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Abstract—Active defenses are becoming popular for cybersecurity, offering more protections beyond access control and 

signature analysis.  Cyberdeception is a particularly useful kind of active defense.  We tested two tools for testing active defenses 
for simulated cyberattacks: a commercial tool CCAT from Soar Technology Inc., and a tool Decepgame we wrote.  Both tools 
simulated a game of alternating moves between attacker and defender, where each possible move had costs and benefits.  CCAT 
first plays random games to learn the best tactics for attacker and defender in a variety of situations, then tests on new situations; 
Decepgame uses reinforcement learning to incrementally improve its choices from experience.  Experiments with CCAT then tested 
the best active defenses to six types of attacks with semi-random choices, and showed that the defense was effective.  Experiments 
with Decepgame simulated attacks based on the MITRE ATT&CK taxonomy of cyberattacks, and showed gradual improvements 
over time without needing training runs.  Both products showed realistic behavior but required configuration time, and their actions 
were often unsurprising.    
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I. INTRODUCTION 
Active defenses are becoming more common tools for improving cybersecurity.  They include dynamic modification of systems 

to confuse cyberattacks as well as automated tracking of attacks and attackers.  They also include deliberate defensive deception, 
for which many methods are available (Rowe and Rrushi, 2016).  Deception has advantages of flexibility and unexpectedness.  Most 
theories of ethics permit occasional deception to reduce harms, and damage to computer systems and theft of valuable data often 
are harms worse than that of occasional defensive deception.  Deception has long been considered acceptable in warfare (Clark and 
Mitchell, 2019). 

In the last ten years, commercial products have become available for active defenses, especially those with deception as an 
option.  Some are not very good; one product we reviewed recently provided decoy processes that were easily detectable by their 
unusual traffic.  Better products are available, but a question is how well they will fool attackers.  Most cyberattacks are automated 
and do not pay much attention to their targets, so it is hard to deceive them.  However, manual cyberattacks on high-value targets 
do occur, and the most important of these are “automated persistent threats” or APTs.  These are state-sponsored “information 
operations” that slowly probe a system to find its weaknesses, then steal data or do sabotage.  Deception can be especially effective 
in defense against them.   

Wargames can help plan and analyze a broad range of military activities.  Cybersecurity is like a war between attackers and 
defenders, and this is a particularly good analogy when state-sponsored specialists are involved.  Cybersecurity wargames can 
model operations using procedures, data, and rules at far lower cost than exercises or red-teaming, and can handle situations with 
more options than possible for human comprehension.  Surprises that occur in wargames prepare users better for real conflict. 

This work evaluated two wargaming tools for planning of active defenses for local-area networks, both including cyberdeception 
methods.  Parts of our work were previously reported in (Green et al., 2023).  The tools are only planners and do not actively defend 
systems, but the planners are highly portable as software and attacks evolve.  

II. PREVIOUS WORK 

A. Military cyberspace operations 
Cyberspace is now a domain of warfare along with land, water, air, and space.  It is a complex and highly connected environment 

that challenges traditional military notions of operations.  Superiority in weapons and resources tends to be less important than 
strategy and tactics, benefitting a weaker adversary and supporting asymmetric warfare.   

Warfare in cyberspace can be offensive or defensive (Joint Chiefs of Staff, 2018).  The MITRE ATT&CK framework provides a 
good set of tactic types for both offense and defense (MITRE, 2024).  Offense would often seem to have an advantage because defense 
must prepare for wide range of tactics.  However, the number of effective offensive tactics is often limited because the most effective 
ones require exploiting flaws in software, and modern software is well-written with few flaws.  A few general offensive techniques 
such as denial of service are well-known, and defenses can be preplanned for them.  In many cases, offense in cyberwarfare also 
prefers attack targets based on military, economic, political, or religious goals that can be predicted in advance.  Thus preplanning 
of defenses is often effective. 

B. Active defenses in cyberspace and cyberdeception 
Many military defenses are based on setting lines of fortification that impede an adversary attack.  However, a straightforward 

application of this principle to cyber defense has been discovered to be limited in value because there are many ways to circumvent 
obstacles in cyberspace.  Hence “active defenses” have become popular, where the defender seeks to provide a “moving target” that 
is harder for an adversary to attack because it changes over time.  A popular moving-target defense is randomly changing the names 
and addresses of resources on a system often to prevent the frequent precompiled and automated attacks (Sun et al, 2019).  Another 
example of an active defense is blocking network addresses providing unusual amounts of activity that could be denial-of-service 
attempts. 

The work reported here also used a another kind of active defense, defensive deception in cyberspace (‘cyberdeception”).  
Deception has a long history in warfare (Latimer, 2003).  It is helpful for defense whenever adversaries have a strong advantage in 
surprise, and it works well when an adversary’s knowledge of its target is limited.  Both these conditions often apply in cyberspace 
(Rowe and Rrushi, 2016).  Deception is justified by most ethical systems when the consequences of failing to deceive can be 
disastrous, as is often the case in warfare. 

We can classify users as adversaries when they show enough suspicious behavior to exceed a threshold.  Then we can deceive 
them using a wide variety of tactics.  Lies, camouflage, and decoys are effective types of deception in cyberspace (Rowe and Rrushi, 
2016).  More specific examples of useful cyberdeceptions are concealment of high-value targets and promotion of low-value targets 
on a site, imposition of time-wasting delays and procedures on an attacker, and providing incorrect data to confuse attackers 
(Gartzke and Lindsay, 2016).  Cyberdeceptions can give defenders more time to analyze and thwart attacks (Park  & Kim, 2019), 
something very valuable for defense in warfare.  Planning using methods of artificial intelligence such as deep learning can develop 
complex deceptions that are difficult to recognize (Matthew, 2020). 

Lies, camouflage, and decoys are often implemented with honeypots,  otherwise useless network nodes that can confuse 
attackers with false data, or entice and trap them into revealing their methods.  Honeypots provide more useful data than regular 



network monitoring since they have no other purpose than data collection.  The research described here simulated both honeypots 
and false data.   

