

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

A SYSTEMATIC SOFTWARE, FIRMWARE, AND

HARDWARE CODESIGN METHODOLOGY FOR

DIGITAL SIGNAL PROCESSING

by

Daniel Y. Chang

March 2014

 Dissertation Supervisor: Neil C. Rowe

THIS PAGE INTENTIONALLY LEFT BLANK

 1

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for

reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and

reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2014

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: A SYSTEMATIC SOFTWARE, FIRMWARE, AND

HARDWARE CODESIGN METHODOLOGY FOR DIGITAL SIGNAL

PROCESSING

5. FUNDING NUMBERS

6. AUTHOR(S) Daniel Y. Chang

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING

ORGANIZATION REPORT

NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

ECSEL/JEWEL, NAWCWD

575 I Avenue, Suite 1

Point Mugu, CA 93042-5049

10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government. IRB protocol number N/A

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)

Creating an embedded system that meets its functional, performance, cost, and schedule goals is a software-and-

hardware codesign problem, since the design of the software and hardware components influence each other. The

traditional design methodology is sequential, with hardware designed first and then software. The lack of a unified

and unbiased approach can lead to suboptimal design and incompatibilities across the software and hardware

boundary.

To solve these problems, we propose a new software/firmware/hardware codesign methodology to

systematically build correct designs efficiently. This codesign methodology includes requirements development,

architecture forming, software/ firmware/hardware partitioning, design-pattern mapping, new-design pattern

synthesis, integration, and testing.

We tested our methods on three application areas. One was a digitizer-filter architecture for ultra-high

frequency signals for which we synthesized design patterns in firmware to meet high-frequency requirements.

Another was a digitizer-filter architecture for low-frequency signals. A third was a hidden Markov model using

dynamic programming. We implemented and tested the first application on a Tektronix/Synopsys embedded

system and the second on a Pentek embedded system based on the requirements provided by the stakeholders.

14. SUBJECT TERMS A*, AND/OR graph, AO*, codesign, concurrent design, data alignment,

digital signal processing, design pattern, embedded systems, firmware/software/hardware codesign,

FPGA, OR tree, hidden Markov model, polyphase DFT filter banks, post-deserialization bits

remapping, pre-serialization bits remapping, switch-and-filter architecture, reconfigurable computing

15. NUMBER OF

PAGES
211

16. PRICE CODE

17. SECURITY

CLASSIFICATION OF

REPORT
Unclassified

18. SECURITY

CLASSIFICATION OF THIS

PAGE

Unclassified

19. SECURITY

CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION

OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

 Prescribed by ANSI Std. 239-18

 2

THIS PAGE INTENTIONALLY LEFT BLANK

 3

Approved for public release; distribution is unlimited

A SYSTEMATIC SOFTWARE, FIRMWARE, AND HARDWARE CODESIGN

METHODOLOGY FOR DIGITAL SIGNAL PROCESSING

Daniel Y. Chang

Civilian, Naval Air Warfare Center, Weapons Division

B.S., Fu-Jen Catholic University, 1979

M.S.E.E, California State University, Northridge, 1992

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

March 2014

Author: __

Daniel Y. Chang

Approved by:

Neil C. Rowe

Professor of Computer Science

Dissertation Supervisor, Dissertation Committee Chair

______________________ _______________________

Mikhail Auguston Man-Tak Shing

Associate Professor Associate Professor

of Computer Science of Computer Science

______________________ _______________________

Roberto Cristi Melissa Midzor

Professor of Electrical Engineering JEWEL, NAWCWD

Approved by: ___

Peter J. Denning, Chair, Department of Computer Science

Approved by: ___

Douglas Moses, Vice Provost for Academic Affairs

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

ABSTRACT

Creating an embedded system that meets its functional, performance, cost, and schedule

goals is a software-and-hardware codesign problem, since the design of the software and

hardware components influence each other. The traditional design methodology is

sequential, with hardware designed first and then software. The lack of a unified and

unbiased approach can lead to suboptimal design and incompatibilities across the

software and hardware boundary.

To solve these problems, we propose a new software/firmware/hardware codesign

methodology to systematically build correct designs efficiently. This codesign

methodology includes requirements development, architecture forming, software/

firmware/hardware partitioning, design-pattern mapping, new-design pattern synthesis,

integration, and testing.

We tested our methods on three application areas. One was a digitizer-filter

architecture for ultra-high frequency signals for which we synthesized design patterns in

firmware to meet high-frequency requirements. Another was a digitizer-filter architecture

for low-frequency signals. A third was a hidden Markov model using dynamic

programming. We implemented and tested the first application on a Tektronix/Synopsys

embedded system and the second on a Pentek embedded system based on the

requirements provided by the stakeholders.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

TABLE OF CONTENTS

I. INTRODUCTION AND PROBLEM ADDRESSED ...27
A. ADDRESSED PROBLEM ..27
B. MOTIVATION ..28
C. CLAIM ..29

D. TRADITIONAL METHODOLOGY FOR DSP DESIGN29
E. OUR SOFTWARE ENGINEERING METHODOLOGY29
F. TOPICS COVERED FROM CHAPTERS II TO VIII30

II. PREVIOUS WORK ...33
A. REQUIREMENTS ENGINEERING ...33

1. Requirements Development ..33
2. Rational Unified Process ...34

3. Design-Based Requirements ...35
4. Test-Based Requirements ..35

5. Agile Software Development ...35
6. Model-Driven Requirements Engineering36

7. Model-Driven Development ..36
8. Domain-Specific Modeling and Language37

B. SOFTWARE ENGINEERING OF EMBEDDED SYSTEMS37

C. CONCURRENT SOFTWARE ENGINEERING OF EMBEDDED

SYSTEMS ...38

1. A Top-down Concurrent Design Process for an Embedded

System ...38

2. POLIS..41
3. Orthogonalization of Concerns and Platform-Based Design43

4. The Double Roof Model of Codesign, a System Level Design45
5. Integrated Chip Codesign ...47

D. FPGA DESIGN METHODOLOGY ..48

1. FPGA and Central Processing Unit ...48
2. FPGA and Hardware Description Language48

3. FPGA Programming ..49
4. HDL is Object-Based not Object-Oriented50
5. Two Primary Hardware Description Languages—VHDL and

Verilog ...51

6. FPGA Design Methodology—HDL Approach54
E. DESIGN PATTERNS ..56

1. Software Design Patterns ..57

2. Embedded Software Design Patterns ...58
a. CPU-Based Firmware Design Patterns58
b. Reconfigurable Computing Based Design Patterns58

3. Hardware Components Selection ...62
F. A* AND AO* ALGORITHMS ...63

 8

III. METHODOLOGY ..65
A. SW/FW/HW PARTITIONING METHODOLOGY65

1. Develop Requirements ...65

2. Define Constraints ...65
3. Form an Architecture ..65

a. Consider Design Options ..65
b. Form an Architecture for the Optimal Option66
c. Simplify Architecture for Partitioning Analysis66

4. Build a Tree to Assign Modalities to Functional Components66
a. Software, Firmware and Hardware Partitioning66
b. Design Patterns Mapping ...68
c. Rate the Cost..68

5. Repeat Steps 3 through 5 ...69
6. Repeat Steps 4 through 6 ...69
7. Repeat Steps 1 through 7 ...69

B. EXAMPLE—FILTERING FOR ULTRA-HIGH FREQUENCY

SIGNALS ..70
1. Develop Requirements ...70
2. Define Constraints ...71

3. Form an Architecture ..71
a. Consider Design Options ..71

b. Form an Architecture for the Optimal Option73
c. Simplify Architecture for Partitioning Analysis73

4. Build a Tree to Map Functions to Modalities73

a. Map to Software/Firmware/Hardware73
b. Map to Design Patterns...77

C. EXAMPLE—FILTERING FOR LOW FREQUENCY SIGNALS88
D. EXAMPLE—AIR DATA TEST SET ..91

1. Option 1 (A1-1) ...95
2. Option 2 (A1-3) ...95
3. Option 3 (A2-1) ...96

4. Option 4 (A2-3) ...96
E. A TOOL FOR SW/FW/HW CODESIGN ...96

IV. RECONFIGURABLE COMPUTING DESIGN PATTERNS99
A. POLYPHASE DFT FILTER BANKS ...99

1. Name and Classification ..99

2. Intent ...99
3. Motivation ...100
4. Applicability ...100
5. Participants ...100

6. Collaborations ..100
7. Consequences (Benefits) ..101
8. Implementation ..102
9. Algorithm ..102
10. Known Uses (Examples) ..102

