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ABSTRACT

We have created a database to analyze digital data to find connections between two or more
different secondary storage devices. We used MongoDB and created a document for each
secondary-storage image and each unique sector. Ingesting the secondary-storage images
took so much time that we had to carefully consider all the reasons for the slow down and
experiment on different ways to insert the data. Using a partial database, we found the
fraction of space that is empty (contains NULLS), per secondary-storage image and for the
entire database. We found duplicate images. Future students may continue to grow the
database. Rather then make the goal a completed database, the students will analyze the

current data and add to the database.
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CHAPTER 1

Introduction

1.1 The Problem and Motivation

We address two problems. The first is managing large-scale heterogeneous digital-forensic
data. The second is finding a digitally forensic connection between two or more
secondary-storage devices. The National Institute of Standards and Technology (NIST)
defines digital forensics as “the application of science to the identification, collection,
examination, and analysis of data while preserving the integrity of the information and

maintaining a strict chain of custody for the data” [1].

The growing amount of data is our motivation. In recent years, the per-gigabyte price
of data has been steadily decreasing [2]. It is common for the average consumer to
purchase terabytes of digital storage space. As a consequence, law enforcement agencies
and cyber divisions in the Department of Defense (DoD), have acquired terabytes of data
while collecting criminal evidence. The Regional Computer Forensics Laboratory (RCFL),
established by the FBI, has annual reports and they noted that the Chicago lab, just one of
the 15 labs, had collected and processed 580 TB of digital data in one year [3].

Currently, examiners process data on secondary-storage images drive-by-drive using
forensic tools designed to run on a single workstation. Each drive is considered separately,
and little work is done to correlate information across different images. From an analyst’s
perspective, this approach means important information may be missed. For example, there
is no organized effort to detect collaboration or communication between owners of devices
acquired at different times. Likewise, little has been done to study large-scale patterns in
acquired data. Studying trends in data may offer insight into longstanding forensic analysis
problems. Carving deleted files, for example is a longstanding forensic problem, because
it can be time intensive. File carving is the method of detecting a file signature and then

extracting the data associated with it [4].

A tactic that can reduce the processing time required for file carving is matching blocks

that reside in allocated space with those blocks in unallocated space. Allocation means the
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file-system has assigned space for the file. When a file is deleted the file-system no longer
indexes it but the data is not erased [5]. It is possible to avoid duplicating work by quickly
identifying material in unallocated space that is already available in allocated space, and
removing this material from consideration for further file carving and analysis. If material

could be removed, the file-carving problem could become smaller and potentially faster.

An experiment was performed on some of the holdings in the Real Data Corpus (RDC), a
collection of the contents of secondary-storage images held by the Digital Evaluation and
Exploitation (DEEP) Lab. For each image we identified partitions within the file-system,
built a sector hash database from overt files on those partitions, scanned the unallocated
space for matches, and tallied up the results. On one drive containing 7.12 gigabytes (GB)
of allocated space and 3.72 GB of unallocated space, we found 0.61 GB of duplicated

material meaning about 16.29% of the unallocated space was duplicated.

What other statistical information can we find to reduce the processing time required for
file carving or other types of forensic analysis? We propose some experiments in the

methodology section to do some relevant analysis over images on the RDC.

1.2 DoD Applicability

Cyberspace is an established warfare domain for the Navy. The US Patriot Act,
an anti-terrorism law, in Title VIII, section 816, says “Development and support of
cybersecurity forensic capabilities” [6]. We are adding to the nation’s forensic capabilities

by researching techniques to increase the digital forensics processing speed.

1.3 Research Questions
We scope our thesis by concentrating on analysis of trends that may be leveraged by forensic
tools. In addition, we intend to estimate the potential utility of suggested approaches in

terms of data reduction.

We are looking for relevant patterns in 3,000+ secondary-storage images in the RDC. The
features analyzed are divided into two categories. Category one includes basic features that

can be trivially extracted from the images in the corpus:



* Device name

* Device hash

* Number of sectors

* Sector size

* Device type

* Total disk size

* Number of partitions

* Partition offsets

* Recognizability of the partition?
* Volume system type

* Block size of volume

* Partition type

* Partition allocation

* Description of partition

* File system type

* Block size of file system

* Number of blocks in files system

* Sector offset of file system
Category two is comprised of features that require more extensive analysis to measure:

* Fraction of space that is empty (or contains NULLS)

Fraction of space that is unallocated or allocated

Fraction of space that is unallocated and non-empty

Fraction of non-empty unallocated space that matches allocated space

Average (2-byte Shannon) entropy score of non-empty sectors

In order to gather statistical information on all the secondary-storage images on the non
United States (NUS) portion of the RDC, we first need to create a database for our analysis.
We have two important steps. Step 1ais building the database and step 1b is the analysis. We
have 124,104,544,671,744 bytes (B) of data in the NUS portion of the RDC. An important
research question is how long will it take to build a database of sector hashes?



1.4 Thesis Structure

In Chapter two we cover the background and related work. In Chapter three we discuss

the methodology. In Chapter four we discuss our results. In Chapter five we discuss our

conclusions and future work.



CHAPTER 2:
Background and Related Work

2.1 Background

In this chapter we provide a brief technical explanation of the hardware and software we use
to create the database. This chapter provides a technical explanation on the media we are
investigating, along with popular forensic formats and tools. In addition we explain hash
matching techniques and how they are are currently used to match target files or carve files

but that we need to apply them to cross drive analysis.