C. Game analysis 
Cyberwarfare can be modeled as a partial-knowledge probabilistic game in which an attacker and a defender alternate moves.  

Possible moves can be drawn from the MITRE ATT&CK taxonomy of offensive and defensive actions (MITRE, 2024).  Then agents 
optimize their moves by looking ahead to the other agent’s possible responses to their tactics, where attackers received points for 
achieving a set of goals and lost points for taking too much time; defender points were the negative of attacker points.  Games were 
used to plan a defense using lightweight decoys while concealing the true targets in (Major et al., 2019).  

Previous work has built a variety of attack models.  One approach focuses on the effects of responses to cyberattacks (Cayirci 
and Ghergherehchi, 2011).  Another approach visualizes cyberattack steps as a graph, though this requires manual analysis (Liu et 
al., 2012).  Tests using costs and incentives can estimate numeric parameters of game models (Liu, Zang, and Yu, 2005).  Artificial 
intelligence with deep learning can be used to refine offensive and defensive models (Najada, 2018), as can topological analysis of 
simulation outputs (Swarup, 2019).  The Malicious Activity Simulation Tool is a scalable architecture for training with offensive 
models (Swiatocha, 2018).   

Attack modeling should include simulated attacker exploration of a network to find launching points, or “lateral movement” (Bai 
et al., 2019).  A defender can detect this and station useless decoys to receive attacks (Amin et al., 2020).  Lateral movement can 
sometimes be predicted by exploring with random walks (Wilkens et al., 2019).  Honeypots are useful for detecting lateral 
movement since users other than administrators have no legitimate reason to visit them. 

Mixing real and fake data in network information can mislead adversaries (Jajodia et al., 2016).  Game-theoretic analysis can also 
rate deceptions (Wang and Lu, 2018), attacker and defender tactics (Fang et al.,  2018), and the degree of concealment of targets 
(Miah et al., 2020). 

III. THE CCAT TOOL, AN ACTIVE-DEFENSE PLANNER 
A weakness of much previous work is that it tested research prototypes of limited scope and robustness.  Our work described 

here tested two tools with diverse sets of tactics.  
We first tested a proprietary product from Soar Technology Inc. (SoarTech), the Cyberspace Course of Action Tool (CCAT) 

(SoarTech, 2017).  It simulates cyber attacks and active defenses within a computer network, and learns the best tactics for both 
attacker and defender (the “agents”) by running a game many times with random choices.  In collaboration with SoarTech, we 
designed plausible scenarios, agent (player) actions, deceptions, and evaluation metrics.  We tested eight scenarios including two 
controls.  Further details beyond those below are in (Green et al., 2023).  

A. Experiment design 
The CCAT alternates moves of attackers and defenders in a simulated network with nodes and assets.  A special kind of 

reinforcement learning was used to train agent behavior from results of games.  Actions taken in games with better results were 
more likely to chosen in future games by the same agent.  “Better” meant lower cost and higher benefits for themselves, as well as 
higher cost and lower benefits for their opponent. 

In our experiments, we simulated a typical military network with mission-critical assets.  The attacker goals were to obtain a file 
“PII.txt” and destroy a file “sysconfig.conf” file on the file server.  PII.txt simulated a military roster with sensitive personal data;  
“sysconfig.conf” simulated a configuration file for a critical service.  The defender goals were to delay the attacker as much as 
possible and increase their costs. 

Choices made by the attacker and defender were based on a “double oracle” game model with deep reinforcement learning 
(Wright et al., 2019) over a series of games.  Before testing, both attacker and defender agents did a million training runs for each 
experiment in which they chose random actions to rate tactics.  The optimal strategy for an agent in this game is a Nash equilibrium; 
and the strategies closest to it for both attacker and defender were used in subsequent testing.   

B.  Scenario components and testing 
Figure 1 shows our simulated test network.  It has three subnetworks (DMZ, Servers, and Users) which contain commonly seen 

network devices.  Servers in the front DMZ support Web, mail, and applications in the backend servers.  The network also included 
simulated software (POR) servers, domain controllers, database servers, file servers, and a router for the application and mail 
servers.   

We ran eight experiments in which the attacker and defender agents competed against each other.   
• Experiment 1 was a control experiment without any deception. 
• Experiment 2 used two decoy servers and two decoy files.   
• Experiment 3 camouflaged the PII.txt and sysconfig.conf files by renaming them.   
• Experiment 4 combined Experiments 2 and 3, and also allowed the defender  additional decoy and camouflage.  
• Experiment 5 was another control experiment without deception, testing how much the simulation software had been 

improved since the earlier experiments. 



• Experiment 6 delayed the attacker by disabling links and attachments that were sent in a phishing email to make it 
ineffective. 

• Experiment 7 staged a denial-of-service attack against one part of the network to distract defenders from attacks on local 
servers or Web pages.  The defender could blacklist the address, mitigate the denial, or install additional sensors for the 
attacks. 

• Experiment 8 had an attacker spoof a trusted network address in packets.  The defender had to recognize the spoofing and 
block its traffic.  

 

 
Figure 1: Map of the simulated network on which the CCAT game is played. 

