be to have the winds 

randomized also, and compare age of wind and actuator model used to control error. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

The simplistic model of the G-12 parachute dynamics was successhlly 

transferred over to an XMAlTUSystemBuild@ environment for implementation on the 

AC-104 real-time controller. Actuators were also modeled on the computer, tested, and 

verified. More research was done to study performance of the controller and possible 

ways to optimize its response. Additional data collection on wind and actuator behavior 

provided a basis for continuing research into the characterization of both the wind 

prediction process and the dynamics of the actuators. Simulation results found that the 

wind estimation process is the crucial aspect of the entire control scheme. Without a 

good wind prediction, errors in the control can be great. Simulation also found that 

changing fill time does not affect the control of the parachute. These results could 

change with a more complex model and more information on the dynamics of the 

actuators. The Affordable Guided Airdrop System is definitely a feasible and promising 

program, but many questions still remain to be solved, and much research into the system 

remains to be done. 

B. RECOMMENDATIONS 

The following recommendations are based on observations made during the 

simulation process and work needed to be done before initial flight tests of the complete 

system: 

77 



1. Investigation into a more complex parachute model. Once a more complex 

model is implemented into the above simulations, comparisons and a decision as to 

whether or not a more complex model is necessary can be made. 

2. Additional flight tests of the parachute are needed to characterize the 

parachute’s motion for a more complex model analysis, characterization of the drive of 

the actuators, and effect of wind prognosis. 

3. The wind estimation process needs to be refined. It is clear at least from 

simulation that wind prediction is a major aspect of the entire control process. 

4. Obtain more data on the actuators and compare simulation data with actuator 

test data in order to refine the actuator computer model. Run more simulations with new 

actuator data and a more complex parachute model to assess the affect of changing fill 

times with the new model. 

5. Run simulations to determine average and maximum reservoir pressure needed 

vice number of actuations. The counting of number of actuations is a tricky process. 

Reservoir pressure might be a better measure for redesign of the PMAs. 

6.  Run simulations testing different control algorithms, including: 

0 Allowing only one control actuation at a time to take advantage of the better glide 

ratio; in this case the actuator turned on would be the one in which the line of sight 

angle to the target is largest, or the most in its operating angle (see Appendix B for 

code). 

Playing with the tolerance cone to maximize its usage; the tolerance cone would 

possibly be non-symmetric (non-circular) based on wind data. 

0 
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Changing control strategies at a point where one strateL,y is not providing a closure 

of the radial error from the target; in this case, the derivative of the error would have 

to be calculated, and if it were positive then a switch from "trajectory-seeking" to 

"target-seeking" would be in order. 

-4 predicted trajectory look-up table that provides as its target NOT the point in space 

on the predicted trajectory at the same altitude as the actual drop, but rather a point at 

a lower altitude the parachute could glide to. 

A possible control strategy in which the system uses wind trends to set up the control 

logic, so as not to be put in a position in which the parachute is controlling against 

the wind. 

7. Test through simulation the effect of having both direction (clockwise and 

counterclockwise) and greater rotation rates 

8. -4dditional simulations need to be run with winds from varied climates 

- " .. ,, .,...... ".. ." " "  . . . ... . .... ... 1."". ~ - -  ,.I.-" 
I 

Figure 5 1 . Actuator-in-the-Loop Testing Scheme 
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and terrains in order to assess the affect of these different winds. 

9. Set  up an actual PMA on the ground station and begin initial hardware-in-the- 

loop-testing. An example of such a ground station is shown in Figure 5 1. 

10. Additional analysis is needed into optimal control techniques, possibly the 

minimization of a cost finction describing either minimzed fie1 usage or minimized time 

p e f  151. 
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APPENDM A. SCRIPT FILES USED IN SIMULATION 

1. Math script file "attractiou.ms" 

#( batchfile: This batchlile runs the CARP predictor with an exactly 
right wind file (one of the "actual" wind files). It then runs the 
"TOP" simulation h m  an offset (in x and y) to narrow down the "area 
of attraction" 

I# 
# set wind files-should be the same to find area of atbaction 
windforecast-alt=wind Win&(:, I)'; 
w i n d f o r e c a s t - ~ d  Win&( :,3)'; 
windforaafiywind Windo(: ,2)'; 
windfomast-z=wind WindOf:,4)'; 

windactual-akvind. Win&(:, 1)'; 
windactual--dWin&(:,3)'; 
windactualy=wind WindO(:,2)'; 
windactual-mvind Winc@(:,4)'; 

# selective availability on or &(O is off, 1 is on) 
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=on+; # equal to 0 aiways now because of President's declaration 

#random wmpass bias between -2 and 2 degrees 
set distribution uniform; 
cornpas~-bia~4*(random(l, 1)-0.5); 

# set OW of vehicle trajectory 
x-oBet==2500; # area of attraction is a Circle of Mus approximately 2500 ft. 
y-ofiet=O; 
-*tion-init = [x-off*; y-offket; drop-ah]; 

# sim vehicle model 
y=Sim(TOP", t, {ialg="vKM"}); 

# sim no control model 
p=Sim("NOCONTROL", t, {ialg="VKM"}); 

# P h  
plots.att~pb2D=-plot#_graph2DZplotOro, y(2,1), {x-min = -7500, x-xmx = 7500, y-mh = ... 

plots.a~pph2D=pbt(p(l,l), p(2, I), {line-color = "green", keep))? 
prots.a~~UJD=plot(s(l,l), q(2,1), (line-color = "red", keep, ... 
legend = ["Vehicle Trajectory", "No Control Trajectory", "CARP Trajectory"], ... 