 9

a. Example 1 ..102
b. Example 2 ..103

11. Related Patterns ...104

B. DATA ALIGNMENT DESIGN PATTERN ..104
1. Name and Classification ..104
2. Intent ...104
3. Motivation ...105
4. Applicability ...106

5. Participants ...106
6. Collaborations ..106
7. Consequences..106
8. Implementation ..107

9. Algorithm ..107
a. Bit-Alignment ..107
b. Byte-Alignment..108

c. Overall Alignment ...109

10. Known Uses (Examples) ..110
11. Related Patterns ...110

C. POST-DESERIALIZATION BITS REMAPPING DESIGN

PATTERN ..110
1. Name and Category ...111

2. Intent ...111
3. Motivation ...112
4. Applicability ...112

5. Participants ...112
6. Collaborations ..112

7. Consequences..112
8. Implementation ..113

9. Algorithm ..113
10. Known Uses (Examples) ..113
11. Related Patterns ...114

D. PRE-SERIALIZATION BITS REMAPPING DESIGN PATTERN114
1. Name and Classification ..115

2. Intent ...115
3. Motivation ...116
4. Applicability ...116

5. Participants ...116
6. Collaboration ..116
7. Consequences..116
8. Implementation ..116

9. Algorithm ..116
10. Known Uses (Examples) ..117
11. Related patterns ...118

E. SWITCH-AND-FILTER ARCHITECTURE ...118
1. Name and Classification ..118

 10

2. Intent ...119
3. Motivation ...119
4. Applicability ...119

5. Participants ...119
6. Collaborations ..119
7. Consequences..121
8. Implementation ..121
9. Known Uses (Examples) ..122

10. Related Patterns ...123

V. CASE STUDY ONE ...125
A. METHODOLOGY ..125

1. Develop Requirements and Define Constraints125

2. Form an Architecture ..126
3. Build a Tree to Map Functions to Modalities126

4. Implementation ..127
B. FPGA SOFTWARE TEST METHODOLOGY127

C. TEST RESULTS ..130
1. Setup ..130

a. ADC/FPGA/DAC Specifications ..130

b. Equipment ...132
2. Test Specifications ..132

a. Alignment Tests ...132
b. Harmonics Tests ..132
c. Flatness Tests ..132

d. Linearity Tests ...133
e. Noise Floor Tests ..133

f. Sensitivity Tests ...133
g. Test with JEWEL RF Jamming Device134

3. Functional Tests ...134
a. Data in the FPGA ...134
b. Comparison between Analog-to-digital Converter and

FPGA Data ..134
c. Tests without Proper Alignment Software135

d. Tests with Proper Alignment Software136
4. Performance Tests ...137

a. Flatness Test ..137

b. Linearity Test (500 MHz, RBW=3 MHz)138
c. Noise Floor Test ..139
d. Sensitivity Test ...139

5. Validate with an Existing JEWEL RF Jamming Device140

D. TESTS CONCLUSION ...141

VI. CASE STUDY TWO..143
A. METHODOLOGY ..143

1. Develop Requirements and Define Constraints143
2. Form an Architecture ..144

 11

3. Build a Tree to Map Functions to Modalities145
4. Reusable Assets ..148

B. TESTS ...153

1. Purpose of Our Tests ...153
2. Test Specifications ..153
3. Pentek Software IP Cores ...154
4. Tests Configurations, Methodology and Results...........................154

a. Signals and IP Cores Configurations154

b. Methodology (Software Program in C Programming

Language)..156
c. Test Results ..157

C. TESTS CONCLUSION ...159

VII. CASE STUDY THREE—HIDDEN MARKOV MODEL161
A. INTRODUCTION..161

B. FORWARD ALGORITHM CASE STUDY ...162
1. Develop Requirements and Define Constraints162

2. Form an Architecture ..162
3. Build a Tree to Map Functions to Modalities163
4. Discussion..167

C. METHODOLOGY FOR VITERBI ALGORITHM168

VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH .169

A. OUR CLAIM ..169
B. OUR CONTRIBUTIONS ..169
C. FUTURE RESEARCH DIRECTIONS ...170

APPENDIX A. CASE STUDY ONE BACKGROUND ..173
A. CHALLENGES WE ARE FACING ..173

1. Background (Two-Ray Segment Propagation Model)173
2. Using an Example to Illustrate the Challenges in Signal

Simulation ...174
B. HOW DO ADC/FPGA/DAC SYSTEMS SOLVE OUR PROBLEMS ...178

APPENDIX B. TEKTRONIX ADC/FPGA/DAC DEMO SYSTEM181

A. TADC-1000 DIGITIZER ..182
B. TIPA-3100 ADC INTERPOSER ..183
C. HAPS-62-1 FPGA ..184
D. TIPD-3200 DAC INTERPOSER ..185

E. TDAC-2000 DAC ...185

APPENDIX C. POLYPHASE DFT FILTER BANKS EXAMPLES187
A. POLYPHASE DFT FILTER BANKS EXAMPLE 1187
B. POLYPHASE DFT FILTER BANKS EXAMPLE 2188

APPENDIX D. BACKGROUND KNOWLEDGE ..191

A. SETUP TIME AND HOLD TIME REQUIREMENTS191
B. INHERENT TIMING WINDOW ..191
C. DEMULTIPLEXER ..192

 12

D. MULTIPLEXER ..193

APPENDIX E. DERIVATION OF POLYPHASE DFT FILTER BANKS195
A. POLYPHASE DFT FILTER BANKS REPRESENTATION IN Z-

DOMAIN ..195
B. POLYPHASE DECOMPOSITION ...197
C. ANALYSIS POLYPHASE DFT FILTER BANKS WITH M

FILTERS ..197
D. SYNTHESIS POLYPHASE DFT FILTER BANKS WITH M

CHANNELS ...200

LIST OF REFERENCES ..201

 13

LIST OF FIGURES

Figure 1 Rational unified process lifecycle phases, milestones and iterations35
Figure 2 A top-down concurrent design process for an embedded system40
Figure 3 POLIS process ...42
Figure 4 Platform-based design process ...44
Figure 5 Platform-based design (PBD) is iterative ..45

Figure 6 Double-roof model of codesign ...46
Figure 7 FPGA programming process..49
Figure 8 HDL hierarchy ...54
Figure 9 Hierarchic flow of the top–down design method. ..55

Figure 10 Software/firmware/hardware codesign methodology process flow70
Figure 11 Five options for filtering ..72

Figure 12 An architecture satisfying our requirements and constraints73
Figure 13 Exclude ADC and DAC from analysis ..73
Figure 14 Four possible branches from the root...75

Figure 15 Four possible branches from the root in a simplified form75
Figure 16 An OR tree for filtering of ultra-high frequency signals76

Figure 17 Firmware components ..77
Figure 18 Only ATT and C are possible mappings ..81
Figure 19 Only P is a possible mapping. ..83

Figure 20 Only DF, SD, and DP are possible mappings ..86
Figure 21 An architecture without parallelism ...88

Figure 22 OR tree for low frequency signals ...89
Figure 23 Optimal design pattern mapping ..91

Figure 24 Air data test set architecture ...92
Figure 25 A simplified architecture for analysis ..93

Figure 26 Four possible mappings ...94
Figure 27 Tool design flowchart ..98
Figure 28 Typical components interfacing with polyphase DFT filter banks100
Figure 29 Polyphase DFT filter banks ...101

Figure 30 16 magnitude responses of a polyphase DFT filter banks for real inputs103
Figure 31 Signal before and after polyphase DFT filter banks104
Figure 32 Shrinking of data window at higher data rate ..105
Figure 33 Three timing cases ...105

Figure 34 Bit-alignment flowchart ...108
Figure 35 Byte-alignment flowchart ..109
Figure 36 Overall-alignment flowchart ..110