C. Possible actions 
Figure 2 is the core of the defender flowchart, showing the response options based on the attack experienced.  The flowchart 

was a collaborative effort between us and SoarTech using parts of the MITRE ATT&CK framework (MITRE, 2020).   Possible defender 
actions are the squares, and “security conditions” are the circles, conditions that become true after a successful action.  Security 
conditions visible to one agent are hidden from the other.  The probability of a successful action by a defender depends on its 
complexity, its plausibility, and the sophistication of the attacker.  Semi-random choices of actions are made based on training runs. 
“Semi-random” means that actions are rated by benefit to defender – cost to defender – benefit to attacker + cost to attacker, and 
then the larger the rating, the more likely the action is to be selected.  
 The defender tries to recognize attacker actions and thwart the attacker’s objectives.  At the start of the game, the defender can 
choose among general-purpose actions like file monitoring, process monitoring, and auditing to look for suspicious activity, actions 
that help the defender recognize suspicious events.  If they find any, they can choose from follow-on actions like trying to stop the 
attack, stopping the exfiltration of data, or preventing a server being destroyed.  Later actions include resetting a password, 
tightening access to servers, and blocking connections.  They also include deceptions such as creating decoy servers and changing 
host names.  Last resorts when a defender is in trouble are reimaging secondary storage and blocking all external traffic.  Other 
options are “Enforce Robots.txt” to impede the attacker’s Web crawling and “Block IP Addresses” to prevent internal and external 
traffic from reaching the attacker.   



   

 
Figure 2: Dataflow diagram of the defender's main options in the CCAT game. 

   
An attacker flowchart was also created to represent standard cyberattacks using tactics from the offensive taxonomy 

of the MITRE ATT&CK framework (MITRE, 2020).  Because attackers have more options than defenders, it is more 
complex than the defender flowchart.  Its middle part in shown in Figure 3.  Note that it includes actions done both inside 
and outside the defender network.  Rating of an attacker action is the benefit to attacker – cost to attacker – benefit to 
defender + cost to defender. 

Attackers begin with preparations such as detecting decoys or maintaining IP addresses.  Then they map the network, 
at least in part, and choose an attack based on the map.  Options include spear phishing, exploiting servers, and collecting 
data from Web servers.  If any of these actions succeed, a security condition is added to their knowledge.  For example, if 
spear phishing succeeds, a security condition for a victimized user becomes available.  

Next, the attacker can explore local networks, their users, their processes, and their local data.  They can collect useful 
information like user names, personally identifiable information, and network connections, using password and key 
cracking methods as necessary.  Subsequent options are privilege escalation and lateral movement, such as discovering 
processes, interfering with them, and search for secrets.  The two possible final actions are exfiltrating data and 
destroying a server.   

 



 
Figure 3: Dataflow diagram of the attacker's options in the CCAT game, middle part. 

 

D. Costs and benefits of options 
Costs (including “losses”) and benefits (“rewards”) are assigned to each action.  They were carefully set with the help 

of SoarTech to give realism to the game.  Costs are assigned to the number of steps (turns) required for an action and 
rewards are assigned to achievement of goals.  The cost and reward table for the attacker is in Table 1. 



 

 
Table 1: Costs and rewards for the attacker in the baseline CCAT game. 

Attack action Cost Benefit Attack action Cost Benefit 
Connect to network 5 0 Map network 5 0 
Send spear-phishing link 10 0 Send spear-phishing 

attachment 
20 0 

Send delayed-effect spear 
phishing 

15 0 Exploit public-facing mail 15 0 

Crawl Web pages 10 0 Exploit public-facing 
applications 

15 0 

Spoof internal IP decoy 15 0 Discover location network 10 0 
Discover user 10 0 Discover processes 20 0 
Search local data host 10 0 Get user hash 25 0 
Get administrator hash 35 0 Inject process 35 0 
Get information 20 0 Pass the hash  30 0 
Execute lateral 
movement 

20 0 Discover hosts 15 0 

Search local data file 
server 

10 0 Search local data critical 
server 

15 0 

Exfiltrate encrypted data 35 100-
300 

Exfiltrate command and 
control 

25 100-300 

Destroy critical service 25 900 Denial of service from decoy 50 1050 
Corrupt critical service 75 1200    

 
Additional actions for specialized scenarios were also assigned.  As an example, in the denial-of-service experiment 7 

with actions shown in Table 2, the attacker will get a large benefit if they can gain critical-system access, but defender’s 
benefit for stopping the first attack is low.  A small benefit is given the defender when they stop the attack.  However, 
denial of service impedes security activities by the defender, which adds to the defender’s cost.  
 

Table 2: Example defender and attacker actions (with defender cost) in a denial-of-service camouflaging attack in CCAT. 

Defender action Cost Linked attacker action 
Audit logon events 15 Execute lateral move, pass the hash 
Monitor network traffic 25 Map network, exfiltrate data, spear phish, distributed denial of service, 

spoof internal IP 
Check firewall alerts 15 Map network, exfiltrate data, spear phish, distributed denial of service, 

spoof internal IP, crawl Web pages 
Audit HIPS logs 25 Critical service corruption, critical service destruction 
Monitor files 20 Search local data 
Monitor processes 30 Inject process, get hash 
Isolate machine 60 Exfiltrate data 
Block IP address 20 Map network, exfiltrate data, spear phish, spoof internal IP 
Enforce robots.txt 20 Crawl Web pages 
Disable email links 25 Give spear phishing link 
Disable administrator 
account 

50 Pass the hash 

Disable user account 50 Execute lateral move, pass the hash, search local data, get hashes 
Reset local password 20 Get hashes 
Block denial of service 50 Distributed denial of service 
Reimage machine 90 Inject process 

E. Training the models 
The CCAT agents are trained by playing random games, separately for each experiment.  Training used a CentOS 7 

core server with an i7-7820X processor at 3.60GHz, 8 cores, 128 gigabyte random access memory, and two Nvidia Tesla 



 

V100 32 gigabyte graphical processing units.   Training took around three weeks in parallel on a cloud service, and did a 
million runs each for attacker and defender in each experiment, for 16 million training runs altogether.  The tactics whose 
results were closest to the Nash equilibrium were chosen for final testing. 

F. Average final scores of  the CCAT experiments 
Table 3 shows average results on 100 runs of the CCAT game after training.  A separate control experiment was done 

in experiment 5 since experiments 5-8 were done a year later than experiments 1-4.  The more negative the score, the 
better the attacker did.  Deception increased the attacker’s costs compared to the control in all but the third experiment, 
and defender costs increased too but not as much as attacker costs.  Therefore, we judge the deceptions a success except 
in experiment 3.  