-7500, y-max = 7500, title = "2D Tmjectory", line-&or = "blue"})? 

Xlab="Xc', ylab=V))? 

# make plots of interesting data 
execute file = "conmls"; 
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2. Math script file Ucontrols.ms" 

# { This batch file plots the affect ofthe control system for TOP }# 

plots.contPMApl~lotOr(l3,1), { r o w ,  c o l ~ - l ,  row=l, column=l, ylab="pMAl-cmd psi", ... 

plots.contPN1Apl~ot(y(14,1), {raw=2, colmn=l, ytab="PW-cmd psi", xlab="Time sec", ... 

p l o t s . ~ o n t P ~ 0 ~ ~ 1 1 5 , 1 ) ,  {row=3, colwrm=l, ylab="PMru-cmd psi", xlab="Time sec", ... 

p l ~ . c o n t p M A p 1 o ~ ~ 1 6 , 1 ) ,  (rOWS.4, column=l, ytab="PMA4-cmd psi", xlab="Time sec", ... 

## state of P U S  plot 

xlab="Time sec", xmaxl=360))? 

Xmw360})? 

xmaX=360})? 

xma?F360})? 

#plot x-mr  norm and y - m r  l~nm (must be w 0 . 3 )  for a control) 
plots.controlpl&plot@(ZS,I), ( r o w ~ 4 ,  columns=l, row=& cdumn=l, .., 

plots.controlplot=plot(t, 0.3*0nes(length(t), l), (row=l, column=l, keep))? 
plots.mntmlplot=plot(t, -0.3*0nes(ltngth(t),l), {rowl, colwnn=l, keep))? 
plots.~mtrolplot=plot(y(29~1), {row=2, colum~l,  ylab="Norm of Y Enor", ... 
plots.conlrolplwot(t, 0.3*0ne~(lmgth(t), l), ( ~ 2 ,  cohunn=l, keep})? 
plots.contmlplot=plot(t, -0.3hanes(ie~gth(t), I), {mw==2, column=l, keep})? 

yW"Norm of X Error", xlab='Time sec", xrrrax=360})? 

xlab="Time sec", ranax=360))? 

#plot tolerance cone with radial error 
plots.controlplot=plotgl(30,1), {mw=3, column=l, ylab="Tolemce with RadiaI Enor It", .._ 

plo~.contro1p1ot=plot(y(31,1), {row=3, cotUmrr=l, t i lJs-co l~"~" ,  _.. 
xlabt"Time se~", xma~=360})? 

legend=["rolerance","Radial Enor"], keep, xmazl=360})? 

#nawprotPMApositions 

keep, Xrmx=3W)? 
p l o t s . c o ~ l p l o ~ t ( y (  1 7 4 ,  { m M ,  column=l, xlab=Tb sec", lme-aAof="red", ... 
plots.~Iplot=plplot(y(l8,1), {mw=4, column=l, xlab=Time sec", k-colo~~green", ... 

plots.mtmlplot==plot(y(19,1), { m M ,  coluxm=l, xlab="Time sec", line-color=Wue", ... 

plots.mtmlplot-plotOr(20,1), {rows, co lum~l ,  ylabe"Ph4.A pos psi*, xlab="Time sec", ... 
line-wloFblack", legend=f"PN1Al ", "PMA2", "PMA3 ", "PMA47, keep, xmax=360})? 

keep, xmax=360})? 

keep, xmax=360})? 

#plot no. dcomols with glideratio 
plOts.amtrOlgrplOl=plot~(2 1 , l))? 
plots.conlroig1piot==pl0t~(25~ l), (keep, ylab="No. of Controls and Glide Ratio", ... 

xlab="Time sec", xma~360,  ymax=3,legend=["GlideRatio","No. of controls"]))? 

# p l o t ~ t o r d a t a  
#first three plots are compBTison of fill cycles with "counter" and 
#fill cycles with the data extrapolator and threshold counter 
#initial faur actuations 011 parachute release are included 
#next two plots are fill time and reseNoif pressure respectively 
plots.actuplot=plot~(26,1)+4, ( m w 5 ,  column~l,  row=l, column=l, ... 
plots.actuplot=plot@(33,1), {mw=2, column=l, ylab="Fill Cycles using Data", ... 

ylab="FiU Cycles using Cwnter", Xlab="Time. sec", xmax=360})? 
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#plot results of GPS and sensor informatian 

ylabeTrue X position and GPS X fin, xlatF"Time sec", --360))? 
plots.GPS@ot=plot(y(22,1), ( w - 1 ,  colunm=l, keep, liIIe-~Ilot="biw", ... 

leged=[True p o s i t i o n " , " ~ r  position"], mnaxr360 I)? 
plots.GFSplot=pl~(2,1), ( w - 2 ,  column=l, yhb="Tme Y Pasition and GF5 Y A", .., 

xlab="Time sec", xmax=3sO))? 
plokGPS#-23,1), (fm=2, #lumn=l, keep, line_color="ted", ... 

legend=vme position","Smsor Position"], xmax=360))? 

xlab=Time sec", XmFrn))? 

legeaId=[Tm position","sensM positioa"], xTnaF360))? 