2.1.1 The computer

Building our database is resource intensive. It helps to describe the tools we require so that
our explanation of why our hardware and software resources are strained maybe understood.
Secondary-storage images are peripheral components of the computer, which consists of
one or more processors and main memory [7]. The computational ability of a computer
depends upon its processor and main memory. A processor’s main memory executes
instructions. Instructions are run using a process which is a self-contained execution
environment. Threads run instructions within a process [8]. Python has global interpreter

lock (GIL), which means Python cannot thread, but it can multi-process [9].

Multiprocessing

Programming in parallel is an important strategy to use when a large number of instructions
need to be executed as with a large database. A processor processes instructions [10]. The
speed of a processor is measured in instructions (Hz) per second. One multi-core processor
may have multiple virtual processors [7]. A thread is a software-based batch of instructions

executed by a processor. A thread can also be hardware-based [7].

Concurrent programming is programming that uses several threads, and allows the
microprocessor scheduler to manage when they execute [11]. If the microprocessor executes

the instructions from the threads quickly enough we get pseudo-parallelism [11].



Data Organization

Computers communicate with binary numbers: 0 and 1. Each digit is 1 bit in size and bits
are organized into groups of 8 and are 1 byte in size. The hexadecimal number system has
16 symbols 0 to 9 and followed by A to F. Hexadecimal is often used to inspect raw data and
not binary. Data is stored by allocation on a storage device. A byte is the common smallest
amount of space allocated. Since a byte can only hold 256 values they are grouped to store
a larger number. Computers store characters and strings by encoding them to numbers,
ASCII or Unicode are common methods. The letter A is for example equal to 0x41. Each
byte stores the value of a character. The NULL symbol 0x00 often signals the end of a
string. A Unicode character must be stored and UTF-8 is the method often used because

has the least amount of wasted space [5].

Data Structure
Data structures are used to layout data and is analogous to a map. Data structures contain

fields and each field has a size and a name. The data structure is not saved with the data.

Writing data to a device requires identifying the correct data structure to define where each
value should be written. Take "1 Main St." as an example, as used in Carrier’s File System
Forensic Analysis book. The digit 1 is written in bytes O to 1 of the storage space, then the
string “Main St.” in bytes 2 to 9 in ASCII values and then the remaining bytes are O [5], see
Table 2.1. This data maybe located any where on the device and the byte offset is relative to
the start of allocated space. Using a tool that converts binary often referred to as raw data

we can examine the output.

Offset Hex String
0000000: 0100 4d61 696e 742e 0000 0000 0000 ..Main S

Table 2.1. Example strings offset and data structure.

Sector Addresses
Read and write from the device requires creating addresses for each sector. A sector will be

assigned a new address each time a partition, file-system or a file requires it. The address



relative to the start of the physical media is called the physical address. The sectors of a
volume only need to give the impression that they are in consecutive order, the damaged

sectors maybe skipped without the user needing to know [5].

Data Unit Viewing

Carrier defines the term data unit viewing as knowing the address or the byte offset of
the data. He notes that this method maybe used to find potentially hidden data. FAT32
file-systems do not use sector 3 so if the investigator uses the dcat tool found in The Sleuth
Kit (TSK) she can view a specific data unit in either raw or hexadecimal. If that data is
non-zero then this maybe evidence of hidden data [5]. If we find a sector match and note
its byte offset per hardware division which is typically 512 B in order to view the entire file
we also need to know the file-system data unit, which maybe be 1,024, 2,048 or larger.

Slack Space

If the size of a file is not a multiple of the data unit size slack space occurs. This is because
a file must allocate all of the data unit, even if the file only needs part of the data unit [5].
In addition to this rule most computer systems do not delete slack space so it contains data
from previous files or from memory. The end of a file and the end of the sector of the file is
place where we can find slack space. Also sectors that have no file content maybe an area
of slack space [5]. The Operating System determines what is done with the slack space.

Some fill the space with data from random access memory (RAM), or zeros.

Device Images

The NUS portion of the Real Data Corpus is raw data extracted from secondary-storage
images [12]. The RDC primarily consists of flash memory and computer drives [12].
Despite the fact that the secondary-storage images had been discarded by their owners,

many of the drives in the RDC were not erased by their owners [13].

There are two main types of secondary-storage images. One is raw format, an exact
sector-by-sector of the original secondary-storage image (usually called “raw” format). A
sector is the smallest unit that can be accessed on media [1]. The other type contains the
raw data as well as a checksum and metadata; the most common form is EWF format. A

checksum is a many-to-one mapping on data that can be used to detect errors when data is
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copied [5]. The metadata is information about the secondary-storage image. Our forensic
data set was created using secondary-storage images that have been duplicated using EnCase
software which provides checksums and metadata for each image in EWF format. EnCase
chunks each image into 640 megabytes (MB) and names those chunks in sequence (i.e.,
EO1, E02, EO3, EO4 and so on).

Forensic Artifact Extraction

We use TSK, a library, a framework, and a collection of command-line tools for forensic
investigation disk images [14]. The TSK is free to download at https://www.sleuthkit.org/.
TSK is organized by layers: disk-image, volume-system, file-system, and hash-database
layer [15]. The tsk_loaddb command populates a SQLite database with metadata from a
disk image [15].

The disk-image layer includes the entire secondary-storage image. The creation of a
volume-system is required before most secondary-storage images can be used to store
files. Logical volumes are created from partitions in the image [1]. A partition is a logical
division of the disk-image into separate units [1]. A file-system is one or more partitions
that has been formatted with a file-system [1]. A file-system determines file names, and
how they are stored, organized, and accessed on logical volumes [1]. A lot of different
file-systems exist, however all have some common attributes. They use directories and in
most cases sub-directories to organize and store files [1]. File-systems make use of a data
structure to point to location of files on the image. One, or more, file allocation unit is used

to store a file. A cluster is a common name for the file allocation unit [1].