Table 3: Key CCAT results in scores and step counts. 

Experiment Average 
defender score 

Average 
attacker score 

Average attacker 
exfiltration steps 

Average attacker 
corruption steps 

1: First control, no 
deception 

-3850 -1534 25.3 32.6 

2: Decoys -1427 -1861 26.3 33.5 
3: Camouflage -4158 -1658 25.1 32.8 
4: Decoys and camouflage -1475 -1803 25.4 32.9 
5: Second control, no 
deception  

-3944 -1551 - 25.7 

6: Delays -3636 -1682 - 26.0 
7: Distributed denial of 
service 

-3310 -1740 - 29.3 

8: Spoofing -3908 -1668 - 25.2 
 
The maximum number of turns per player in a game was 40; this was reasonable, as most cybersecurity policies 

would prevent an attacker from exploring a system that long.  We did not see any significant effects of deception on the 
average number of timesteps, but deception required different and more complex steps for the attacker than the 
defender.  Most actions occurred with approximately the same frequency with deception, but exceptions were the decoy-
related actions when decoys occurred and with the “Check File” action. 

IV. DECEPGAME, A PLANNER AGAINST ADVANCED PERSISTENT THREATS 
A weakness of the SoarTech approach is that it took much time to train the agents, as for example, three weeks on 

experiments 5-8.  This appeared necessary to ensure we had sufficiently explored the combinations of options.  However, 
this may be overkill for both attacker and defender; usually the best options in cyber operations are well known in 
advance (Rowe & Rrushi, 2016).  Furthermore, an important principle of deception planning is to avoid wasting effort in 
designing details that deceivees will not notice, and with so many options, an attacker cannot notice many of them.   

One way to reduce training time is to measure the rate of improvement of the best solution found.  If a better solution 
is not found in a certain maximum time, we can assume we have likely found the best one.  However, this varies 
considerably with the number of options.  Another approach is to count the number of distinct plans that an attacker 
could follow, and estimate the predicted time to a likely best solution. 

Another approach to use reinforcement learning to incrementally improve performance during game playing rather 
than in advance (Benn & Benn, 2023).  This can incrementally improve choice probabilities based on the differences 
between outcomes and average outcomes and the degree of correlation of the action choice with the outcome.  This does 
not require training runs, and can give useful results with only small numbers of runs against real attackers.  It does not 
provide optimal solutions, but deception is a psychological effect that does not require high precision.   

A. Game design 
Tactics of advanced persistent threats (APTs) can be modeled for a multi-stage game (Zhu and Rass, 2018).  Detection 

of an APT is a critical goal for a defender.  APTs use so many tactics to remain stealthy and persistent that they are best 
identified by automated machine learning.  APT actions can more easily be distinguished from benign traffic during 
reconnaissance and establishing a foothold.  Otherwise, the interactions between the APT and defender provide clues to 
the APT’s goals, tactics, techniques, and procedures. 



 

We followed these ideas in constructing a program Decepgame in the programming language Python to do a version 
of the SoarTech implementation, with a kernel of 348 lines of code.  Our game design has the standard components of 
players, actions for each player, preferences among actions for each player, and moves made sequentially by alternate 
players (Osborne, 2004).  Our first experiments had an initial state of 30 facts,  and an action core set of 66 attacker 
actions and 80 defender actions to which APT-specific actions were later added.  Each action was defined by 9 
parameters: player, action name, new state, new time, new total cost for player, new total benefit for player, success 
probability for the action, the previous benefit for the state, and the previous state; the last three were used when the 
action fails according to the success probability.  Each player state was defined with six parameters: the player, the last 
action name, the current state, the current time, the current total player cost, and the current total player benefit. 

Our players were a simulated APT attacker and a simulated cybersecurity group defending a local-area network.  We 
encoded the actions for each player from APT tactics and possible defender actions listed in the MITRE ATT&CK  
enterprise framework (MITRE, 2023).  Preferences for actions for each player were determined by action costs, benefits, 
probabilities of success, and duration required, which we specified.  Cost is mainly determined by duration, but additional 
factors such as intellectual difficulty were also included. 

 
1) Player generation 
For realistic testing, we modeled a diverse group of APTs including APT39/Remix Kitten, Lazarus Group, 

MuddyWater, Sandworm Team, Turla, Wizard Spider, APT31/Zirconium, and a composite case APT X for generic 
exfiltration of data (Table 4). 
  



 

Table 4: Advanced persistent threats (APTs) providing action examples for Decepgame. 

APT Suspected 
attribution 

Goals Targets Preferred tactics 

APT39/ 
Remix Kitten  
(Hawley et al., 
2019) 

Iran Sensitive data 
exfiltration, 
political 
repression 

Political targets, 
including foreign 
dissidents 

Connecting to victim 
machines remotely for 
persistence and lateral 
movement, data 
exfiltration uses zip files, 
custom tools 

Lazarus Group  
(Park, 2021) 

North 
Korea 

Data 
exfiltration, 
intelligence 
gathering, 
sabotage, 
financial gain 

Financial institutions, 
government agencies, 
entertainment industry 

Holding critical data 
hostage in exchange for 
Bitcoin ransom 

MuddyWater 
(Avertium, 
2022) 

Iran Intelligence 
gathering, 
financial gain, 
sensitive data 
exfiltration 

Government and 
private sector defense, 
energy, government, 
and 
telecommunications 
industries 

Using open-source tools 

Sandworm 
Team 
(Cunningham, 
2020) 

Russia Cyber sabotage Critical infrastructure, 
particularly energy-
related 

Long-term persistence 

Turla  
(Faou, 2019) 

Russia Intelligence 
gathering and 
cyber sabotage 

Geopolitical 
adversaries, 
international 
organizations 

Custom tools and 
malware, obscuring 
destination of exfiltrated 
data 

Wizard Spider 
(DiMaggio, 
2021) 

Russia Financial gain Banking institutions TrickBot Trojan 
ransomware, exploiting 
wake-on-LAN capability 
to spread  

APT31/ 
Zirconium 
(Soesanto, 2021) 

China Intelligence 
gathering 

High-level US and 
international 
community election 
campaign personnel 

Collecting data about 
Web browsing (Fonseca 
et al., 2005), repurposing 
exploits from other APTs 

APT X/Use Case  Generic Sensitive data 
exfiltration 

Cloud-service 
providers 

Trusted third party 
compromise 

 

 

  



 

 
Table 5 shows our estimates of attribute values of these APTs used in the simulation, based on historical observations: 

• Resources: How well-resourced the APT is on a scale from 1-3 (1 = non-state, 2 = state-sponsored, 3 = state).  
Considerations are available tools, available skills, intelligence support, and financing.   