p l o t s . G P ! 3 @ ~ ~ 1 7 1 ~  f m - 3 ,  oolumns=l, roFl, columrr=l, ... 

~~~C~.GPSP~OP@O~(-Y(~,~),  (-3, ooiumn=l, YWFUTZW 2 position a d  GPS Z ft", ... 
plots.GPSplot=pIot(=y(24,1), (row=3, oolaam=l, keep, line-color="greenn, ... 

plots.GpsenPlo~ot@(34,I)+y(37,1), ( m w 3 ,  columrts=l, m l ,  colmm=l, ... 
p l ~ . ~ l o F p l o t ~ ( 3 5 , l ) + y ( 3 8 , 1 ) ,  ( m 2 ,  column=l, yW"GPS Y error ft", ... 
plots,GPSerrpl~Pserrplot--plot0.(36,l)+y(39,1), (mw3, column=l, ylab="GPS 2 error ft", ,.. 

ylab="Gps XErmft", xlab="Time s a w ,  ;rrmax=360))? 

XkiiFThe sec", xmX=360))? 

xlab="Time sec", xmax=360))? 

delete m e  mtxue rsens msens 
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3. Math scrip fde uage&ms.ntsw 

#{ batme: This batchfile ~ f t s  the CARP @ctorat haUr0. Then it nms 
TOP and NOFORECAST for each hour wind file after that and plots them on one plot 
to do comparisons 

I# 
# colors for plots 
colors=["black",~~~,~~n,norange~,"~equamarine","copper",nmelon","forest", ... 

"bri&","gold"]; 

#set CARPwindfiles-will always be this fin& hour 
windforecast-al- WindO(:,l)'; 
windfomast-~windWind0(:,3)'; 
witadforecastr--windWitado(:,2)'; 
windf~-z=wind.wmd0(:,4)'; 

#SimCARP 
q=Sim("CARpn, t, {ialg="VKM")); 

delete @-mat; 
## done with the CARP simuhiion 
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zlab= "Ahitude a", title = "FoREcAsT3D", line-cdor = "red", xlab="X", ylab="Y"))? 

plots.NOFORE~l&(O, 0, {x-& = -7500, X-XWX = 7500, y-& = ... 
-7500, y - m  = 7500, title = "NoFoREcAsT2D", Xtab="X", ylab=T", line=o, msrker=l, ... 
markerr_Style"x", madrer_color="red">)? 

#now to the actual TOP simulation 

for i=1:10 

#selectiveawihbdityonoroff(Oisoff, 1 ison) 
saone, # equal to 0 always now because of President's declaration 

# random compass bias between -2 and2 Begtees 
m~-~* ( random(1 ,1 ) -0 .5 ) ;  

# set ofkt of vehicle trajectory (zero for these simnlations) 
x-o-; 
Y - M ;  
tinearqostion-init = fx-ofkt; y-ofBe4 drop_alt'l; 
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p-sim("NOFORECAST", t, (ialg="VKM")); 

# cal&ons for NOFORECAST 

nofore_x=NOFORE_mat(:, 1); 
nofore_y=NOFORJ5~mat(:,2); 
finalnoforemoforex( length(nofore-x)) ; 
final-noforey=noforej(length(noforeqr)); 

NOFOREma- . (R(chek)); 

# end the simulation 
endfor, 

# put the legends in plots 
pIots.TOPpph2Deplot({legen~CARP Trajectory', "Hourl", "Hour2", "Hour3", "Hour4', ... 

plots.TOPgraph3D=plot((legend=E"CARP Trajectory', "Hourl", "Hour2', "HOur3", "HOUr4", ... 

plots.NOFOREgraph2D=plot({legenti-["cARp Trajectory", "Hourl", "Hour2", "Hour3", "HOW4", ... 

".Hour5", "Hourd", "Hm7", "Hour8", "Hour9", "Hour1O"],keep-plots.TOPgraph2D])? 

"HourS", "HouI~", 'Hour7", "Hour8", "Hou~", "HourlO"],keep=plot~.TOPgraph3D})? 

  HOW^", 'Hour6 ", "Hour7", "Hour8", 'Hour9", "Hour 1 O"],lc~=plots.NOFOREgraph2D})? 

p l o t s . N o F o R E ~ ~ ~ l o t ( { l e g ~ ~ C M  Trajectory", "Hourl", "Hour2", "Hour3", "Hour4", ... 
"HoUrS", "Houtd", "Hour?', "HourS", "How?", "HourlO"]~~lo~.NOFOREgraph3D))? 

delete predid-x predictedj predicted-z; 
delete TOP-mat controlled-x controlledj 
delete finalconx finalcony 
delete final-CARP-x final-CARPj 
delete q y 
delete colors target-x targetj i 
delete p NOFORE-mat nofore-x nofore1 final-nofore-x finalnoforey saseed 
deletesaseedl saseed2saseeD saseed4saseed5 saseed6saseed'lsaseed8saseecWsaseed 
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4. Math script file "runsim.msn 

#( batchfile: nrrrSiams UPDATED 20 Apr 00 1430 
This batch file first runs the CARP predictor. 
This batch file is also designed to create the predicted-x, predictdj, 
and prdctd-z row matrices that are plugged into the predicted x 
and precticted y linear interP0r;ition Mocks in Controller. The file then 
nms TOP, NOFORECAST, and NOCONTROL and calculates data)# 

#simCARP 
q=sim("CARP", t, (ialg="VKM"}); 

## make predicted trajectory for TOP 
pred-mamnkeematriU(q, (channels}); 
p:, I)'; 
predictedy--pred_mat( :,2)*; 
predi~-z--pred_mat( :,3 

, delete pred-mat; 

# sim the three models 
y=sim("TW, t, (ialg="VKM")); 

p=sim("NOFORECAST", t, {ialg="VKM")); 

I=~~~('"OC"TROL", t, {ialg=="VKM" 1); 

execute file="SX_out" 
execute file="plot-mj2lY #/ run 2-D plot, not run in big simulations 
execute fil~"pIot-traj3D" # m 3 - D  plot, not run in b& SimUIations 