A file-system may hold data from deleted files or earlier versions of existing files. This data
can still provide useful forensic information. A deleted file means the data structure that
had pointed to that file has been removed, not the data itself. The data will remain as free
space and in many cases is not over written until the space is required [1]. If a file uses less
space then required by the file allocation unit, it is still reserved by the file-system and called
slack space. Slack space may still have some useful forensic information [1]. Free space
has not been allocated to a partition, perhaps unallocated clusters or blocks. This includes
space where files or volumes have been deleted, free space may also contains forensically
useful information. The reason why we hash at the sector level is to grab all of the small

bits of forensic data that would other wise be lost in deleted, free or slack space.
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The mmls command of the TSK tool displays the partition layout of a volume system [14].

Example output of mmls:

Partition Table
Offset Sector: 0

Units are in 512-byte sectors
Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ———— 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0078108029 0078107967 NTFS (0x07)
03: ——— 0078108030 0078165359 0000057330 Unallocated

Figure 2.1. Partition Table Layout, mmls Command Output.

In this example we see that the sector size is 512 B. The image uses New Technology File
System (NTFS) and the sections that are unallocated space are labeled. Some forensics
tools require being able to understand the partition, file-system or file type. However,
other software like bulk_extractor “operates on disk images, files or a directory of files and

extracts useful information without parsing the file-system or file system structures” [16].

Hashes

Hashes provide a fixed-sized identifier for a variable amount of data. Our work used the
message digest 5 (MDS5), a cryptographic message-digest algorithm used to create hashes
because it is extensively used within the forensic community and it is computationally fast.
MDS5 and other cryptographic hashes are 160 bits and are designed so that it is very unlikely
for a collision to occur [17]. A hash collision happens if two different inputs produce the
same hash [18]. With the MD5 algorithm, 3.40 x 1038 hashes can be generated on the
average before a collision occurs. Secure Hash Algorithm 1 (SHA-1) is another popular

hash method, and EnCase can create both.

Databases

This work will store forensic data including hashes in a database. A database is a collection
of information organized for quick random access. The structured query language (SQL)
is a programming language designed to manage a database. For example, the following
SQL command says select five rows and all columns from the tsk_file_layout table;
tsk_file_layout is created by TSK.



sqlite > SELECT % FROM tsk_file_layout LIMIT 5;

The SQL command provides the following output: Figure 2.2 shows the result, a table

obj_id byte_start byte_len sequence
0 67182592 8192 0
6 2672295526 8192 0
13 2248798208 16384 0
13 2248814592 4096 1
13 2248818688 4096 2

Figure 2.2. Example of SQL table.

with attribute columns: obj_id, byte_start, byte_len, and sequence. Each row represents a

secondary-storage image.

Metadata is data that “provides information about other data” [19]. A database schema
consists of metadata [20]. The columns of the table label the attributes of the data, and
the rows contain the data [20]. A schema created from a table is called relational. An
alternative database type is a non-relational database. An example is MongodDB which
uses a document-schema database [21]. A document is similar to a Python “dictionary”
or hash table. In an SQL database the schema for the table must be designed before data is
added, changes are possible but can become complicated. In a non-relational schema data
can be added to documents at any time and documents are easy to change, however a poor

design is still possible [22].

The tsk_file_layout table stores the layout of a file within the image [23]. The
tsk_files table lists every file found in the images and has the basic metadata for the
file [23]. The layout of file can be connected to the metadata of the same file using a
technique known as normalization [22]. Normalization connects two different tables with
a reference, in this case with the obj_id column. Normalization, or connecting two or
more documents with a reference field is also possible using non-relational MongoDB [22].
SQL queries use the JOIN command to relate multiple tables, non-relational databases do
not have that command so normalized documents have to retrieve all documents associated

with obj_id and then manually link the two [22]. Denormalization means that rather then
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using a reference, data is repeated in each table or document. Denormalization allows for
faster queries, the reason that non-relational databases are said to be faster, but with slower
updates [22].

It is common for SQL databases to enforce data integrity rules using foreign key constraints.
A foreign key constraint is a column or combination of columns that i establishes and
enforces a link between the data in two tables. This is not available in non-relational
databases [22]. MongoDB and other non-relational databases use Java script like query
commands and nested documents can become complex when trying to query [22].
When creating a large database distributing it among multiple servers maybe necessary,
non-relational databases use of simpler data models makes this easier to do then SQL
type databases [22]. This is the main reason we choose to build our database using a

non-relational database.

A Bloom filter is another way to store hashes when no additional information need be stored
with them. False positives matches are a problem [24]. A tool, hashdb, can chunk files in 4
kibibyte (KiB) blocks, then hashes them and builds a Bloom filter from them. It also uses
HASH-SETS, an algorithm that reports the fraction of blocks associated with each target
file that is present on the disk image [25].

2.2 Bulk Extractor

Bulk_extractor reads a secondary-storage image from the image level [26]. It can be used
to create sector hashes and then hashdb can put them in a database. Hashdb has been
used previously on some secondary-storage images and common sector hashes have been
identified [25].

Digital Forensic

Digital Forensics analysis is defined as gathering information that may be found on a
computer, any data-carrying device, and data sent over a network. Garfinkel in his 2012
survey on lessons in digital forensics defines and describes the current and trending state
of the field. The field of digital forensics software has the challenge of requiring growing
with the growth of data diversity and data scale. People who analyze digital forensics

are therefore challenged to also develop software to meet the challenge of diversity and
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scale [27]. Software starts off as scripts and our aim is to find solutions worthy of being
developed into software. Our work focuses on analyzing secondary-storage images in a

large scale.