Figure 37 Level one demultiplexing ..111
Figure 38 Level two demultiplexing ..112
Figure 39 Level one multiplexing ..115
Figure 40 Level two multiplexing ..115
Figure 41 A switch-and-filter architecture ...120
Figure 42 An instantiation of switch-and-filter architecture ..122

 14

Figure 43 Architecture for ultra-wide instantaneous bandwidth signal processing126
Figure 44 FPGA test methodology ...128
Figure 45 ADC input limits ..131
Figure 46 Digitized sinewave in the FPGA..134

Figure 47 Tests without proper alignment software (in frequency domain)136
Figure 48 Signals at 500 MHz and 1 GHz; RBW=3 MHz ...136
Figure 49 Signals at 3 GHz and 6 GHz, RBW=1 MHz ...137
Figure 50 Sweeping, RBW=3 MHz; increment=10 MHz ..138
Figure 51 At bandwidths of 6 GHz and 1.8 GHz ...140

Figure 52 At bandwidths of 1 GHz and 200 MHz ...140
Figure 53 At bandwidth of 1 MHz ...141
Figure 54 An architecture ...145

Figure 55 Node A2 (A4) is the only solution ...147
Figure 56 Reusable assets mappings ..152
Figure 57 Two detected pseudo pulse Doppler target returns in a 2-D plot157

Figure 58 Two detected pseudo pulse Doppler target returns in a 3-D plot158
Figure 59 Two input signals before detection ..159

Figure 60 Hidden Markov model architecture ...163
Figure 61 Two possible options ...167
Figure 62 Distance is simulated by path loss ...175

Figure 63 Simulation by using programmable attenuators ..176
Figure 64 N=4, N(analog)=12, N(digital)=8 ..177

Figure 65 N=8, N(analog)=56, N(digital)=16 ..177
Figure 66 Simulation by using an ADC/FPGA/DAC system ..178

Figure 67 ADC/FPGA/DAC demo system ..181
Figure 68 A simplified overall architecture for our case study181

Figure 69 A detailed overall architecture for our case study ...182
Figure 70 TADC-1000 architecture ...183
Figure 71 TIPA-3100 architecture ...184

Figure 72 TIPD-3200 architecture ...185
Figure 73 TDAC-2000 architecture ...186

Figure 74 A one-to-four demultiplexer ..192
Figure 75 A four-to-one multiplexer ..193

Figure 76 A single filter in frequency domain ...195
Figure 77 A filter bank of M filters spaced at 2π/M in the frequency domain196
Figure 78 M-filter polyphase representation ..199

Figure 79 Apply Noble identity to polyphase representation...199
Figure 80 Synthesis network ..200

 15

LIST OF TABLES

Table 1. Hardware description language features ..51
Table 2. Some VHDL and Verilog construct differences ..52
Table 3. Data flow method in Verilog ...52
Table 4. Behavior method in Verilog...53
Table 5. FPGA design tools survey ...56

Table 6. Software design patterns ..57
Table 7. Design patterns for embedded systems ..59
Table 8. Design patterns for reconfigurable computing ..61
Table 9. Electronics component selection..62

Table 10. A* algorithm ..64
Table 11. Least and most numbers of mappings ..68

Table 12. Functional requirements...71
Table 13. Non-functional constraints ...71
Table 14. Five options for filtering ..72

Table 15. Filter cost rating ...74
Table 16. Nine options from the root ...74

Table 17. Six mappings under A3 ..76
Table 18. Three mappings under A32 ..76
Table 19. Five classes ..79

Table 20. Only ATT and C are possible mappings ..80
Table 21. Four subclasses ..81

Table 22. Only P is a possible mapping ...82
Table 23. Eight purposes ..84

Table 24. Only DF, SD and DP are possible mappings ...86
Table 25. Possible optimal leaf-nodes ...87

Table 26. New design patterns descriptions...88
Table 27. Eliminate A3 from analysis ...88
Table 28. Cost association ...89
Table 29. Six major groups for CPU-based embedded system design patterns90

Table 30. Four subclasses design patterns for hardware interface90
Table 31. Components descriptions ...92
Table 32. A simplified table for analysis ...93
Table 33. Possible mappings for 2 components ...94

Table 34. Expand nodes A1 and A2 ..94
Table 35. Expand nodes A4 and A6 ..94
Table 36. Option 1 ...95

Table 37. Option 2 ...95
Table 38. Option 3 ...96
Table 39. Option 4 ...96
Table 40. VB6 program: post-deserialization bits remapping algorithm.......................113
Table 41. VB6 program: post-deserialization bits remap algorithm114
Table 42. VB6 program: pre-serialization bits remapping algorithm117

 16

Table 43. VB6 program: pre-serialization bits remap algorithm118
Table 44. Data rate, throughput, and width calculation ...121
Table 45. Throughputs calculations ...123
Table 46. FPGA process definitions ..129

Table 47. Equipment models and serial numbers ..132
Table 48. Harmonics test specifications ..132
Table 49. Flatness test specifications ...133
Table 50. Noise floor test specifications ..133
Table 51. Sensitivity test specifications ...133

Table 52. The first 20 LFSR patterns ...135
Table 53. Harmonics test specifications ..137
Table 54. Flatness test specifications ...138

Table 55. Linearity test ..139
Table 56. Noise floor test ...139
Table 57. Sensitivity test ..139

Table 58. Architectural components ..145
Table 59. Node A ...146

Table 60. Node A2 ...146
Table 61. Node A4 ...146
Table 62. Vendors analysis ..147

Table 63. Expanding node A2-1 ..149
Table 64. Expanding node B1 ..150

Table 65. Expanding node B1-2 ..150
Table 66. Expanding node B1-2-2 ...151

Table 67. Expanding node B1-2-2-2 ..151
Table 68. Expanding node B1-2-2-2-6 ..151

Table 69. Map requirements to IP cores ..153
Table 70. Map requirements to IP cores ..153
Table 71. Pentek intellectual property cores ..154

Table 72. Input signal #1 characteristics ..155
Table 73. Input signal #2 characteristics ..155

Table 74. External trigger characteristics ..155
Table 75. DDC IP core configurations...156

Table 76. ADC IP core configurations...156
Table 77. Generated and captured Doppler shifts ..159
Table 78. Comparisons between with and without the SW/FW/HW methodology160

Table 79. Forward algorithm and Viterbi algorithm ..162
Table 80. Nodes A and A3 ...164
Table 81. Nodes A3-1, A3-1-1, A3-1-1-1 and A3-1-1-1-1 ..165
Table 82. Nodes A3-2, A3-2-2, A3-2-2-2 and A3-2-2-2-2 ..166

Table 83. Two options ...168
Table 84. Purpose and limitation of attenuators, combiners, splitters175
Table 85. Analog and digital interconnections ..176
Table 86. Analog and digital power budget ...179
Table 87. Analog and digital time delays ..179

 17

Table 88. XC6VLX760-1 resource ..184
Table 89. MATLAB program: polyphase DFT analysis filter banks188
Table 90. MATLAB program: polyphase DFT analysis and synthesis filter banks189
Table 91. Filter banks expressions ...197