# should run this to fix the data before plotting 

controlled-HOP-mat(:, 1); 
controlledy-TOP-mat( :,2); 
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NOFORE-mal=makematrix(p, (channels)); 
nofore-x=NOFOE-mat(:, 1); 
noforeyNOFORE-mat(: ,2); 
final-noforex-aofore-x(length(nofore-x)); 
finalnoforeynofore4r(length(noforej)); 
nofore-act=NOFOE-mat(length(NOFOIUZ-mat( :,26)),26); 

5. Math script file "fix-outms" 1 
#( batchfile: fix_out.ms UPDATED 20 Apr 00 1430 
This batch file is desigued to fix the output of the 3-dof 
rigid-bdy parachute model. This batch file assumes that 
simulation results bave been written to pdm y with x, y, and 
z-components of position being the Ist, 2n4 and 3rd rows of 
each sub-matrix of the pdm. This batch file also assumes that the 
output of the CARP trajectory predictor has been written to workspace variables 
meted-x, predictedj, predicted-z Another assumption is that the output 
of the model with controller has been written to PDM y, the output of NOFORECAST 
has been written to PDM p, and output of NOCONTROL has been written to PDM r)# 

IFy(3,1,1)<0THEN 

ENDIF 
y(3,I) = -y(3,1); ## change sign of altitude variable for plotting actual trajectory 

IF p(3,1,1) < 0 THEN # change sign of altitude variable for plotting NOFORECAST trajectory 

ENTXF 
P(371) = -P(37u; 

IF r(3,171) < 0 THEN # change sign of altitude variable for plotting NOCONTROL trajectory 

ENDIF 
r(3,l) = -r(3,1); 

IF predicted-z(l,l) c 0 THEN 
CARP-z = -predicted-z'; # change sign of altitude variable for plotting 

# CARP trajectory 

# to screw up values ofpredi&-x, etc. 
# need to use a new name for this variable so not 

ELSE 
CARP-2 = predicted-z'; 

ENDIF 
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6. Math script file CCrnnmanysimsnewwind.ms” 

# This batch file nms the control strategy comparison simulations with the 11 Merent 
# wind files collected hourly from YPG 

set seed 128; # random number seed (use same number for same results) 

# star& the iterations 

for i=1:1OOO 

# must drsnge initial position for TOP model, for NO CONTROL model, and for 
# NOFORECAST model (they should be the same initial position d e d  “linear- 
# positim-init”) for each iteration 

#setmaJcoffset 
. max~0ffset=2soo/s~(2); 

# set x offset and y of%& 
set distriion n o d ;  # normal distribution for offsets 

x-&set = max-offket * (random(l,l))/rl; 
IF x-offset = 0 THEN 

x-offset = 0. I; 
ENDIF 

y-ofiet = max-of%et * (random( I, 1))/4; 
IF y-o*t = 0 THEN 

y-offset = 0.1; 
ENDIF 

liummtion-init = [x-offset; y-ofiet; *-&I; 

# must change the wind hies for actual wind for each iteration 
# the forecasted wind is chosen from wind fites earlier than the actual wind 
set distribution u.uSorm; # a uniform distribution for forecast wind choices 

Fi<= IOOTHEN 
windnewwind = windwindlist(2); 
windactual-alt = windnewwind(:,l)’; 
windactual-x = windnewwind(:,3)’; 
windactualy = wind.newwind(:,2)’; 
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windactual-z = Windnewwind(:,4)’; 
forecast-wind-choice = round( 1 *random( 1 , l), (up}); 
windfomammd ’ = windwin&st(fomast-wind-choice); 

windforecast-x = windforeasban * d(:,3)’; 

windforecast-z = windforecaStwind(:,4)’; 

windnewwind = wi~~Lwindlist(3); 
windactual-alt = windnewwind(:,l)’; 
windactual-x = windneWwind(:,3)’; 
windachlaly = windnewwind(:,2)’; 
windactual-z = wind.newwind(:,4)’; 
forecas-wind-choice = romd(2*random( l,l),{up}); 
windforeastwm . d = windwindIist(forecas-wind-choice); 

# choose a random number 1-1 

windforecast-alt = windforecastwm . d(:,lX 

windforecasty = windfomstwmd * (:>X 

ELSEIF i <= 200 THEN 

# choose a random number 1-2 

Windforecast-alt = windforecastcvm - d(:,lX 
windforecast_x = windforeasban * d(:,3)’; 
windforecasty = windforeasban - a:>)’; 
windforecast-z = windfonxashvm ’ d(:,4)’; 

windnewwind = windwindkt(4); 
windactual-dt = windnewwind(:,l)’; 
windactual-x = windnewwind(:,3)’; 
windactualy = windnewwind(:,2)’; 
windactual-z = Windnewwind(:,4)’; 
forecast_wind_hoice = round(3*randorn( 1, l),{up}); 
windforeasban ’ d = windwindlkt(forecast-wind-choice); 

ELSEIF i <= 300 THEN 

# choose a random number 1-3 

windforeast-alt = windforecastcvm * d(:,l)’; 
windforecast-x = windforeasban * d(:,3)’; 
windforecastj = windfo- - :?2E 