File Carving

The National Software Reference Library (NSRL) currently maintains a database of
meta-data consisting of a hash of the file’s content, the file’s origin (the software typically
required to view it), original name, and size [28]. The hash is produced using, among other
hash algorithms MDS, and secure hash algorithm 1 (SHA-1) [29]. It is common to find
hundreds of thousands of files during a digital forensics analysis and the goal of the database

is to reduce the time spent examining the computer [29].

File carving, is a recovery technique that searches for a file’s signature in a given image. A
file’s signature contains the file’s header and footer. Carving extracts the file’s contents, or
the blocks between the header and footer [5]. The file-system meta-data is not required and

this means that files maybe carved from unallocated space [5].

Full file identification and carving, are limited because the hash that makes each file’s
content unique can not deal with similar. Therefore a small change to a file or a corrupt
block means the hash will change and the file will no longer be identifiable [30]. In order to
solve this problem in 2009 Garfinkel explores using cryptographic hash functions on sectors
or blocks of data in order to search for target files [31]. The term hash-based carving means
searching for the a target file in a given secondary-storage image by first hashing blocks of
the file, rather then the entire file [31].

Garfinkel et al. developed a tool and called it frag_find because it is a hash-based carver that
identifies files using sector-by-sector hash comparisons. The tool can identify files because
“there exist distinct data blocks that, if found, indicate that the entire file from which the

block was extracted was once resident on the media in question™ [31].

A probative, or distinct block, means that if the block is found there is a high probability that
the entire targeted file will also be found. A common block, the most common being a set
of all NULLSs, means that detecting it on two or more images does not signify a correlation.

Non-probative is another term for common block [25] [32].
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Hash based carving inherently increases the size of the data a forensic analyst must deal
with. If we for example make a gross assumption that each file needs to be sectioned into
2 blocks and if we had been dealing with 10 million files, we are now dealing with 20
million hash blocks. In addition the algorithms required to match the blocks take up a
considerable amount of RAM and central processing units (CPU) resources. The variables
we can attempt to speed up are the hardware, the type of database, the algorithm to search

the database or all those methods in combination.

Collange et al. in their 2009 study notes that the “ability to detect fragments of deleted
image files and to reconstruct these image files from all available fragments on [a] disk is a
key activity in the field of digital forensics”. The task is time consuming with the brute force
method of comparing the contents of each sector on a given secondary-storage image with
the target file sectors. The study showed that this problem maybe solved using graphical
processing units (GPU) in parallel. They chose to use the djb2 hash algorithm (named
after Daniel Julius Bernstein) for its computational speed even though they found a .33%
collision rate. The research found that their parallel implementations of GPU hardware
enabled them to search for deleted file fragments at a rate of 500 MB/s [33].

In 2012 Foster examines if sector hashing is more effective for file carving then file hashing
on a large scale. She finds that a custom B-tree key-value store with a Bloom filter is the
most effective type of database to query sector hashes, looking for distinct blocks. She
shows that even over a large set of data (Govdocs, OCMalware and NSRL) that distinct
blocks still exist and can be used to ID files and software. In order to scale the distinct
blocks method the database must be able to store the file block hashes of every file disk at
I/O speed. In 2012 that speed was calculated at 150 K sectors/second because that is how
fast a 1 TB drive of 512 B sectors can read. However, with media sampling the rate drops
to few thousand transactions per second because a 72000 RPM hard drive can perform 300
seeks per second. If the addresses are non linear then it takes longer to seek, seek means
looking up the addresses. They note the limitation that files must be sector aligned on the
disk for successful identification [34]. Bulk_extractor was created as a tool that implements
the Bloom filter database [35] [27].
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CHAPTER 3:
Methodology

3.1 Experimental Setup

The goal of our research is to find interesting patterns across the hashed sections of the
secondary-storage images of the Non-US portion of the Real Data Corpus. We have under
our collective forensic belt hash-based file carving and software such has bulk_extractor and
hashdb. However, those tools are limited to looking for targeted files, and we know there
is more to secondary-storage images such as the setup of the file-system, and information
hidden in slack and deleted space. Also most computers do not work in isolation, and we
want to know, can we find cross drive patterns that will flag computers that contain similar
files or user activity. In addition these database tools do not easily combine more then two

secondary-storage images.

First we make it our goal to build a database designed to inspect unique individual sectors
of the secondary-storage images in our collection. Then we investigate the fraction of
sectors that are empty, compare matches in allocated and unallocated space within the same
image and across multiple images. We can also match and compare individual sectors with

metadata from volume, partition and file-systems as well individual files.

3.2 Hardware

We used a private data server, it has a configuration of 64-cores and a 512 GB main memory

node that is dedicated for Digital Evaluation and Exploitation Lab, or DEEP, use.

3.3 Software

We used Python version 3.5.1 to automate our tools. We used MongoDB version 3.0.14
for our database. We used Pymongo version 2.5.2 as the interface between Python and the
MongoDB software. We are using The Sleuth Kit or, TSK, version 4.1.3. TSK consists of a
static C/C++ library in addition to a command line tools. TSK can create SQLite schema of

each image and we used schema version 2. Rather then use SQLite schema we import them
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into MongoDB because the flexible documents of MongoDB allow for larger collections
to be split across multiple servers. The library libewf is used to access the Expert Witness
Compression Format (EWF) and pyewf allows us to do this using Python [36]. The EWF is
a compressed format that allows us to store secondary-storage images on a server. We used
the pyewf version 2 library to interface between Python and EnCase® or the original name:
EWF. The pyewf library allows us to convert EWF to the raw format or the binary level of
the secondary-storage device. Using the raw format we can divide the secondary-storage

image into 512 B sectors.