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

LIST OF ACRONYMS AND ABBREVIATIONS

A* A star

ADC analog-to-digital converter

ADTS air data test set

AIRL Airborne Interceptor Research Laboratory

AO* AO star

ASIC application-specific integrated circuit

CAD computer aided design

CFSM Codesign Finite-State Machine

COTS Commercial off-the-shelf

CPLD complex programmable logic device

DAC digital to analog converter

DCM data converter module

DFT discrete Fourier transform

DOD Department of Defense

DSL domain specific language

DSM domain specific modeling

DSP digital signal processing

EMI electromagnetic interference

ENOB effective number of bits

EP extreme programming

EW electronic warfare

FCC Federal Communications Commission

FFT fast Fourier transform

FIR finite impulse response

FPGA field programmable gate array

FSM finite state machine

GPU graphical processing unit

GSPS giga samples per second

 20

GUI graphical user interface

HDL hardware description language

HMM hidden Markov model

HWIL hardware in the loop

IBW instantaneous bandwidth

IC integrated circuit

IF intermediate frequency

IQ in-phase quadrature

ISE Integrated Software Environment

JEWEL Joint Electronic Warfare Effects Laboratory

LOC logic of constraints

LTL linear temporal logic

MBD model-based design

MDA model-driven architecture

MDD model-driven development

MDRE model-driven requirements engineering

MMM METROPOLIS meta-model

MoC model of computation

MSPS mega samples per second

OBP object based programming

OJT on-the-job-training

OMG Object Management Group

OOP object oriented programming

PBD platform-based design

PIM platform-independent model

PRF pulse repetition frequency

PSM platform-specific model

PSoC programmable system on a chip

RA requirements analysis

RAM random access memory

 21

RE requirements engineering

RTL register transfer language

RUP rational unified process

SDRF software defined radiofrequency

SIS a system for sequential circuit synthesis

SLD system level design

SoC system on a chip

SoPC system on a programmable chip

SRAM serial random access memory

SWAP size weight and power

UAV unmanned aerial vehicle

UHF ultra-high frequency

UML universal modeling language

Verilog verify logic

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

VIS verification interacting with synthesis

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

EXECUTIVE SUMMARY

Creating an embedded system which meets its functional, performance, cost, and

schedule goals is a software-and-hardware codesign problem, since the design of the

software and hardware components influence each other. The traditional design

methodology is sequential, with hardware designed first and then software. The lack of a

unified and unbiased approach can lead to suboptimal design and incompatibilities across

the software and hardware boundary.

To solve these problems, we develop a new codesign methodology to partition

software/firmware/hardware, and then map functional components to design patterns if

existing. This methodology includes first building a tree with conjunctions and

disjunctions of possible mappings from functional components to the options of software,

firmware, and hardware following requirements and constraints; second, rating the cost

of each mapping; third, searching the tree to find a minimum weighted sum of the costs;

and fourth, identifying existing design patterns once design is selected, and otherwise

synthesizing new design patterns.

We tested our methods on three application areas. The first was a digitizer-filter

architecture for ultra-high frequency signals. The major challenge was how to move

ultra-fast data from a faster sensor (including a digitizer) to a slower processor and then

perform useful tasks. We implemented and tested this application on a

Tektronix/Synopsys demo embedded system based on the test specifications established

by the vendor and Joint Electronic Warfare Effects Laboratory (JEWEL) at Point Mugu,

California.

The second application was a digitizer-filter architecture for low-frequency

requirements. The challenge was how to partition software/firmware/hardware and then

map design to the existing vendor products to save development time and cost. We

implemented and tested this application on a Pentek embedded system based on the test

specifications established by the vendor and Airborne Interceptor Research Laboratory

(AIRL) at Point Mugu, California. By way of contrast, for a period of more than 12

 24

months from 2011 to 2012, with 10 engineers, we spent $3.16M on an airborne

interceptor project (including software, firmware and hardware designs) but failed to

produce any software deliverable. In 2013, for a period of five months, starting from

ground zero, with two engineers, we only spent $90K on the same project with the help

of our new software/firmware/hardware codesign methodology; we were able to map 86

percent of our project unto vendor’s existing products and delivered Doppler range gating

software successfully.

The third application was a hidden Markov model using dynamic programming.

The challenge was how to partition software/firmware/hardware for better processing

speed performance. We discussed the advantages and disadvantages of mapping hidden

Markov models unto software and firmware in terms of cost, speed and design

complexity

 25

ACKNOWLEDGMENTS

First I would like to thank my wife, Jennifer, for her unconditional love and

encouragement for my PhD studies. Throughout this journey, she has never complained

about my long hours of studies each day including weekends and holidays. To show her

support, she even accompanied me for my written examination and final oral defense at

Naval Postgraduate School, Monterey, California.

This research is based on Dr. Melissa Midzor’s vision in digitizing radiofrequency

signals in the gigahertz range used for electronic warfare signal simulation. Without her

vision and support in funding, equipment and personnel, this research cannot be made

possible.

Through weekly phone conversations, Professor Neil C. Rowe tirelessly provides

strategic advice ensuring our work being on track. Even though, he is methodical in

guiding this project, he is extremely flexible and open-minded, which allows me to have

much freedom in accomplishing the task. In addition, Professor Rowe suggests using an

artificial intelligence A* search with embedded AND nodes methodology to partition

software/firmware/hardware, and then match the optimal leaf-nodes to some design

patterns for embedded system design. Software and hardware partitioning is a very

difficult challenge in the field of hardware-and-software codesign.

Special thanks to Professor Roberto Cristi for his enthusiasm and knowledge in

digital signal processing. He gives directions in dividing ultra-wide bandwidth signals

into multiple parallel subbands using polyphase discrete Fourier transform filter banks.

Equally important, he has been enormously generous in sharing his lecture videos and

class notes with me on various topics.

Professor Shing thoroughly reviewed my dissertation and pointed out the most

important weakness in software testing. Without his meticulousness and diligence, this

dissertation could not have been completed. In addition, I audited his Requirements

Engineering course; much of the material in Chapter II reflects his knowledge.

 26

Personally, I have taken Formal Methods and audited Software Testing from

Professor Auguston; I was very impressed with his knowledge in fundamental software

engineering and up-to-date tools. His influence can be seen clearly in Chapter V (Case

Study One). Last but not the least, while Professor Auguston was experiencing a very

difficult health condition, he was still able to promptly review my dissertation and give

me valuable feedback.

 27

I. INTRODUCTION AND PROBLEM ADDRESSED

A. ADDRESSED PROBLEM

Creating an embedded system which meets its functional, performance, cost, and

schedule goals is a software-and-hardware codesign problem, since the design of the

software and hardware components influence each other [1]. Traditionally, when

designing an embedded system, hardware is designed first by a group of hardware

engineers, and then software is designed by a group of software engineers. Once a design

is completed, both software and hardware engineers strive to make every effort to

implement changes in software to avoid expensive hardware redesign. The problems with

this approach are:

 A presumptive definition of software-and-hardware partitions can cause

suboptimal designs.

 Lack of a unified software-and-hardware design methodology can cause

incompatibilities across the software and hardware boundary.

To solve these problems, the codesign group at U.C. Berkeley in 1997 developed

a framework, POLIS, with a unified software-and-hardware representation for unbiased

specification, automatic synthesis, and validation of the embedded systems. The most

difficult challenge in POLIS according to the group is software-and-hardware partitioning

because the partitioning decisions are heavily based on designer’s expertise and are very

difficult to automate [2].

For embedded systems, software can be divided into three categories: computer-

based software, central-processing-unit (CPU) firmware, and reconfigurable computing

firmware. Software and firmware both contain programming instructions and necessary

documentations, except that software runs on a computer and firmware runs on a

hardware device. As a result, it is helpful to replace the term software/hardware codesign

with software/firmware/hardware codesign.

Our goal for this dissertation is to provide a new software/firmware/hardware

codesign methodology for seamless integration and design of embedded systems. There

are several problems to resolve, in particular functional decomposition, what should be

 28

classified as software or firmware or hardware, design-pattern mapping, and new design-

pattern synthesis.

B. MOTIVATION

A motivating problem is how to push the upper limit of the capability in moving

very fast digitized data from a sensor and digitizer to a slower processor, and then

usefully process it in real-time. The conventional data rate for a sensor is in the range of

megasamples-per-second; the data rate for our research is in the range of gigasamples-

per-second and above. This is too fast for an all-software design.

The solution to this problem is in software-and-hardware codesign because the

final system must be flexible enough to accommodate different data rates and perform

various useful tasks, and must not only function properly but also meet critical timing

constraints due to its ultra-high data speed [1,3]. There are many details we need to keep

straight; a software/firmware/hardware codesign methodology will help us build designs

correctly and efficiently.

There are many similar problems in design of systems for use in electronic

warfare, in which proper design decisions are critical because of the signal frequencies

involved and the processing time required. Electronic warfare tries to dominate the

electromagnetic spectrum, or to protect our use of the electromagnetic spectrum and to

exploit the enemy’s spectrum. This involves minimizing mutual interference among

friendly systems, minimizing detection by enemy sensors, and minimizing enemy

interference with the ability to execute a military deception plan. Techniques often used

to prevent or reduce an enemy’s effective use of the electromagnetic spectrum are

jamming and electromagnetic deception [4]. An advantage can be gained in the domain

of the electromagnetic spectrum by being able to handle higher frequencies than an

adversary can handle.