windforecast-z = windforecastcvm . d(:,4y; 

ELSEIF i <= 400 THEN 
windnewwind = windwindlist(5); 
windactual-alt = windnewwind(:,l)’; 
windactua-x = windnewwind(:,3)’; 
windactualj = windnewwind(:,2)’; 
windactual-z = Windnewwind(:,4)’; 
forecast_wind_choice = round(4*random( 1 , l),{up]); 
windforecastwrn ’ d = windwincIlist(hrecast-windchoice); 
windforecast-alt = windforecastwrn * d(:,lE 

windforemsty = windforecastwind(:,2)’; 
windforecast-z = windfomastwm * d(:,4)’; 

windnewwind = windwindlist(6); 
windactual-alt = windnewwind(:,l)’; 
windactual-x = windnewwind(:,3)’; 
windactualj = windnewwind(:,2)’; 
windactual-z = Windnewwind(:,4)’; 
forecast-wind-choice = round(S*nmdom( 1, l),{up}); 
windforecastwrn . d = windwin&st(forecast-wind-choice); 

# choose a random number 1-4 

windfOrecast_X = windfOrecaStwind(:,3)’; 

ELSEIF i <= 500 THEN 

# choose a random number 1-5 

windforecast-alt = windforecastwrn * d(:,lX 
windforecast-x = windf0mxsbw.n * d(:,3)’; 
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windforecastj = windfirecashm * d(:,Z)’; 
windforecast-z = windforecastffrln * 4:,4y; 

ELSEF i C= 600 ’I” 
windnewwind = windwindW(7); 
windactwd-alt = windnewwind(:,l)’; 
windactual-x = windaewwind(:,3)’; 
windactual_y = windnewwind(:,2)‘; 
Windactual-z = windnewwind(:,4)’; 
forecast_wind_choice = round(6*random( 1 , l),(up}); 
windhreastwm ‘ d = windwinW(forecast_wind,choice); 

windforecastj = windforewtwh@:,22)’; 
windforecast-z = windforewstwm * d(:,4K 

windnewwind = windwindlist(8); 
windactual-ah = windnewwind(:,l)’; 
windactual-x = windnewwind(:,3)’; 
windactualy = windnewwind(:,2)’; 
windactual-z = ~ind.newwind(:~4)’; 
forecast-wind-choice = round(7*random( 1,1),{up)); 
windforsxstwm d = windwincliist(fonxast-wind-&ice); 
windforecasl-alt = windforecashm * d(:,l)’; 
windforecast-x = windforecastwind(:,3)’; 
windforecastj = windfomastwm - &:X 
windforecast-z = Winclfonxastwm - d(:,4y; 

windnewwind = windwindlist(9); 
windactual-aIt = wind.newwind(:,l)’; 
windactual-x = windnewwind(:,3)’; 
Windactualj = windnewwind(:,2)’; 
windactUat_z = Windnewwind(:,4)’; 
forecast-wind-choice = ~nmd(8*mdom( 1, l),(up}); 
windfomastwm * d = windwindlist(forecastt(forecastwind-choice); 
windforemst-alt = windforecastunn * d(:,lX 
windforecast-x = windforemtwin - d(:,3)’; 
windforecastj = windforeasban * 4:2X 
windforecas-z = windforecaStwind(:,4)’; 

windnewwind = windwindlist( 10); 
windactuaI-alt = windnewwind(:,l)’; 
windactual-x = windnewwind(:,3)’; 
windactual2 = windnewwind(:,2)’; 
windactual-z = Windnewwind(:,4)’; 
forecast-wind-choiice = nnmd(g*mdom( 1 , l),{up}); 
windforecasmn * d = windwindlist(forecast-wind-choice); 
windforecast-alt = windforecaStwind(:,l)’; 

# choose a random number 1-6 

windforecast-dt = windforecastwind (:7W 
windfomast-x = windforemtwin * d(:73)’; 

ELSEIF i <= 700 THEN 

# choose a raudom number 1-7 

ELSEIF i <= 800 THEN 

# choose a landom number 1-8 

ELSEIF i <= 900 ‘I” 

# choose a random number 1-9 

windforecast-x = windforecasbm . d(:,3y; 
WindforeCaSty = windforecastwrn * d(:,2X 
windforecast-z = windfomastwm * d(:,4% 

windnewwind = windwindlist( 11); 
windactual-alt = windnewwind(:,l)’; 

ELSEIF i C= lo00 THEN 
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windactual-x = windnavwind(:,3)'; 
w i n d a W j  = WindnewWind(:,2)'; 
windactual-z = windnewwind(:,$)'; 
forecast-wind-choice = round(lO*random(l,l),(up}); 
wind forecastwind = windwindlist(forecast-wind-choice); 
windforecast-dt = windforeasbum * d(:,I)'; 
windforecast-x = windforecaman . d(:,3)'; 
windfore-castj = windforecastWind(:Jx 
windforecast-z = windforecastWind(:,4)'; 

# choose a random number 1-10 

ENDF 
# set GPS randomnumber seeds 
set distribution d o r m ;  # uniform distribution for GPS seeds and compass biases 
d = r 0 ~ 9 9 9 9 ~ 1 1 1 (  1 , 9), (up)); 
saseedl=saseed(i); saseed2=saseed(2); saseed3=saseed(3); saseed4=saseed(4); 
saseed5=saseed(5); saseed6=saseed(6); Saseedir=saseed('l); saseedS=saseed(8); 
SaSeed9=saseed(9); 

# random compass bias between -2 and 2 degrees 
compas~-bias=4*(random( 1 , 1)-0.5); 

# now you can run a simulation 

execute file = "runsim"; 

# calculate more needed data for polar plots 
control-error-x = fha l conx  - f3utl-CARP-x; 
control-enorj = finalcony - finalCARP~; 