3.4 Data set

Our data set consists of the secondary-storage images in the Non-US portion of the Real
Data Corpus. At the time of our experiment we had 3,196 images in EWF format (with the
EnCase extension) on the NUS portion of the RDC. We found this number by writing a
script that looks through the NUS directory recursively and counts all the files with EWF
extension, EO1. To set up our data base we needed to construct a non-relational schema for
the secondary-storage images. Our schema needed to contain metadata about each image.
We gathered our metadata from the TSK SQLite schema of each image. We looked at
each device with the ewfinfo command from TSK using the pyewf library to find which
devices were created with MDS5 hashes. This gives four pieces of useful information, see
Figure (3.1): the name of the device, the MDS5 hash, the size of the image, and whether the

partitions of the device’s volume-system are recognizable.
[‘4fld4eceldede6276dalf20cc9c9e8818 °, 2490368,
‘/corp/nus/drives /AE/AE10-0023/AE10-0023.E01°, ‘yes’]

Figure 3.1. Four pieces of useful information.

Before we begin building the database we checked for duplicate MDS5 hashes on the images,
so as to not duplicate work. We found that we have 2,914 unique hashes and 122 non-empty

images that require further investigation because they appear to be duplicates. We measured
124,104,544,671,744 bytes of data total.

See Figure 3.2 for an example of how we defined a document by MDS35 hash.
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{‘_id’ : ‘O2bald4al2333a833218538b8dab9cfd "’}

Figure 3.2. The _id command used to identify each image in MongoDB.

The following list are the attributes we retrieve from the TSK tsk_loaddb command.

* The TSK tsk_loaddb produces a SQL table named tsk_image_info and holds
the metadata of the type of disk image format, the sector size, the sequence of image
parts and the time zone. We also include the image name, the number of sectors in
an image, and the image size.

* The volume layer key-value pair is nested in the event that we have more than one
volume. The TSK tsk_loaddb produces a SQL table named tsk_vs_info and
holds the metadata: type of volume-system, the byte offset where the volume-system
starts in bytes, and the block size in bytes.

* The partition layer key-value pair is nested in the event that we have more than one
partition. The TSK tsk_loaddb produces a SQL table named tsk_vs_parts and
holds the metadata. The address of the partition, the offset of the partition start in
bytes (zero being the start of the image), the number of sectors in the partition, and a
description of the partition type including allocation.

* The file-system layer key-value pair is nested in the event that we have more than one
file-system.

* The TSK tsk_loaddb produces a SQL table named tsk_fs_info and holds the
meta-data of the offset of the file-system start in bytes (zero being the start of the
image), the type of file-system, the block size in bytes, the block count or the number
of blocks in the file-system and the address of the root directory and the first valid
address and the last.

A sector is the smallest division of a secondary-storage image and is hardware defined [1].
A file-system uses file allocation units, the smallest unit is a blocks, sometimes referred to
as clusters, and is typically 4096 B [1]. Starting to hash the sectors at the beginning of the
image, or 0, means ignoring file-system alignment. If the file-system alignment is not taken
into account the sector hashes will not be aligned with the file block hashes and matches
will not be found [25].
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MongoDB uses BSON documents to store data records [21]. BSON is short for Binary
JSON (JavaScript Object Notation) [37]. A MongoDB document is identified with _id
a required special key that identifies the document and insures that it is unique in the
collection. We have two different categories of documents one of the entire image and one

of each sector found. See the Appendix for an example of both.

3.5 Experimental Overview

Our experiment summary:

1. Create a database of sector hashes.
(a) Investigate reasons for slow ingestion rate.
(b) Test methods for increasing the ingest.

2. Single and Cross image analysis.

In order to create our database of hashed sectors for the entire media on the Non-US portion
of the Real Data Corpus we first considered using hashdb. It is easy to configure creating
hash blocks of 512 B however creating a hash database of more then 2 images is not what
the tool was created for and neither is documenting the source offset. In addition if we
wanted to do something like do a cross drive hash match we find it is not easy to do. This is
because hahsdb is a wrapper that at first used Bloom Filters then used the dense hash store
in conjunction with other forensic tools to do very useful tasks such as extracting files on

large images.

MongoDB has the advantage of being more flexible but the disadvantage of not being as fast.
We started the database with successfully importing the image, partition and file-system
information. Having that information made it easy to find that all of the images use 512 B
sector as the smallest division. While we know that file-systems are sector aligned we start
at the image offset, and this may cause some misalignment that must be considered in our

analysis.

Our MongoDB document comprised of each unique hashed sector encountered contains a
list of source hashes in the key src_id. We can then track if we have seen the same MD5
hash in multiple secondary-storage images. We also track the number of times we have seen

the MD5 hash on a secondary-storage image, and the total number of times we have seen
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it. We also add the ten most recent offsets at which we have seen the MDS5 hash so that no

one document grows too large. We add to the document as seen in Figure 3.3.

{“src_id’ : |
‘4fldeceldede6276dalf20cc9c9e8818 7,
‘ce8fcl1ed372d69cfb94f0cb20f479e62 ° ,
‘574b0bb13cf3c2ale234945def480eb7 ’ ,
‘2df68f24df5411556bf1d829bd142b02 ° ,
‘e7f90¢c5e0d3d54bf8374414193d6b835 °,
‘a859e3562f0bd4d14749d4e3878894de ’ ],

‘per_source_count’ : {
‘4fldeceldede6276dalf20cc9c9e8818° 1
‘ce8fc1ed372d69cfb94f0cb20f479e62° : 1
‘574b0bb13cf3c2ale234945def480eb7’ : 1,
‘2df68f24df5411556bf1d829bd142b02° 1
‘e7f90c¢5e0d3d54bf8374414193d6b835° 1
‘a859e3562f0bd4d14749d4e3878894de”’ 1

‘total_count’ : 6,

‘offset’ : {‘4fldeceldede6276dalf20cc9c9e8818° : [

314880],
‘ce8fcl1ed372d69cfb94f0cb20f479e62° : |
9941504],
‘574b0bb13cf3c2ale234945def480eb7’ : |
379369472],
‘2df68f24df5411556bf1d829bd142b02° : |
4888550407,
‘e7f90c¢5e0d3d54bf8374414193d6b835° : |
6919168],
“a859e3562f0bd4d14749d4e3878894de’ : |
250661888]}}

Figure 3.3. Sector layer schema for MongoDB.