A wide variety of equipment has been designed and used in electronic warfare,

such as Northrop Grumman EA-6B Prowlers, Boeing EA-18G Growlers, unmanned

aerial vehicle systems, and ground jamming vehicles. To ensure the readiness of this

equipment, tests and evaluations are required. The environment for tests and evaluations

 29

is simulated in software (that is, the aircraft, vehicles, terrain and weather), but the

hardware is real.

C. CLAIM

Our claim is that rather than the trial-and-error approach being currently practiced

for embedded system design, a new software/firmware/hardware codesign methodology

based in software engineering has the potential to systematically build correct designs

efficiently to satisfy the requirements provided by the stakeholders.

D. TRADITIONAL METHODOLOGY FOR DSP DESIGN

For many real-time applications, a specialized field-programmable gate array

(FPGA) embedded system, instead of a general-purpose computer, should be used [5].

The reason is that an FPGA can process hundreds of times more operations per clock

cycle than a processor. The speed of a state-of-the-art multicore processor is in gigahertz

and the speed of a state-of-the-art FPGA is in hundreds of megahertz. Also, a typical

high-end FPGA has thousands of times more parallel channels than a multicore

processor.

Traditional FPGA-based embedded software is written manually from text-based

specification and requirements. This approach is time-consuming and error-prone, and

there is little tracking to ensure that changes are correctly implemented [6]. A more

systematic approach provided by software engineering could reduce these problems.

E. OUR SOFTWARE ENGINEERING METHODOLOGY

To develop specifications, we start with gathering high-level requirements in the

form of novel ideas and questions. With proper domain knowledge, we can derive

subrequirements from them. In requirements analysis, we use feature models and

decision trees to explore design concepts and possible implementation technologies for

the feasibility check. These design concepts and implementation technologies are in the

form of models, and they can also be used for fine-tuning the requirements in the next

requirements development iteration. During this phase, we treat software, firmware, and

hardware together, since a software component and a (reconfigurable) hardware

 30

component can often both achieve a design, although software tends to be more flexible

and hardware tends to be faster [7]. The final products at the end of this stage should

include requirements and design models as well as dataflow and control-flow

architectures.

We can generate models by using specialized FPGA embedded software design

tools. Non-specialized tools such as documentation, reports, tables, diagrams, and

algorithms can also assist model building without the benefits of automatic code

generation [8].

Next, we must decide what should be classified as software, what should be

classified as firmware, and what should be classified as hardware. Software-and-

hardware partitioning involves a diversity of applications, design styles and

implementation technologies; ultimately it depends on human expert knowledge [7]. In

this dissertation we propose using a tree of options to find possible mappings from

functional components to the set of modalities {software, firmware, hardware}. When an

optimal node (solution) is chosen, we can expand any component within a node into

subcomponents, and then use the same methods to assign the subcomponents. When we

have found the best assignment for the subcomponent search, we embed it in the original

tree.

During the construction phase, we apply software and FPGA programming

methodology, and perhaps additional hardware design, to implement the design. The

process flow includes designing (using a hardware description language or a high-level

graphical modeling tool), functional and timing simulations, doing synthesis,

implementation and programming.

F. TOPICS COVERED FROM CHAPTERS II TO VIII

In Chapter II, we survey some important software-engineering methodologies in

the fields of requirements engineering, embedded-system design, and concurrent-system

design. We also discuss FPGA programming languages and FPGA design methodology.

In Chapter III, we use an OR tree with embedded ANDs to partition

software/firmware/hardware, and then use the same methodology to map the optimal

 31

leaf-node to a design pattern if existing; otherwise, we synthesize a new design pattern. In

Chapter IV, we present five example design patterns for reconfigurable computing based

embedded systems: data alignment, post-de-serialization bits remapping, pre-serialization

bits remapping, polyphase DFT filter banks and switch-and-filter. These patterns were

used in implementing our case studies. In Chapter V, we present a case study using a

Tektronix Digitizer/FPGA/DAC demo unit to digitize and process radiofrequency signals

up to 6 gigahertz and then discuss the test results for this case study. In Chapter VI, we

present a case study fora conventional Doppler radar receiver. In Chapter VII, we present

a case study involving a Hidden Markov model (HMM). In Chapter VIII, we conclude

the dissertation by stating our major contributions and suggest directions for future

research.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

II. PREVIOUS WORK

In this chapter we will survey current software engineering methodologies related

to requirements engineering (RE), embedded-system design, hardware-and-software

codesign (or concurrent system design), and field-programmable gate array (FPGA)

design to lay the foundation for our research.

A. REQUIREMENTS ENGINEERING

1. Requirements Development

Requirements development includes six key activities—elicitation, analysis,

validation, negotiation, documentation and management [9]. Elicitation is to discover

system requirements through consultation with stakeholders, and to establish a scope and

boundary for the project. Analysis is to analyze requirements in detail and to identify

possible conflicts and overlaps. Validation is to review or validate requirements for

clarity, consistency, and completeness with stakeholders. Negotiation with stakeholders

establishes which requirements are to be considered. Documentation is to write down

agreed requirements at a certain level of detail for review, evaluation, and approval.

Requirements management is an ongoing activity that starts from the moment the first

requirement is elicited and ends only when the system is finally decommissioned [10].

Requirements management includes software-baseline definition, change control, and

approval and status tracking. The baseline can be defined as a set of features agreed to be

delivered to customers in a specific software version [11].

Some requirements engineering researchers use the term “specification” for

“documentation” [12], combine analysis and negotiation into analysis activity, and treat

management as a different topic. Based on this, requirements development includes four

key activities—elicitation, analysis, specification and validation [10].

The scheduling for requirements engineering should not be less than one third of

the entire project time, since much time is required to include research or exploration of

new techniques [13].

 34

2. Rational Unified Process

To manage requirements effectively, we must have a well-defined software

lifecycle development process. The waterfall model, introduced by Winston Royce in

1970 [14], requires complete and fully elaborated requirements before design, coding,

testing, operation and maintenance. This is not practical since requirements change

throughout the entire software lifecycle. The spiral model, introduced by Barry Boehm in

1988 [15], requires multiple risk analyses, validations and prototypes before a rigorous

waterfall methodology is followed, and also has proven to be expensive and time-

consuming.

In 1995, Philippe Kruchten [16] introduced the iterative approach. This divides a

software project into multiple time-boxed iterations. An iteration is a sequence of

activities, such as requirements, design, implementation, test, and integration, resulting in

an executable of some type. Each iteration is based on prior iterations. Some benefits of

the iterative process are early risk mitigation, early feedback, and analysis-paralysis

avoidance.

In 2003, Rational Software Corporation (a division of IBM) proposed the

“rational unified process” for software lifecycle development. It is a sequence of

inception, elaboration, construction, and transition. Each phase consists of one or more

executable iterations of the software at that stage of development. Inception is to define

the scope of project, and its milestone is the identification of actors and use cases.

Elaboration is to plan project and specify features, and its milestone is the establishment

of baseline architecture. Construction is to build the product, and its milestone is the

building of initial operational capability. Transition is to deliver products to customers,

and its milestone is the release of product. Each phase has multiple iterations. The

number of iterations depends on the project size and agreement among stakeholders. The

relationship between lifecycle phases, milestones and iterations are shown in Figure 1

[17].

 35

Inception Elaboration Construction Transition

Objectives Architecture
Operational

capability

Product

release

1,2

Elicitation Analysis Specification Validation

Milestone

Phase

Iteration

Requirements

activities

Figure 1 Rational unified process lifecycle phases, milestones and iterations

3. Design-Based Requirements

The requirements and design activities must be iterative. Gestalt round-trip

design, introduced by Grady Booch [18] in 1994, emphasizes the human characteristic of

learning by completing [19]. In other words, the requirements at one iteration cause us to

select certain design options, and the selected design options may in turn initiate new

requirements. This is due to the fact that requirements are always changing and cannot be

correctly defined until some design work is developed.