nofore-error-x = finalnoforex - finalCARPx; 
nofore-errory = finalnoforey - final-CARP_)., 
control-error-angle = atan2(coml-errorjy control-em-x)*( 18OEpi); 
nofore-error-angle = atan2(nofore-emy7 nofore-enor-x)*( 180/pi); 
releasept-x = x-ofiet - final-CARP-~ 
releaseptr = y-offket - final-CARPy; 
releasept-angle = atan2(releaseptj7 releasept-x)*(lSO/pi); 
releasqt-radius = (releasepty**2+**2)**0.5; 
CARhelease-x = 0 - final_cm-x; 
CARPreleasey = 0 - finalCARP_y; 
CARPrelease-angle = atan2(CARPreleasej, CARPrelease-x)*( ISOEpi); 
CARPrelease-radius = (CARPreleasey* *2+Cmlea~e_x**2)**0.5; 

# form huge ix22 data matrix 

Simresults8.data(i:) = [x-offset, y-&@ forecast_wind-choice, no~control-error, ... 
control-enor, nofore-error, con-act, nofore-act, control-errorj, control-error x, , .. 
controI-enor-angIe, nofore-emry, nofore-e~or-~nafore_error-an~e, re~eaciwj, . . . 
re1easept-q releasept-angle, releasept-radius, CARPreleasey, CARPrelease-x, ... 
CARPrelease-angle, CARprelease-radius]; 

# WHAT ITERATION ARE WE ON??? 
display("Run No. = "); display@ 

delete CARP-x C A R P 3  CARp_z pndcted-x p r e d i d y  predicted z; 
delete TOP-mat controlled-x controlledj no-controlled-x no-wntr&edy 
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delete finalconx final-cony final-nwn-x W - n m n j  finalnoforex fhal-noforej 
delete final-CARP-x final-CARPj 
delete p q y r target-x target3 nofore-x noforej NOFORE-mat 
delete no-control-error control-error nofore-error con-act nofore-act 
delete NOCON'lXOL-mat forecast-wind-choice x-offket y-offset i 
delete saseedsaseedl saseed2 saseed3 saseed4 saseed5 saseed6 &7 saseed8 meed9 
delete control-emor-x control-enory nofore-error-x nofore-errory control-error-angle 
delete releasept-x releasepty releasept-angle releasept-ndiw CARprelease-x 
delete CARPreleasej nofore-emr-angle CARPrelease-augle CARprelease-radius 

# repeat the process for the specified number of iterations 

7. Math script fiIe %nmanysimsandpld.ms" 

# This batch file runs the simulation where the predicted wind chosen was the wind file 
# from the 0800 balloon launch. The actual winds are chosen at random from later wind 
# files. Both TOP and NOFORECAST are nm and plotted for each iteration. 

set seed 128; # random number seed (use same number for same results) 

# choose a forecasted wind to follow 
j=3; # choose fiom wind files Wind0 to Wind9 (Wind0 is j=1, Wind9 is j=lO) 
Windforecastwrn ' d=windwindlist(j); 
wind.fonxast-alt = windforecastwind(:, 1)'; 
windforeast-x = windforecastwind(:,3)'; 
windforecast_y = w i n d f o r e d ( : , 2 ) ' ;  
windforecast-z = windfo- * d(:,4)'; 

# set up the predicted trajectory 

q=sim("CARP", t, (idg="VKM"}); 

# create PreQcted trajectory for TOP 
pred_mat=mab;ma~(s, (channels}); 
predicted-x=pred-mat(:, l)f; 
predictedmred-mat( :,2)'; 
predicted-z=pred-mat( :3; 
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delete pred-mat; 

# create target position for NOFORECAST 
t a r g ~ - ~ [ p r e d i c t e d - x ( l e n g t h ( p r e d i c t e d _ ) ]  ; 
t a rge t7  [ p l e d i ~ ~ ( l e n g U 1 ( p r e d i c t e d _ y ) ) , p r e d i c ) ]  ; 

p l o t s . T O P ~ p ~ ~ l o t ( q ( l , l ) ,  q(2,1), (x-& = -10000, x-= = 10000, ... 
y-min = -10000, y max = 10000, title = "TRAJECTORYSEEK2Dn, line-color = "red", ... 
xIab="South-Nor&, ylab=" West-East", line-width4)); 

plots.TOPgraph3D=plot(q(l, l), q(2,1), ... 
q(3,1), {x-& = 10000, x-= = -10000, y-& = ... 
-1ooO0, y max = 10000, z-min = 0, z-max = 10000, zlab = "Altitude ft", ... 
title = i i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i i ,  line-color = "real, 1iue-width=4, ~ l a b = ~ ~ ~ ~ ~ t h - ~ ~ r t h ~ ,  .. . 
ylab=" West-East" 1); 

plots.NOFOREg@2~lOt(O, 0, (x-& = -10000, X-= = 10000, y_min = ... 
-10000, y-xnax = 10000, title = "TARGETSEEK2D", line=O, markeFl, marker-style = "x", ... 
marker-color = "red", Xlab="South-North", ylab="West-East" 1); 

plots.NOFOREgmph3D=plot(zeros(length(q(3, l)), 11, zeros(length(q(3, l)), l), .. . 
-q(3,1), {x-& = 10000, x-= = -1OOO0, Y II~II = -10000, Y-IUX = 10000, z-& = 0, ... 
z-max = 10000, zlab = "Altitude ft", title = "TARGETSEEK3D", line-color = "red", ... 
line_width=4, xlab="South-North", ylab="West-East"}); 

# start the iterations 

for i=1:30 