• Stealth: How much the APT tried to remain undetected on a scale from 1-3 (1 = low concern, 2 = medium 
concern, 3 = high concern).  Considerations are reputation, potential of retaliation, and possible sanctions 
and political fallout associated with being attributed. 

• Preference weight: The APT’s historical preference for their known attack methods in the preferred tactics 
set (1: no preference, 0.8: moderate preference, and 0.6: strong preference) obtained from the MITRE 
ATT&CK data.  Attackers with strong preferences repeat the same techniques.   

 
Table 5: APT attributes used in testing Decepgame. 

Advanced persistent threat Resources Stealth Preference weight 
APT39/Remix Kitten (RK) 3 1 1 
Lazarus Group (LG) 2 2 0.8 
MuddyWater (MW) 2 3 0.6 
Sandworm Team (SWT) 3 1 0.8 
Turla (Tur) 2 2 0.6 
Wizard Spider (WS) 1 2 0.6 
APT31/Zirconium (Zirc) 2 3 0.8 
APT X/Use Case (UC) 3 3 1 

 
The defender could be a commercial or public entity such as a cloud-service provider, a military-network 

administrator, or a critical-infrastructure cybersecurity team.  The defender attributes were: 
• Resources available: How well-resourced a defender is on a scale from 1-3 (1 = few resources available for 

cybersecurity, 2 = medium amount of resources, 3 = many resources). 
• Confidentiality, integrity, and availability importance: The defender’s tolerance for risk for each information-security 

principle (Fenrich, 2008).  For example, one organization may be concerned about data compromise (higher concern 
for confidentiality), whereas another may only be concerned about maintaining operations (higher concern for 
availability).  We used values of 3, 2, or 1, with 3 being the least concern, and 1 being the highest concern.  The 
multiplier applied for highest priority is 1.25, the second is 1.15, and the third is 1. 

• Initial security state: The conditions before the game begins, specified as either hardening attributes or 
vulnerabilities.  Hardening attributes represent defender preparation such as security policies and installed defense 
systems; examples are firewalls and strong passwords.  Vulnerabilities are flaws in the target system such as an 
unobservant user and software bugs.  Our experiments used four security states: 

o Very low security: 10 vulnerabilities, 0 hardening 
o Low security: 10 vulnerabilities, 6 hardening 
o Medium security: 5 vulnerabilities, 13 hardening 
o High security: 0 vulnerabilities, 19 hardening 

 
2) Action profiles and player specification generation 
For our experiments, 65 action profiles were generated for the attacker and 78 for the defender; additional defender 

profiles were modified to fit our framework.  We primarily focused on techniques in which the attacker seeks technical 
instead of social information about a system, because it can be difficult to convincingly model the latter.  Each action 
profile had these attributes: 

• Phase.  The APT lifecycle phase in the DAPT2020 dataset in which an action is done.  The dataset distinguishes 
14 phases of an attack, reflecting larger-scale planning than with the CCAT focus on tactical planning.  We chose 
the four earliest stages to study, since APTs are easier to detect then. 

• Action Name.  The action in either the MITRE ATT&CK Framework v13 (MITRE, 2023), in a repository of 
cybersecurity attacks and countermeasures (Kaloroumakis & Smith, 2021), in the Nmap Reference Guide (Nmap 
Project, n.d.), in a survey on adversarial reconnaissance techniques (Roy et al., 2022), or in a review of attack 
vectors and countermeasures (Ullah et al., 2018).  If actions had different names in the sources, we generalized 
them. 

• Action Class.  These were: 



 

o Attacker, Phase 1 (reconnaissance): scanning, sniffing/spoofing/observing, host-based reconnaissance, 
third-party reconnaissance, and human-based reconnaissance. 

o Attacker, Phase 2 (foothold establishment): system-based actions, human-based actions, and execution. 
o Attacker, Phase 3 (lateral movement): evasion, privilege escalation, and obtaining persistence. 
o Attacker, Phase 4 (data exfiltration): active and passive. 
o Defender, all phases: moving-target defense, cyber deception, deception, and hardening. 

• Cost.  The cost to execute an action was estimated based on its technical sophistication (S), resources available 
to a player (R), the “noise level” of an action based on observations  (N), a player’s concern for remaining stealthy 
(C), and a weight on the action.  Noise level is defined as the degree of generation of statistical anomalies or 
artifacts that indicate compromise to a defender (Hare & Diehl, 2020).  For attacker action, the weight was the 
preference-weight attribute representing an APT’s observed historical preference for it, or for a defender, a cost 
adjustment for the  action class (hardening and detection were given a 1, moving-target defenses a 2, and cyber 
deception a 3).  The defender weights for hardening and detection were assumed to follow an organization 
security policy and therefore have low costs; cyber deception required credibility and interaction to deceive 
adversaries.  Putting it together: 
 Cost = ��𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅
�  +  ( 𝑁𝑁 ∗ 𝐶𝐶)� ∗ 𝑊𝑊 where Ndefender = 0, Cdefender = 0,  𝑊𝑊ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1,  

 𝑊𝑊𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 = 1 , 𝑊𝑊𝑚𝑚𝑑𝑑𝑎𝑎  = 2, and     𝑊𝑊𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 = 3. 
• Probability of success.  Values were high (default 95%), medium (45%), low (15%), or very low (1%).  Complex 

actions or those requiring defender negligence had lower probabilities of success.   
• Benefit.  This is the value of successful completion of the action.  For example, a high benefit was assigned to an 

attacker successfully exfiltrating data, and to a defender successfully luring an APT to a honeypot to study it.   
• Duration.  Part of the cost of an action is proportional to its duration because we want to delay attacks as much 

as possible.  We weighted duration by 0.5 and added the result to the cost. 
• Preconditions.  These are necessary conditions for an action to occur, expressed as facts. 
• Negative preconditions.  These are conditions that must be false for an action to occur. 
• Postconditions.  These conditions become true (if not already) after a successful action performance.  