4. Test-Based Requirements

In 2008, Martin and Melnik proposed a Möebius strip approach for requirements-

development [20]. A Möebius strip means that writing requirements and testing are

closely interrelated. Writing requirements in the form of acceptance tests can reduce the

number of pointless features and code and handle changes more efficiently. Every

requirement must be testable with this approach.

5. Agile Software Development

In 2001, the Agile Alliance stated that software development should be focusing

on (1) individuals and interactions over processes and tools, (2) working software over

comprehensive documentation, (3) customer collaboration over contract negotiation, and

(4) responding to change over following a plan [21]. With this approach, emphasis is

 36

placed on the end result of working software rather than comprehensive documentation.

In addition, the client is taken on-board as a member of the development team, so that

missing requirements are discovered in the early software development stage.

6. Model-Driven Requirements Engineering

A model is a representation of a system that allows for investigation of the

properties of the system and, in some cases, prediction of future outcomes. Software

models come in many forms, such as use cases, diagrams, and statecharts [22].

Requirements can also be modeled, and the benefits of requirements modeling

are: (1) allowing us to understand the product requirements precisely, (2) showing

generalizations, (3) simplifying complex relationships between requirements, and (4)

describing the context and background in which the product will be used.

There are different types of requirements models, such as business models,

feature/goal models, analysis (use case) models, design models, implementation models

and test models. A business model describes why a product is needed. A feature model

describes the features of a product. A requirements analysis model explains the features

in sufficient detail to define product specifications. A design model illustrates the

architecture for the product. An implementation model describes the construction of the

product. A test model describes how the product would be tested [23].

7. Model-Driven Development

Model-driven development (MDD) is a software engineering approach which

uses models of high-level abstraction to create and evolve software. The goals of model-

driven development are to simplify and formalize the various activities in software

lifecycle [24]. According to Object Management Group (OMG), model-driven design can

be realized by using model-driven architecture (MDA). Model-driven architecture

specification consists of a definitive platform-independent model (PIM), plus one or more

platform-specific models (PSMs) and sets of interface definitions, each describing how

the base model is implemented on a different middleware platform.

 37

8. Domain-Specific Modeling and Language

Domain-specific modeling (DSM) is a software engineering methodology for

designing and developing software systems by using domain-specific modeling

languages (DSL) to represent various features of the system [25]. Domain-specific

languages support higher-level abstraction than general-purpose modeling languages, so

they require less effort and fewer low-level details to specify a given system. Most

domain-specific models and languages are created for a particular domain by a particular

vendor with domain expertise; as a result, automatic quality code generation is made

possible. As Booch pointed out in 2004, to achieve the full value of model-driven

architecture, modeling concepts must map directly to domain concepts rather than

computer technology concepts [26].

One example is hidden Markov model "toolbox" for MATLAB from MathWorks

that supports inference and learning for hidden Markov models. This toolbox is designed

for a specific domain (statistical inference) and the language is domain-specific with a

higher-level of abstraction (e.g., TRANS representing transmission matrix and EMIS

representing emission matrix); this model cannot be easily described by using a general-

purpose Universal Modeling Language (UML).

The best practices put forth by the rational unified process (incremental and

iterative), extreme programming (test-driven), agile development (client-oriented and

design-based), and model-driven and domain-specific methodologies are used throughout

the software-development lifecycle of our three case studies.

B. SOFTWARE ENGINEERING OF EMBEDDED SYSTEMS

An embedded system is hardware and software which forms a component of some

larger system and which is expected to function without human intervention. Firmware is

a software program or a set of instructions programmed on a reconfigurable hardware

device. Software is associated with a computer system, firmware is associated with an

embedded system, and both of them contain programming instructions and necessary

documentation.

 38

Microprocessors and FPGAs are two major kinds of programmable integrated

circuits (ICs) in an embedded system. In this research, our embedded system contains

FPGAs instead of microprocessors, so we will only survey the issues with FPGAs. Our

rationale is explained in Section D, Chapter I.

Much embedded software is based on the traditional waterfall model, using

“emphasis on fully elaborated documents as completion criteria for early requirements

and design phases” [27]. Since code is written manually from text-based specifications

and requirements, and fully elaborated documents are not possible for most projects, this

approach is time-consuming and error-prone, and there is little tracking to ensure that

changes are correctly implemented [6].

Model-based design allows concise representation of behavior at a high level of

abstraction. It is a better choice for embedded software development since the entire

system can be visualized graphically, which leads to easy comprehension of the system;

its models can be validated and verified; and it is easier to refine models and track model

changes than with text-based documents. Model-based design also creates a structure

allowing for software reuse; options and performance can be evaluated and the outcome

can be predicted; and code can be automatically generated from the fully tested

specification for software development and rapid prototyping [28].

Some major specialized model-based embedded software design tools are

Mathworks MATLAB/SIMULINK®, Synopsys Synphony Model Compiler®, Annapolis

CoreFire®, and National Instruments LabView®. More general tools (such as

documentations, reports, tables, diagrams, and algorithms) can also be used to assist

model building without the benefits of automatic code generation [8].

C. CONCURRENT SOFTWARE ENGINEERING OF EMBEDDED

SYSTEMS

1. A Top-down Concurrent Design Process for an Embedded System

Creating an embedded system which meets its functional, performance, cost, and

schedule goals is a hardware-and-software codesign problem, since the design of the

hardware and software components influence each other [1]. We can define hardware-

 39

and-software codesign as “meeting system level objectives by exploiting the synergism

of hardware and software through their concurrent design” [29].

An FPGA or any reconfigurable computing can be reconfigured to perform

different functions without changing the underlying hardware. From a user perspective,

reconfigurable computing can function equivalently to software running on a processor

[29].

To address hardware-and-software codesign problems, Wolf in 1994 [1]

suggested using a top-down design process for embedded systems design as shown in

Figure 2. A brief explanation for each step is provided below:

 Specification: Process models are used to represent both the hardware and

software elements without biased implementation. A requirements model

is produced and it includes a dataflow diagram, a control -flow diagram,

response-time specifications, and a requirements dictionary; this model

can be tested and validated. A dataflow diagram (DFD) is a graphical

representation of the flow of data through an information system. A

control flow diagram (CFD) is a diagram to describe the control flow of a

process or program.

 40

Specification

Behavior

Register-transfer

Logic

Physical

Processes

Modules

High-level

language

Object code

Integration

System testing

Communicating

processes

Structural

description

Detailed

logical

structure

Parallel

computation

System architecture

(HW synthesis) (SW synthesis)

Figure 2 A top-down concurrent design process for an embedded system

 System Architecture: The architecture model includes an architecture flow

diagram which allocates functional elements of the requirements model to

physical units in the architecture, and an architecture interconnect diagram

(a block diagram). The first component in a system architecture to be

considered should be the hardware engine (a processor), since it provides

the raw computing power for the system instruction execution and

peripheral operations.

 Synthesis: Once hardware and software components are partitioned and

selected, software can be compiled and tested for a certain processor;

hardware can be synthesized, simulated, and implemented onto a

particular hardware device.

 Integration: We can integrate implementations of hardware and software

components together after they are synthesized and tested individually,

with their interfaces.

 System testing: After integration, we can perform system testing to verify

and validate the entire system.

 41

2. POLIS

In 1997, the codesign group at U.C. Berkeley, California [30] developed POLIS, a

software tool for hardware-and-software codesign. A POLIS system is represented by a

codesign finite-state machine (CFSM), a model unbiased towards a hardware or software

implementation. Each element of a network of codesign finite-state machines describes a

component of the system to be modeled. A codesign finite-state machine is asynchronous

since hardware and software exhibit different delay characteristics. It is synthesizable and

verifiable, because many existing theories and tools for the finite-state machine model

can be easily adapted for codesign finite-state machine [30].

POLIS is the realization of the hardware-and-software codesign methodology

proposed by Wolf in section C.1. It takes advantage of the existing software tools

developed by U.C. Berkeley, such as PTOLEMY, SIS and VIS. VIS (Verification

Interacting with Synthesis) is a system for formal verification, synthesis, and simulation

of finite-state systems. However, in terms of hardware-and-software partitioning, POLIS

only gives designers feedback on their design choices; it is still based on trial-and-error

approach that largely depends on designer’s expertise and knowledge.