As we open and read each image at the byte level we section the image into 512 B and
created an MDS5 hash of each byte. Each hash is used to create a document in MongoDB.
The bulk of our database consists of MD35 hashes we created from secondary-storage image
sectors. In order to create the MongoDB documents as seen in Figures 3.2 and 3.3, we
used the MongoDB UpdateOne command to insert our dictionary into our database. We

perform the task in parallel per each image using our 64 available cores. The MongoDB
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UpdateOne command is used in conjunction with MongoDB’s bulk write commands. Each

command is put into a list and looks as seen in Figure 3.4.

UpdateOne ({ _id ’: md5_hash},
{“$addToSet’ : {‘src_id ’: src_id},
‘$push ’: {
‘offset.%s’ % src_id: |
‘$each’: [offset],
“$slice” : 10}},
‘$inc 7 {
‘per_source_count.%s’ % src_id: 1,
‘total_count ’: 1 }},

upsert=True)

Figure 3.4. MongoDB Command

Creating the database this way immediately is slow. As we build the database it is good to
keep in mind some logical limitations. It is poor etiquette to use all 64 cores for an extended
period of time. This project is not the only one being run on our server. Our speed is
also bound by the read and write speeds of Domex’s hard drives. The RDC is on NetApp;
cloud storage. MongoDB has granular locks and when a document is being written, only
one instance of MongoDB can write to it [38]. Write applications are atomic. MongoDB
has concurrency control. Each document has a unique index. In our case it is the MDS5
hash of each 512 B sector [39]. In the case of multi-document transactions, or concurrency,
MongoDB uses a two phase commit. The actions are initialized and then applied [39]. This

is how we can use the multiple cores available.

3.6 Inspecting The Slow Ingest

We ingested 500 images. Ingesting the secondary-storage images took so much time that we
had to carefully consider all the reasons and experiment on different ways to insert the data.
After finding that building our database was not going to be done in one run of our script

we sorted the images by size and limited the number of images that we would be inserting
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at once; we sorted from our smallest of 2,490,368 B to our largest at 1,000,204,886,016
B. We logged timing data for each image. We started by inserting the images that were

approximately 500 Mb or smaller in size.

We noticed that starting at approximately 60 Mb the same size secondary-storage image
takes an increasingly amount of time to process. Considering the fact that our data set is
continuous, and because the insertion time can take any value, we can use a histogram to
search for a pattern. We created a histogram of frequency versus insertion time. We created
bins (data split into intervals) of 50 seconds. We can see from Figure 3.5 that most of the
500 Mb or smaller secondary-storage images (about 360) can be inserted in 50 seconds or
less. That lends some evidence to the observation that opening, reading and hashing each
sector is not the root of our slow down. If it were then all of the images would take a long
time to ingest. Opening, reading and hashing can still become a problem for larger images,

but for now we can say the problem is with the database.
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Figure 3.5. Histogram of times for inserting secondary-storage images
smaller than 500 Mb into the database.

To look for other patterns, we created a scatter graph so that we could observe how the
same size images took a different range of time to ingest, see Figure 3.6. A 60 Mb
secondary-storage image took as little as 2 minutes and as long as 40 minutes, and a 130 Mb
secondary-storage image took as short as approximately 2 minutes and as long as 1 hour

and 40 minutes.
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Image size

When looking at the range of values as in Table 3.1, we asked whether there was something
unique about the data that took a long time. We reexamined the secondary-storage images
as seen in Figure 4.2 to see if there was something unique about the secondary-storage

images that took the longest to process. These secondary-storage images had the shortest

Time to insert images approximately 500 Mb
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Figure 3.6.

Time

approximately 500 Mb.

and longest insertion times per the same size of image.

08:20:00

Inserting secondary-storage images that are smaller then

Table 3.1. A closer look at differing insertion times for the same image size.
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Names ~ Size | Min Time (H:M:S) | Max Time (H:M.:S)
CN32-04 and IN10-0229 | 64 Mb | 00:01:42 00:39:51
CN27-57 and CN21-01 128 Mb | 00:01:49 01:37:56
CN32-51 and IN10-02014 | 255 Mb | 00:02:33 03:21:46
CN32-85 and CN6-12 350 Mb | 00:08:42 08:06:25
CN19-12 and IN133-1018 | 500 Mb | 00:08:29 06:46:26

While the high volume of images that take a short time indicate there is no problem with
opening, reading and hashing most of the images, perhaps some of the images are damaged.
Perhaps the image is corrupted. We can tell from Table 3.2 that there is no problem with
any of the images that took a long time to ingest initially. When creating the database with
the target images non of the images took a long time. Which is good news, more evidence

that there is nothing too slow about opening, reading and hashing each image.