Postconditions can be negative to represent facts that become false after the action.  For our model, benefits on 
a scale from 1-5 were tied to postconditions.   

• Support goal.  These were the general purpose of an action for the player, which for attackers were discovery, 
network observation, user redirection, cryptosystem analysis, vulnerability enumeration, footprinting, 
obtaining credentials, initial compromise, execution of a payload, evading of defenses, obtaining of persistence, 
data exfiltration, and cleanup.  Defender support goals were denying, delaying, deterring (the three categories 
of active cyber defense), and detecting. 



 

Visualizations like Figure 4 were produced to help understand possible paths between phases of the game.   

B. Implementation of the APT game 
The player profiles were inputs to the game-modeling program Decepgame.  It runs games with the attacker and 

defender profiles from a specified initial state.  Other parameters in the game program that can be set are: 
• Maximum number of moves.  This is the number of moves played per game by alternating players with the 

attacker starting.  Values used were from 50-300 moves per game. 
• Number of games.  This is the number of games that the attacker and defender play, updating the reinforcement 

on actions after each game.  For our experiments, this was set to 100.   
• Mean (m) and slope (s) of the sigmoid logistic function used for calculating reinforcement.  This maps from an 

average score over games using a particular action to the probability of selecting that action in a future game.   
 

With variations in priority ordering of confidentiality, integrity, and availability, and the initial environment security 
states of high, medium, low, and very low, 72 kinds of defenders are possible, and we tested 13 representative 
combinations, labeled as A-M.  Games were played for each defender against each attacker specification in Table 4, while 
keeping the sigmoid parameters fixed.  We varied the number of maximum moves per game from 50 to 300 with 
increments of 5.  We then looked for indications that reinforcement learning helped increase defender performance 
across the 13 kinds of defenders. 

Decepgame scores each action over the series of games, and chooses actions having better scores with higher 
probabilities.  Higher scores are better for the defender, and lower scores are better for the attacker.  Decepgame applies 
a logistic function 𝑓𝑓(𝑥𝑥,𝑚𝑚, 𝑐𝑐) = 1/(1 + 𝑒𝑒−𝑑𝑑(𝑥𝑥−𝑚𝑚)) to scores for each action; m and c were set to the average score and its 
standard deviation over all occurrences of actions.  The logistic function provides weights on selection of actions, for all 
actions that satisfy the preconditions in the current game state, and then Decepgame randomly chooses an action for both 
attacker and defender using these weighted likelihoods by normalizing them to probabilities.  This acts as reinforcement, 
since actions that lead to good outcomes are increasingly chosen over time.  

Probabilistic selection is important so that the players do not become too predictable, but the actions observed as 
better in previous games should be selected more often.  Actions may fail with a specified probability, in which case they 
incur costs but no benefits.  The final score for a game is defined by an evaluation function which was net cost to the 
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Figure 4: Partial subset of APT X’s attack profile, represented as a directed graph of its preferred actions 
over the first four phases. 



 

attacker minus net cost to the defender, where net cost is defined as the cost of all the actions minus all the benefits 
obtained. 

C. Results of the Decepgame APT simulation 
5,304 tests were done of 104 attacker-defender pairs.  Each test played 100 games, with 50-300 allowed turns per 

game in increments of 5 turns.  Statistics were collected for the average final scores (Table 6).  Column headings are the 
APT abbreviations used in Table 4.  In general, the final scores initially increased with number of allowed turns as learning 
occurred, but a maximum score average occurred where the attacker started to overcome the defenses.  Statistics were 
also collected for the average number of turns it took to achieve this maximum score (Table 7). 

 
Table 6: Average final scores for APT/Defender pairs in Decepgame. 

APT / 
Defender 

RK LG MW SWT Tur WS Zirc UC Def Avg 
Score 

A -2.47 32.73 153.72 -29.93 18.98 83.26 173.11 189.63 77.38 
B 41.63 149.51 279.75 38.28 114.08 179.95 287.05 236.57 165.85 
C 58.16 194.13 247.86 2.70 156.54 174.21 301.05 296.47 178.89 
D 3.22 38.69 113.30 -28.80 20.63 85.48 170.22 117.33 65.01 
E 44.95 144.51 247.56 43.79 100.09 169.47 232.07 235.78 152.28 
F 20.58 136.68 257.82 29.80 110.03 188.66 301.35 292.14 167.13 
G -60.32 14.86 126.63 -37.10 4.23 53.85 109.07 82.98 36.78 
H 6.60 94.04 204.70 -38.81 72.91 87.96 269.60 190.17 110.90 
I 52.45 100.36 293.36 33.03 81.97 137.06 338.82 213.17 156.28 
J -55.20 30.24 239.55 -34.18 63.09 162.08 347.47 331.48 135.57 
K 18.50 36.03 326.91 -9.01 94.36 41.14 446.78 260.50 151.90 
L -34.28 93.12 240.82 -0.17 45.04 56.54 195.06 209.92 100.76 
M 26.30 -6.70 54.90 -55.15 26.40 56.21 118.34 137.17 44.68 
Average 
score 

9.24 81.40 214.38 -6.58 69.87 113.53 253.08 214.87 

 
 
Table 7: Average number of turns in Decepgame at which the defender maximizes their score over 5304 tests, with 100 games 

50-300 turns per game, incremented by 5. 