The major steps are briefly described below.

 High-level language translation: Designers write their specifications in a

high-level language that can be translated into codesign finite-state

machines.

 Formal verification: POLIS translates the codesign finite-state machine

into a formalism which can be verified by verification systems.

 System co-simulation: POLIS uses PTOLEMY as a simulation engine.

PTOLEMY (developed by Lee at U.C. Berkeley) focuses on assembly of

concurrent components.

 Design partitioning: Following Vahid [31], hardware-and-software

partitioning is the problem of dividing an application's computations into a

part that executes as sequential instructions on a microprocessor (the

software) and a part that runs as parallel circuits on some integrated circuit

(the hardware). Making system-level design decisions such as hardware

and software partitioning, target architecture selection, and scheduler

selection is based heavily on design experience; therefore, it is very

difficult to automate this process.

 42

 Hardware synthesis: Codesign finite-state machine subnetworks chosen

for hardware implementation by POLIS are implemented and optimized

using logic synthesis techniques from SIS (a system for sequential circuit

synthesis). SIS is an interactive program for the synthesis of both

synchronous and asynchronous sequential circuits. The input can be given

in state -table format or as logical equations (for synchronous circuits) or

as a signal-transition graph (for asynchronous circuits). The output is a

netlist of gates in the target technology. A netlist represents the

connectivity of an electronic design. Figure 3 shows the POLIS design

flow.

a. Formal language

a. Translator

System behavior

d. Partitioning

Partitioned specification

e. HW synthesis

c. Co-simulation

b. Formal

verification

Interface synthesis

Un-optimized HW HW interfaces b. Verified interim formatS-graph

f. SW synthesis

OS synthesis Task synthesis Logic synthesis
HW estimation

SW estimation

Optimized HWC-code

Partitioning

Optimized HW

g. Board level prototyping Standard components

Physical prototype

Estimate

Schedule

template +

timing constraints

Figure 3 POLIS process

 43

 Software synthesis: A codesign finite-state machine subnetwork chosen

for software implementation is mapped into a software structure that

includes a procedure for each codesign finite-state machine and a simple

real-time operating system.

 Interfacing domains: Interfaces between different implementation domains

(hardware and software) are automatically synthesized within POLIS.

These interfaces come in the form of cooperating circuits and software

procedures (I/O drivers) embedded in the synthesized implementation.

Communication can be through I/O ports available on the microcontroller,

or by general memory mapped I/O.

3. Orthogonalization of Concerns and Platform-Based Design

In 2004, the codesign group took a different approach for hardware-and-software

codesign with the intention of increasing the reusability of software and hardware as well

as applying the new methodology to heterogeneous systems (different domains) other

than hardware and software. In this section, we briefly describe two concepts

(orthogonalization of concerns and platform-based design) and the frameworks

(METROPOLIS and METRO II) used for this approach.

Orthogonalization of concerns is the separation of the various aspects of design

allowing more effective exploration of alternative solutions. Platform-based design is a

unified design approach for hardware-and-software codesign. It summarizes the

important parameters of the implementation in an abstract model, and carries out the

design as a sequence of refinement steps that go from the initial specification to the final

implementation using platforms at various level of abstraction [32,33,34].

A platform is defined as a library of components that can be assembled to

generate a design at that level of abstraction [35]. The METROPOLIS design is a meet-

in-the-middle process. A top-down process maps an instance of the functionality of the

design into an instance of the platform; a bottom-up process builds a platform by

choosing the components from a library (see Figure 4.)

 44

Platform instances

P
la

tf
o
rm

 m
ap

p
in

g
P

la
tf

o
rm

 d
es

ig
n
-

sp
ac

e
ex

p
o
rt

Function instance

Figure 4 Platform-based design process

METROPOLIS, a platform-based design tool developed by Alessandro Pinto in

2004, provides a recursive paradigm where the action of mapping a function onto an

architecture generates a new function described at a lower level of abstraction and more

detailed than the original one. A design process should start with a denotational

description of the function to implement plus a set of constraints that the implementation

must satisfy. Constraints specified at this level of abstraction are propagated down to all

subsequent levels until the implementation level is reached. While constraints are

propagated in a top-down fashion, performances (such as speed and power) are abstracted

in a bottom-up manner (see Figure 5.) Performance abstraction is the process of hiding

details that are not relevant for the level of abstraction under consideration. In fact, each

level of abstraction focuses on a particular design choice on which only few quantities

have impact; this is essential for speeding up the design space exploration [36].

 45

Denotational

description

Platform A

Platform B

Components

Platform B’

Platform A’

Figure 5 Platform-based design (PBD) is iterative

The METRO II framework is an enhanced version of METROPOLIS. The

improvements are:

1. The ability to import pre-designed intellectual properties (IPs).

2. The ability to separate cost from behavior when carrying out design.

3. The ability to explore the design space in a structured manner.

Platform-based design methodology provides an efficient way to map a functional

design to an architecture in a library (top-down). At the same time, components in a

library can be mapped to an architecture for implementation (bottom-up). The

disadvantage of this method is that it depends on the trial-and-error approach and the

availability of architectures and components in the libraries. Our methodology is similar

but it provides a systematic way to partition hardware and software, and then map

components to design patterns.

4. The Double Roof Model of Codesign, a System Level Design

Another view of codesign [37, 38, 39] identifies three challenges in synthesizing

hardware and software:

 46

1. Allocation: Select a set of system resources including processors,

hardware intellectual property blocks, and their interconnection network to

compose the system architecture in terms of resources. The design should

be synthesizable.

2. Binding: Map functionality (e.g., tasks, processes, functions, or basic

blocks) onto processing resources, variables and data structures onto

memories, and communications to routes between corresponding

resources.

3. Scheduling: Determine when functions are executed on the proper

resources including function execution, memory accesses, and

communication.

A feasible solution is the one satisfying the above triplets along with a certain

number of additional nonfunctional constraints such as cost, performance, power,

temperature, etc. To help reason about these three challenges of hardware and software

design, a “double roof” model was proposed (see Figure 6.)

System

Module

Block

Architecture

Logic

Behavioral view

Structural view

Software Hardware

Figure 6 Double-roof model of codesign

The double-roof model defines the typical top-down design process for embedded

hardware and software systems [37,38]. In Figure 6, the left-hand side of the roof shows a

typical software design process, such as module (task) and block (instruction); the right-

hand side shows a typical hardware design process, such as architecture and logic. At the

highest system level of abstraction, one cannot distinguish between hardware and

software.

 47

The upper roof describes the functional or specification view of the system at the

abstraction level, whereas the lower roof describes its structural implementation,

including resources allocation, scheduling, binding, and coding. The vertical arrows

represent synthesis steps, and the horizontal arrows indicate the step of passing

information about the implementation at a certain level directly to the next lower level of

abstraction as additional specification or constraints [39]. There is no fully automated

design flow for all shown abstraction levels available today.

Comparing to the codesign process in section C.2, the double-roof model gives a

better view of the relationship between hardware and software at different levels of

abstraction. However, this model does not provide a systematic way to partition hardware

and software.

5. Integrated Chip Codesign

To achieve efficient hardware and software integration, system-on-a-chip (SoC),

programmable-system-on-a-chip (PSoC) and system-on-a-programmable-chip (PSoC)

builder technologies are becoming available. An SoC is an integrated circuit that puts all

components of a computer or other electronic system into a single chip; in essence, it is

an advanced and powerful embedded system. A PSoC is an SoC with built-in

programmable logic. SoPC Builder is a piece of software created by Altera that

automates connecting reconfigurable computing (or soft-hardware) components to create

a complete computer system that runs on any of its various FPGA chips.

Concurrent design is not a mature discipline due to the complex nature of the

embedded systems. This leads to a lack of available computer aided design (CAD) tools

and support [39]. The future of concurrent design methodology probably will be shaped

by major SoC and PSoC manufacturers (such as Altera and Xilinx) and computer-aided

design tools providers (such as Synopsys and MathWorks.)