Table 3.2. A closer look at differing insertion times for the same image size

re-inserted.
Names ~ Size | Min Time (H:M:S) | Max Time (H:M.:S)
CN32-04 and IN10-0229 | 64 Mb | 00:00:15 00:00:55
CN27-57 and CN21-01 128 Mb | 00:00:27 00:01:53
CN32-51 and IN10-0214 | 255 Mb | 00:01:13 00:02:48
CN32-85 and CN6-12 350 Mb | 00:01:24 00:03:48
CN19-12 and IN133-1018 | 500 Mb | 00:01:44 00:04:39
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CHAPTER 4

Results

4.1 Top Common Matches

After ingesting 980 secondary-storage images we saw that the most common sector hash
had 181,976,293 matches. We can also look at the other most common matches. We used
the command in Figure 3.7 which took about 15 minutes to complete. The counts for the

top 3 sectors are seen in 4.2.

db .RDC_NUS. find ({}, {"_id":1, "total_count":1}).
sort({"total_count" : —1}).limit(3)

Figure 4.1. A MongoDB Command to find most common MD5 hash.

{"_id" : "de0O3fe65a6765caa8c91343acc62cffc", "total_count”" : 181976293}
{"_id" : "bf619eac0cdf3f68d496ea9344137e¢8b", "total_count" : 128869202}
{"_id" : "bde3baf7bc52f4db657ef3f8c47bdcbb", "total_count" : 19254824}

Figure 4.2. Most common hash with about 980 images inserted.

We know from previous experiments that most top matches are not probative. They are
sectors with very simple patterns and because they cannot link a sector to a file or link two

images to one another they should not be considered interesting.

We were able to identify 1537 of the 3000 most common sectors by comparing against
sectors on a set of computers we had in our laboratory. Table 4.1 is a breakdown of the
major kinds of 1537 sectors. It is clear that many of these common sectors are useless. We

will now discuss in more detail what these patterns look like.
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Pattern Count

Single Repeating Character 68
Progressive Difference 74
25 % > Same Character 369
Repeating Sequence > 2 characters | 6
Consecutive Random Number 156
Zero block of > 20 in middle 337
Shannon Entropy > 4 518
Interesting Patterns Remaining 9

Table 4.1. Summary counts of different types of sectors found in the 1537
recognized sectors of the 3000 most common sectors in our hash collection.

We would like to eliminate the non-probative matches. An easy example is a pattern
consisting entirely of one character. The most common sector, for instance, consisted of
512 NULL characters. We found other characters repeated 512 times (Table 3.4).

Unnecessary spaces in a sector can often be eliminated. However, if the spaces are randomly
distributed within the sector, there can be 512!/500! ~ 103 possibilities, too many to specify
in advance. As an example we show in Table 4.3 a pattern of mostly ASCII character 255

with a few intervening NULLs.

Pattern Name Single Character
Example of Pattern | 1313131313 13131313 131313131313 1313 ...

Table 4.2. Example of 512 Bytes of the same exact character.

However, if the spaces are randomly distributed within the sector, since there are
512!/500! ~ 103* possibilities they take more thought to identify. As an example we
table 4.3 with a pattern of mostly ASCII character 255 and a few NULLs in-between.

26



Pattern Name 25% > same character
Example of Pattern | ... 255000255 ...

Table 4.3. Example in which twenty-five percent or more of the sector is the
same exact character.

We saw a number of sectors consisting of 511 occurrences of the same character and one
occurrence of another character. For instance, we saw a sector of NULLs followed by a
single 255 character. We found it was useful to test if a quarter or more of a sector had the
same character. Similarly, if a 4-byte pattern repeated for more than a quarter of the sector

then that sector is most likely non-probative or common [34].

Another pattern we saw was where every three characters the following character increased
by 1. The in-between characters tend to be 3 NULL characters; however, we can generalize

that to check for the in-between characters having a length between 1 and 4.

Pattern Name Progressive Difference

Example of 10002000300040005000600070008000900
Pattern 01000011

Example of 1297001307001317001327001337001347001357
Pattern 00136700137700138700 139

Table 4.4. Example in which a byte value increases by 1 every X characters.

Repeating characters are another pattern we found frequently. We made the algorithm to

count if it found two characters repeated, as for example in 4.5.

Pattern Name 2 > more characters repeating
Example of Pattern | 313313313
Example of Pattern | 80 65 68 68 73 78 71 88 88 80 65 68 68 73 78 71

Table 4.5. Example repeating sequence of characters.

A long block of nulls in the center of a sector also suggests a non-probative sector since it

suggests misalignment of the view of the data.
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We investigated our sectors for simple patterns and created algorithms to characterize those
patterns. We successfully found patterns to eliminate from our database because common

blocks will not help us cross drives or to find useful files.

4.2 Finding the right Shannon Entropy value

After creating algorithms to eliminate some of the common blocks we encountered we were
still left with simple patterns to consider. We can use an entropy algorithm to find many
other simple non-probative patterns. For instance, Table 4.6 shows a pattern that has 5
or more repeating characters, but the repeating characters are random. An alternative to
regular expressions is to calculate the entropy of a sector and classify as uninteresting all
sectors with low entropy. While this is simple to compute it is not as perfect as regular
expressions. Thus forensic investigators have a decision to make, and sometimes perfection

is necessary and sometimes not.

Pattern Name Randomly repeating characters > 5
7171717171146 71 146 210 210 210 174 174 174 174 69 69
69 69 69 69 93 93 93 93 239 239 239 239 239 239 117 239 117
239 117 117 117 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
1717571717 1717 17 17 17 17 17 17 17 20 20 20 20 20 20 20
20202020 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
202020202020202020202020 882017 174 30 34 252 252
252 252 252 252

Example of

Pattern

Table 4.6. Repeating sequence of 5 or more characters where the character
repeated appears random.

Patterns in successive differences (e.g. 0, 1, 2, 3, 4, 5, ...) are another type of simple pattern

that we can remove from consideration.