# must change initial position for TOP model, for NO CONTROL model, and for 
# NOFORECAST rnplel (they should be the same initial position called "linear- 
# position-init") for each iteration 

# set max offset 

# set x offset and y offset 
set distribution normal; # normal distribution for offsets 

x-offset = max-ofket * random( 1,1)/4; 
IF x-offset == 0 THEN 

ENDIF 
x-offset = 0.1; 

y-offset = =-offset * random( 1,1)/4; 
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IF y-of€set = 0 THEN 

ENDIF 
y-offset = 0.1; 

linm>sition-init = [x-offset; y-offset; drop-ah] ; 

# must change the wind files for actual wind for each iteration 

set distribution uniform: # a W o r m  distribution for actual wind choices 

actual-wind-choice = round(( 1 1 -j)*random( 1 , l)+j, (up}); #/ choose an actual wind file of a later 
windactualwind = windwindlist(actual-wind-choice); # hour than the forecasted file 
windactual-dt = windactualwind(:,l)'; 
windactual-x = Windactualwind(:,3)'; 
windactid3 = wind.actualwind(:,2)'; 
w i n d a d - 2  = windactualwind(:,4)'; 

## set GPS mdom number seeds 
set distribution uniforxq # uniform distribution for GPS seeds and compass biases 
sas&-round(9999*random( I ,9),(up}); 
saseedl=saseed( 1); saseed2=saseed(2); saseed3=saseed(3); sas&4=saseed(4); 
saseed5=saseed(5); saseed6=saseed(6); saseed7=saseed(7); saseedS=saseed(8); 
saseed9=saseed(9); 

# random compass bias between -2 and 2 degrees 
set distribution uniform; 
compas_bias=4*(randorn(l, 1)4.5); 

# now you can run a simulation 
y=sim("TOP", f { ialg=="VKM" 1); 

p=sim("NOFORECAST", f (ialg="VKM")); 

plots.TOPgmph2D=plot&( 1, l), y(2, l), (keep==lots.TOPgraph2D, line-color="blue", ... 
he-width=4}); 

plots.TOPgraph3wlot&( 1, l), y(2, l), -y(3, l), {keep==lots.TOPgraph3D, line-color="blue", __. 
line-width=4}); 

plots.NOFOREgraph2D=plot(p(l, l), p(2,1), {keep=plots.NOFOREgraplQD, line-color="black", .. . 
he-width=4)); 
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# repeat the process for the specified number of iterations 

# WHAT ITERATION ARE WE ON??? 
display("Run No. = "); display(i) 

endfor, 

# circle 
theta = [O:O. 1:2*pi]; 
x-circ = 328.08*cos(theta); 
y-Circ = 328.08*sin(theta); 
plot(x~circ,y~Circ,zeros( 1,63),(keep====lots.TOPgraph3D~ h e l ,  line-color="green", ... 

plot(x-circ,y-circ,zeros( 1,63),{keep====lots.NOFOFQmph3D~ line=l, line-cdor="green", . .. 

plot(x-circ,y-circ, { keep==lots.TOPgraph2D7 line=l, he-coloF=l'green'', line-width=3})? 
plot(x-circ,y-circ,(keep=-=-lots.NOFOREgraph2D, line=l, he-color=ngreen", line-width=3 })? 

line-width=3 })? 

lineVwidth=3 })? 

# delete unneeded variables 
delete x-circ y-circ theta 
delete predicted-x predictedj predicted-z; 
delete final-CARP-x final-CARPj 
delete p q y target-x targetj 
delete i j actual-wind-choice windforecastwind windactualwind 
delete saseed saseedl saseed2 saseed3 saseed4 saseed5 s a d 6  saseed7 saseed8 saseed9 

8. Math script file "runactsim2.msn 

#{ batchfile: 
This batch file first assumes the CARP predictor with your wind file has been rn 
It also assumes that the "k-out" file has been run to transform the data fkom the CARP 
model into pred~cted-x, J, and -z matrices to be plugged into the Controller. 
The batch file then runs the TOP s i n  Relevant information is then calculated For actuator 
study ># 

y=sim("TOP", t, {ialg="VKM"}); 

TOP-mat=makematrix@, (channels}); 

controlled_x=TOP-mat(:, 1); 
controlledy TOP-mat( :,2); 

con-a~~P-~tgength(TOP_mat(: ,26)),26); 
mp-fill-time=TOP-mat(length(TOP-mat(: ,27)),27); 
control-error=((final_con-x-final_CARP_x) * *2+(final-con~-final-CARPj) **2)**0.5; 
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delete TOP-mat controlled-x controlled3 finalcon-x linal-conj y; 

9. Math script file "runmanyactsims2.ms" 

# This batch file runs the actuator study with the "worst", "worse", "average", "better" 
# and "best" actuator models. 100 iterations are run with each and data is collected. 
# Every simulation used the TOP model 

set seed 32; # random number seed (use same number for same results) 

# must NOT change the wind files for actual wind for each iteration 
# for this file the winds were just set 

actual-wind-choice = 8; 
windnewwind = wind.windlist(actual_wind_choice); 
windactual-alt = windnewwind(:,l)'; 
windactual-x = windnewwind(:,3)'; 
winds-j = windnewwind(:,2)'; 