APT / 
Defender 

RK LG MW SWT Tur WS Zirc UC Avg Turn 

A 290 230 255 130 285 295 280 275 255 
B 235 285 230 120 265 280 280 180 234 
C 235 265 300 145 250 285 285 275 255 
D 260 240 290 215 280 220 280 125 239 
E 250 275 275 240 275 270 250 260 262 
F 290 250 215 230 260 235 280 300 258 
G 270 225 150 180 230 140 215 250 208 
H 260 230 300 275 285 245 290 255 268 
I 255 225 295 175 270 145 295 245 238 
J 255 285 300 195 280 250 295 300 270 
K 245 235 295 195 240 250 285 280 253 
L 275 285 300 240 180 220 295 295 261 
M 275 135 250 205 285 270 270 285 247 

 
Figures 12 and 13 plot final scores for two defenders with different initial security states and resources, playing 

against the MuddyWater APT.   Figure 5 shows games for this APT against defender F, a medium-security defender with 
high resources.  The horizontal axis is the average number of turns per game over 100 games, and the vertical axis 
indicates final scores of the games.  Darker dots indicate positive final game scores.  The trend line is a third-degree 
polynomial.  Attacker-defender interactions with a higher security state environment generally follow the trendline in 



 

this figure, with final scores increasing as the defender learned how to counter the attack, but having a maximum when 
the attacker learning started to compensate.   

 
Figure 5: Data summary for tests of the MuddyWater APT versus defender F in Decepgame. 

Figure 6 summarizes the attacker-defender interactions of the MuddyWater APT versus the M defender, a very-low 
security defender with the least resources.  Results in a lower-security environment generally follow this trendline, where 
the maximum defender score occurs early, with a drop as games lengthened. 

 



 

 
Figure 6: Data summary for tests of the MuddyWater APT versus the M defender in Decepgame. 

Statistics were also collected on the defender actions overall across all games by phase (Table 8) over 5,304 tests with 
8 attackers, 13 defenders, and 100 games per test, 50-300 turns per game.  The phases were reconnaissance, establishing 
a foothold, and lateral movement.  Some actions scored well relative to other actions in the same phase but did not score 
well when compared to actions in other phases.  The game sequence likely affected this, as the later phases are not 
reached as often as early phases, so more data was collected about actions in earlier phases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 8: Highest-scoring and lowest-scoring defender actions in Decepgame runs. 

Action Action Class Action Score Phase 
Deploy honeynet Deception 30817.7 1 
Use high interaction client honeypots Deception 29459.2 2 
Create decoy public release Deception 29190.8 1 
Deploy honeytokens Deception 29117.4 2 
Create decoy file Deception 29077.9 1 
Use shadow honeypots Deception 28980 3 
Harden system configuration permanently Hardening 28905.1 3 
Create decoy website Deception 28903.3 1 
Check exception handling pointer Deception 28799.1 2 
Create decoy session credential Deception 28770.3 1 
Isolate kernel process Hardening 5002.72 2 
Do authorization event thresholding Hardening 4944.9 1 
Use biometric authentication Hardening 4899.64 1 
Do authentication event thresholding Hardening 4825.74 1 
Do process segmentation execution prevention Hardening 4794.01 2 

 

D. Discussion of the Decepgame results 
Reinforcement learning improved defender scores, since defender scores improved as turns increased.  The attacker 

learned as well, as the attacker sometimes minimized the game score in the second third of the interaction (after 150-
250 turns).  Both the attacker and defender could improve as the games lengthened, but the scale of these improvements 
was unpredictable. 

The average total scores showed that some APTs were easier to defend against based on their resource and stealth 
levels (Table 9).  Attacker resource levels also have a statistically significant effect on the final total game scores (Table 
10).  This reflects the differences in sponsorship associated with these actors, as those that were state-sponsored typically 
performed better than others.  We also observed that the attacker’s concern for stealth had a statistically significant effect 
on the final total game scores (Table 11).  However, APT X is an exception.  Although it has a high resource value 
assignment, it also has a high concern-for-stealth value.  This imposed a higher cost when the attacker took less-stealthy 
actions, increasing the defending player’s final score.  This was seen in other results, with players assigned a higher 
concern-for-stealth value incurring higher costs, which gave lower final scores. 

   
Table 9: Average scores for particular kinds of APTs in Decepgame. 

APT test group  
from Table 4 

APT Group Attribute Average Final Score 

RK, ST, UC Resource level = 3 72.51  
LG, MW, Tur, Zirc Resource level = 2 154.68 
WS Resource level = 1 113.53 
MW, Zirc, UC Stealth level = 3 227.44 
LG, Tur, WS Stealth level = 2 88.27 
RK, ST Stealth level = 1 1.33 

: Effect of the APT resources attribute. 

 
 
 
 
 
 
 



 

Table 10: Effect of the APT resources attribute in Decepgame. 

APT groups compared by 
resources attribute 

P-value in a 
T-test of 
significance 

Average final  
scores 

Low resources: WS 
Med resources: LG, MW, TUR, ZIRC  

0.00783 
 

Low: 113.5 
Med: 154.7 

Med resources: LG, MW, TUR, ZIRC 
High resources: RK, SWT, UC 

0.03120 Med 154.7 
High: 72.5 

High resources: RK, SWT, UC 
Low resources: WS 

0.00072 
 

High: 72.5 
Low: 113.5 

 
 

Table 11: Effect of the APT stealth attribute in Decepgame. 