In thermodynamics entropy is the measure of randomness. In information theory we can
measure the randomness with Shannon values. If we set X as arandom variable the Shannon

entropy equation is

H(X) == )" p(x)logp(x).
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To find a H(X) threshold that will screen simple patterns and catch complex ones, we
first took a random sample of 100 sectors. Then we identified the interesting sectors and
label them as “positives”. We created a file and arranged it so the first 50 are complex or
“positives”. Then we calculate the Shannon entropy for each sector in our sample. We
then counted the number of true positives by using the set of representative thresholds and
computing how many positives were over the threshold; these were true positives. Then we
computed how many positives are below the threshold; these were false negatives. Then
we computed how many non-positives were over the threshold; these were false positives.
“The F score can be interpreted as a weighted average of the precision and recall, where an

F score reaches its best value at 1 and worst at 0.”” [40]

- Ip
Precision = ———
tp+ fp
t
Recall = P
tp+ fn
Foo. 1 _s. prec.is.ion - recall
1, 1 precision + recall

recall ~ precision

According to our Table 4.7 we can see that a Shannon Value of 4 will screen simple
patterns and catch complex ones, so we recommend this value. But not everything above
the threshold was correct, and this measured missed some of the patterns we referred to in

the previous section.
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Shannon Value | TP | FN | FP | F-Score
4 491 | 9 12 | 0.9791
4.5 443 | 57 |7 ] 0.9326
5 391 | 109 | 6 | 0.8718
6 146 | 354 | 3 | 0.4499
7 11 [ 489 |0 | 0.0430
8 0 500 | 0 | NA

Table 4.7. Calculated F-Score given TP, FP, FN, and Shannon values.

4.3 Speeding up the Big Database

The secondary-storage image that took the longest to ingest into the database was
approximately 350 Mb and it took eight hours and 20 minutes. It is encouraging that
a smaller database does not take as long to create as a large one because now we know there

is problem with how we set up our database.

Taking a second look at Figure 3.6 we see that the first 500 images total 119 GB and it
took about 8.33 hours. At minimum the processing rate is 14.3 GB per hour and the total
image size is 124,000 GB. When timing how long it takes our script to perform a task we
must remember that the times are an approximation. Every time we run the script we get a

different time. What is import here is to observe outliers.

When doing the same script in parallel if we keep the number of jobs at max three and then
we estimate the ratio of one minute per GB. We find for example that nine secondary-storage
images at that are one GB in size take about three minutes. Insertion time takes 30 minutes
for one GB, so we can see that MongoDB is our bottleneck. Insertion time for the hashed
sectors of one GB secondary image can take between seven minutes and 40 minutes. If we
keep the max number of jobs to two then we can keep that time range when inserting sector
hashes of each image into MongoDB. If not we run the risk of one GB taking two hours or

more. It took about six hours to process 16 one GB hard drives.

We have 124,104,544,671,744 B of data or about 124,104 GB of data. Best case scenario it

will take 1 minute to make a list of commands and 7 minutes to insert those commands per
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GB of data. 8 minutes per GB of data. 124,104 GB divided by 8 minutes equals a speed of
15513 GB per minute or 86 days; which is 2.88 months.

It could be that the secondary-storage images that took hours to insert have a lot of exact
same MD5 hashes. So we examined CN19-12 and IN133-1018. Remember CN19-12 an
approximately 500 Mb image took eight and half minutes to ingest. We found that it had 972
of the exact same sector hashes bf619eac0cdf3£68d496ea9344137e8b. IN133-1018,
also an approximately 500 Mb image, and it took close to 7 hours to ingest, it has 2,532 of
the exact same sector hash b£f619eac0cdf3£68d496ea9344137e8b,

and has 940,636 of the sector hash 96c8e709c96dce8f9ca6£3d760479345. It is
encouraging that we see an increase in matching numbers in the image that takes the
longest. We now know we need to consider how to deal with a large number of matching

sectors.

While finding this information we observed that we had to search through all of the
MongoDB documents because the per source count key has nested values. It took 5,951
seconds or over an hour and half to search through all of the documents. This is a problem
because when updating the document it will also take a long time to find the correct sub

document to update. MongoDB works fastest when it can use its index value.

We updated the MongoDB documents so that there is nesting. With the updated schema
we were able to process 1,000 of the secondary-storage images, sorted by size in six
hours and 40 minutes; a significant improvement. That was an ingest of 646 GB out
of 124 TB. Or a rate of 646GB/1840.23Minutes ~ 0.35GB/Minutes so it would take
roughly 124000Gb/0.35GB/Minutes* ~ 354285.71minutes. or about 246 days. Still
quite sometime but an improvement of 115 days. It would be best to create the database in

chunks and do an analysis in steps.
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CHAPTER 5:

Conclusion

We started this project with the idea that creating the database would be the first step and that
doing statistical analysis would be the second step. Creating a large database takes a large
amount of time, and our results suggest that the insertion rate per byte of data depends on
too many factors to be very consistent. This however need not mean that using MongoDB

is not viable.

It could be that our problem is that we do not have enough computing power. NPS has a
super computer called Hamming that we could use. The downside is that because more
people share the computer processing power has to be scheduled and data maybe deleted.
We will save for future work the potential of using Hamming in addition to finding out if the

number of concurrent workers or maximum sectors to be inserted will increase the speed.

As noted by Garfinkel when reflecting on the challenges of managing large-scale forensics
data, solutions from other fields do not easily transfer because of the heterogeneous nature of
the data. Large amounts of forensic data cannot be easily locally processed and reduced [27].
We must instead sample data (for example restrict tracking all of the offsets of matching
MDS5 hashes to limit the size of the MongoDB record and make the database viable). Also
being patient and finding a safe place to stop without losing progress when inserting the

data is something that we will add in future work.
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