windactual-z = wind.newwind(:,l)'; 

# choose the forecasted winds for ALL iterations 
# for this file the winds were just set 

forecast-wind-choice = 6; 
wind forecastwind = windwin~st(forecast-wind-choice); 
windforecast-alt = windforecastWind(:,l)'; 
windforecast-x = windforecastwind(:,3)'; 
windforecastj = windfomastwm * d(:,2K 
windforecast-z = windforecastwm . d(:,4K 

# DO NOT choose a random number 1-1 

#run CARP one timefirst 

q=sim("CARFj", t, {ialg="VKM"}); 

delete pred-mat q; 

CAR€-x = predicted-x'; 
C A R P 3  = predictedj'; 

# start the iterations 

for i=1:100 
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# must change initial position for TOP model, 
# initial position called "linear- 
# position-init") for each iteration. 

set distribution normal; # normal distribution for release point offset 

x-offset = max-offset * (random( I, 1))/4; 
IF x-offset == 0 THEN 

ENDIF 
x-offset = 0.1; 

y-offset = max-offset * (random( 1,1))/4; 
IF y-offset == 0 THEN 

ENDIF 
y-offset = 0.1; 

lineargosition-init = [x-offset; y-offset; drop-alt]; 

# set GPS random number seeds 
set distribution uniform; # uniform distribution for GPS seeds and compass biases 
saseed=round(9999*random( 1,9), { up)); 
saseedl=saseed(l); saseed2=saseed(2); saseed3=saseed(3); saseed4=saseed(4); 
saseed5=saseed(5); saseed6=saseed(6); saseed7=saseed(7); saseedS=saseed(S); 
saseed9=saseed(9); 

# random compass bias between -2 and 2 degrees 
compass-bias=4*(random( 1,1)4.5); 

# now, test different actuator sets 
# thi5 wil l  not change fiom iteration to iteration 

pma-maxqressure = 175; 
pma-maxqressures = [175,175,175,175]; 
del j -vsq = actuators.delq-vsql75; 
fills-vs-respress=actuators.fills-vs-respress 175; 
deflate-time=actuators. deflate-time 1 75; 
init_reservoirsress=actuators.~t-~~o~~ess 1 75; 
del-resqer-PMA = actuators.del-resqer-PMAl75; 

# this will be changed for the merent controllers 
fill-time-vsj = actuators.worst; 

# now you can run a simulation 
# we will use runactsim2 
execute file = "runactsim2"; 

# this is the data we collect on each run 
control-emor-worst = control-emor; 
con-act-worst = con-act; 
majma-fill-time-worst = mp-f i l l - t ime ;  
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# do it for each of the four remaining actuator models 

fi l l t imevsp = actuators.worse; 
execute file = "mctsim2"; 
control-enor-worse = control-error; 
con-act-worse = con-ae 
maxpmafilltimeworse = maxqma_ltill-time; 

fill-time-vsq = actuators. average; 
execute iile = "mctsim2"; 
control-error-average = control-error; 
con-act-average = con-ae 
maxpmafilltime-average = maxqma_fill_time; 

fi l l t imevsq = actuators.better, 
execute file = "runactsim2"; 
control-enor-better = control-error, 
con-act-better = con-act; 
maxgmafilltimebetter = maxqma_fill-time; 

fi l l t imevsp = actuatorshest; 
execute file = "nmactsim2"; 
control-enor-best = control-error, 
con-ad-best = con-act; 
mjma-filI-time-best = maxqma_filI_time; 

##### five runs of TOP for each iteration- 

# this is the data.output 
simresults9.data(i, :) = [x-offset, y-offset, control-error-worst, con-act-worst, . . . 

maxpma-fill-time-worst, control-enor-worse, con-act-worse, mp-fill-time-worse, .. . 
control-error-average, con-act-average, maxpma-filltime-average, ... 
control-enor-better, con-act-better, maxgna-fill-time-better, . . . 
control-enor-best, con-act-mt, mgma-fill-ime-best, actual-wind-choice, .. . 
forecast-wind-choice] ; 

delete x-ofiet y-offset control-error-worst con-ad-worst maxqma_fill_time-worstst; 
delete control-error-worse con-act-worse maxpmafilltimeworse; 
delete control-error-average con-act-average maxp-fill-time-average; 
delete control-error-better con-act-better maxp-fill_time_better, 
delete control-error-best con-act-best mpma-fill-time-best; 
delete weed saseedl weed2 meed3 saseed4 saseed5 saseed6 saseed7 weed8 saseed9 
delete control-error con-act maxqma_fill_time 

# r e p t  the process for the specified number of iterations 

# WHAT ITERATION ARE Wl3 ON??? 
display("Run No. = "); display(i) 
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endfor; 

delete CARP-x CARF'j predicted-x predicted3 predicted-z; 
delete fhal-CAR€-x final-CARPj i actual-wind-choice forecast-wind-choice 
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