APT Groups Compared by Stealth 
Attribute 

P-value Avg Final Scores 

Low stealth: RK, SWT 
Med stealth: LG, TUR, WS 

2.39E-07 
 

Low: 1.3 
Med: 88.3 

Med stealth: LG, TUR, WS 
High stealth: MW, ZIRC, UC 

7.80E-15 Med: 88.3 
High: 227.4 

High stealth: MW, ZIRC, UC 
Low stealth: RK, SWT 

4.07E-08 
 

High: 227.4 
Low: 1.3 

 
Across all 5,304 games, those with turn limits greater than 200 offered the best opportunities for the defender to 

maximize their score against the attacker.  Therefore, lengthening the game helped the defender, but only up to a point.  
As to real time, each action during a turn has varying associated duration (e.g.  a security policy can be implemented 
quickly, but a virtualized network requires much setup time).   

Despite lacking a direct conversion to real time, lengthening the game’s turns helps defend against APTs since APTs 
tend to persist even when they know they are engaging with an active defender.  The benefit has risks though, as the 
score difference between attacker and defender becomes wider as the games progress; while the defender may perform 
well in these games, this added length affords attackers the opportunity to perform their most unusual actions in later 
phases, actions for which the defenders are not prepared.  In general, we saw that an attacker with sufficient turns and 
time will eventually outperform the defender. 
 Defender attributes showed inconsistent trends.  Defenders with high resource attribute values did not take fewer 
turns to maximize their score.  The confidentiality-integrity-availability ordering had no statistically significant effect on 
average number of turns to maximize defender score.   

The defender had 23 deception, 7 detection, 41 hardening, and 7 moving-target actions available in the game (Table 
12).  The top 10 highest-scoring defensive actions included 9 deception actions (29.5% of the total actions), 1 hardening 
action (52.5% of the total actions), no moving-target defenses (9% of the total actions), and no detection actions (9% of 
the total actions), so deception was very effective in this simulation over many varied situations.  The table also shows 
that the highest-scoring defensive techniques varied by phase.  We saw it was most effective for the defender to deceive 
early in the APT lifecycle, particularly during reconnaissance, and that active cyber defense is less effective later in the 
lifecycle when an APT is already inside a target network.  Phases 3 and 4 did best with hardening techniques, consistent 
with the defense-in-depth strategy (Mughal, 2018).  

 
 
 
  



 

Table 12: Classes of the highest-scoring defensive technique by phase in Decepgame. 

Phase Cyber 
deception 

Hardening Detection Moving-target 
defense 

Reconnaissance 100% 0% 0% 0% 
Establishing a foothold 40% 20% 20% 20% 
Lateral movement 20% 80% 0% 0% 
Data exfiltration 0% 100% 0% 0% 

 
When comparing defenders of varying resource levels without varying other parameters, defenders with more 

resources scored better against APT attackers as expected (Figure 7).  This confirms that increased spending on 
cybersecurity can reduce cyber risks (Asen et al., 2019).  

 

 
Figure 7: Average score versus resources available in Decepgame. 

When comparing defenders of differing priorities of confidentiality, integrity, and availability, the order 
confidentiality-integrity-availability had an average final score of 141.9, integrity-confidentiality-availability had an score 
of 121.3, and availability-integrity-confidentiality had a score of 87.2..  This supports the well-known result that a high 
emphasis on keeping systems available often conflicts with security since systems must be available to be attacked.  This 
reflects a common dilemma in cybersecurity as priorities on confidentiality, integrity, and availability can conflict with 
those of business operations.  The initial defender security state also affected the final score as expected.  The average 
final score was 171.9 with a High initial security state, 126.5 with  Medium, 101.3 with a Low, and 108.2 with a Very Low. 
 

V. PRECALCULATING DEFENDER TACTICS FROM ATTACKER VARIABLES 
The Decepgame experiments still required some time, although they were considerably faster than the experiments 

with the SOAR CCAT.  Our current work is exploring a way to reduce game analysis further for the defender by 
precomputing best strategies in generic situations.  If a defensive situation can be summarized with a limited set of 
parameters, we can analyze it in advance and cache its results (perhaps parameterized) for guidance in similar situations 
in the future.  Decision trees are a good way to summarize these analyses.  Figure 8 shows an example for a network that 
permits downloading, with parameters defined in Table 13.  The parameters can be estimated by reinforcement learning from 
experience with attackers.  Then the defender should select the leaf node with the highest value of its formula based on the 
parameters.  More detailed analysis of similar applications to the defense of industrial control systems is in (Rowe, 2024). 



 

 
Figure 8: Example generic decision tree for considering the option for the defense of offering false excuse of “file corrupted” for 

failing to complete a download. 

 
Table 13: Definitions of parameters in Figure 8. 

Variable Description 
𝑝𝑝𝑎𝑎 Probability that the attacker notices the false excuse  
𝑝𝑝𝑏𝑏  Probability that the attacker believes the false excuse 
𝑝𝑝𝑙𝑙  Probability that the attacker logs off 
𝑝𝑝𝑎𝑎  Probability that the attacker retries the installation 
𝑝𝑝𝑎𝑎 Probability that the attacker gives up and disconnects. 
𝑐𝑐𝑎𝑎  Initial duration cost of downloading part of the rootkit 
𝑐𝑐𝑎𝑎𝑟𝑟  Duration cost of downloading the rest of the rootkit 
𝑏𝑏𝑎𝑎𝑟𝑟 Benefit to the attacker of obtaining the full rootkit 

 

VI. CONCLUSIONS 
Two sets of experiments reported here, on the CCAT and Decepgame game simulations, suggest that active and 

deceptive tactics in the cyberspace domain can be systematically planned in a cost-effective way.  The CCAT tool did 
considerable pre-planning of tactics and could find subtle interactions of tactics that enabled better defenses; the 
Decepgame tool avoided preplanning in favor of reinforcement learning, but could better address new tactics never 
encountered before.  The tactics found for both games can increase the time to mount an attack and its likelihood of 
success.  Wargaming worked well as a technique to explore and rate deception options.  The tactics found by both sides 
were nonetheless predictable in our experiments due to the limited number of options, and this could be exploited by an 
adversary. 
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