We can apply software/firmware/hardware codesign methodology to system-on-a-

chip and programmable-system-on-a-chip, since component integration is a step of

implementation after our methodology.

 48

D. FPGA DESIGN METHODOLOGY

The history of FPGA-based embedded system design goes back to 1985 when the

first commercial FPGA was invented by Ross Freeman and Bernard Vonderschmitt, co-

founders of Xilinx incorporation. In this section, we will briefly discuss FPGA’s

programming languages and design methodologies as well as coding examples and

development tools.

1. FPGA and Central Processing Unit

The structure of an FPGA is not predefined as it can be programmed according to

the user applications. The access to the internal resource of an FPGA is through I/O and

clock pins; as a result, parallel processing can be easily achieved by custom

programming. For non-timing-critical, complex, and dedicated tasks, a central processing

unit is a better choice over an FPGA; for timing-critical, less complex, and heavily

parallel tasks, an FPGA is a better choice over a central processing unit, even a multicore

processor (explained in section D, Chapter I).

2. FPGA and Hardware Description Language

An FPGA is an integrated circuit designed to be configured by a customer or a

designer after manufacturing in the field. A modern FPGA chip contains a combination

of processors, embedded memory, programmable interconnects, dedicated digital signal

processing (DSP) elements, and conventional lookup tables, multiple clock domains,

high-speed serial I/Os connections, and a large number of pins [40]. To program the

interconnects inside an FPGA, a programming tool is required.

Hardware description languages (HDL) are programming tools (or languages) for

formal description and design of electronic circuits. They describe the circuit's operation

(behavior), organization (architecture), and tests to verify its operation by means of

simulation. With hardware description languages, the design can be verified before

implementation by using simulation software tools; reuse is part of the language

paradigm in dealing with complex designs; changes can be made easily; and hardware

description languages can be used for documentations.

http://www.wikipedia.org/wiki/Electronic_circuit
http://www.wikipedia.org/wiki/Computer_organization
http://www.wikipedia.org/wiki/Simulation

 49

Hardware-description language is a specification language, not a traditional

programming language. There are two primary real programming languages: Very High

Speed Integrated Circuit (VHSIC) hardware description language (VHDL) and Verilog

(Verify Logic). The relationship between HDL and VHDL/Verilog is analogous to the

relationship between a class (e.g., human language) and two instances (e.g., English and

French).

An FPGA can also be programmed by using model-based tools, such as

Mathworks MATLAB/SIMULINK, Synopsys Synphony Model Compiler, Annapolis

CoreFire and National Instruments LabView. These proprietary tools are not as widely

used as hardware-description languages.

3. FPGA Programming

Figure 7 shows the process-flow in programming an FPGA. This process includes

developing a design in hardware description language, synthesizing the design to a

netlist, translating all designs into a single file, mapping the design to the resource in a

targeted device, placing and routing the design on the device, creating a bit stream file

and then programming an FPGA.

Synthesis Map Place & routeHDL

FPGA

(SRAM)

Bit

stream

Translate

Figure 7 FPGA programming process

Each step of the process flow is further described below:

1. Synthesize: Send the hardware-description language code through a

synthesis engine which translates the high-level hardware-description

language code into a low-level netlist. A netlist represents the connectivity

of an electronic design.

2. Translate: Merge all netlists and constraints (such as timing and area) into

a single design file.

 50

3. Map: Fit the design (generic logics) into the available resources on the

target device.

4. Place and route: Place and route the design to the constraints on the target

device.

5. Create bit stream: Turn the results from the place-and-route engine into a

bitstream file. A bitstream file contains a series of bits for configuring

(programming) the entire FPGA resource. This bitstream file is loaded

into the FPGA’s internal serial random-access memory. These memory

cells are connected to various logic entities, multiplexers, lookup tables,

Random Access Memory (RAM) blocks, and routing matrices, and

constitute "configuration (programming)." Once the bitstream is loaded,

the FPGA begins to operate. The bits in the configuration-memory instruct

each piece of FPGA how to operate.

4. HDL is Object-Based not Object-Oriented

A computer language is object-oriented if it supports the four specific properties

called data abstraction, encapsulation, polymorphism, and inheritance. Data abstraction is

the process of recognizing and focusing on important characteristics of an object and

leaving out the un-wanted characteristics of that object. Encapsulation is achieved by

making the attributes private while creating public methods that can be used to access

those attributes. Inheritance allows the user to extend classes (called subclasses) from

other classes (called superclasses). Polymorphism allows the programmer to substitute an

object of a class in place of an object of its superclass.

Object-based hardware description languages are similar to object-oriented

programming languages, except that they do not have inheritance [41] and run-time

polymorphism as shown in Table 1.

 51

Object

Oriented

feature

HDL

feature Explanation

Data abstraction Yes

Generic

map

Port map

The top-level design is a generic module in a

hierarchical structure. Instantiations occur at the lowest

level. The top-level design has the highest level of data

abstraction.

Encapsulation Yes

Entity,

architecture

Entity defines external view (I/Os) of a model;

architecture defines the function (behavior) of a model

as a black box. Both are private and used by a

particular module (design).

Compile-time

polymorphism Yes

Operator

overloading

Operators are overloaded (given multiple

functionality) by defining a function whose name is

the same as the operator itself. This is a static compile-

time feature versus dynamic run-time feature.

Run-time

Polymorphism No None None

Inheritance No None None

Table 1. Hardware description language features

Generic components and instantiation are typical for object-based languages.

Generics allow the components to be customized upon instantiation. Examples of generic

uses are customized timing and alteration of array size. The value of a generic component

specified for an instance is constant for that instance.

5. Two Primary Hardware Description Languages—VHDL and Verilog

Very high speed integrated circuit (VHSIC) hardware description languages

VHDL and Verilog (Verify Logic) are two hardware description languages for coding

models of a digital system which possibly will be implemented on an FPGA chip. VHDL

and Verilog are not only used for FPGA software design, but are also used for simulation,

synthesis, documentation, and requirements. Simulation is to check the behavior of the

design for certain input conditions before implementation; synthesis is to turn the high-

level code to a low-level gate netlist (a netlist represents the connectivity of an electronic

design) for programming a particular chip; documentation and requirements are to guide

the FPGA software design, and provide a common platform for communication among

all stakeholders [42].

Each VHDL program contains two major language constructs—entity and

architecture. An entity section describes the interface of the component (inputs/outputs).

 52

An architecture section describes the operation (behavior) of the component. The basic

building block of Verilog is the module statement. It is somewhat analogous to defining a

function in C language. Each module has a name, ports list (inputs/outputs), and

components (operations). Table 2 shows some basic construct differences between

VHDL and Verilog programming languages [43].

 HDL feature Explanation

Structure entity-architecture module ()

Physical interconnect

that communicate

between processes signal wire or register

Variables variable wire or register

assignment a <= b; assign a = b;

Basic unit of

execution

process(sensitivity

lists)

always@(sensitivity

lists)

Table 2. Some VHDL and Verilog construct differences

There are three methods in programming an FPGA with VHDL or Verilog: data

flow, behavioral, and structural. The data-flow method uses statements to define the

actual flow of data from one component (register) to another in concurrency. Table 3

shows a data-flow method in Verilog.

// declare and name a module (design blocks); list its ports.

module mux_2_to_1(a, b, out,outbar, sel);

input a, b, sel; //Specify each port as input, output, or inout

output out, outbar;

// Express the module’s behavior. Each statement executes in parallel

assign out = sel ? a : b; // a data flow statement,

assign outbar = ~out; // a data flow statement,

endmodule // Conclude the module code.

Table 3. Data flow method in Verilog

“Assign out=sel? a:b” and “assign outbar = ~out” are data-flow statements to be

executed concurrently. “Assign out=sel? a:b” means that if sel=1 then out=a, and if

 53

sel=0 then out=b. Basically this is a multiplexer with two inputs and one output; signal

sel determines which input (a or b) connects to the output (out). “Assign outbar = ~out”

means that outbar is the inverted out.

The behavioral method uses statements to describe a sequential algorithm if an

event is triggered. Table 4 shows a behavioral method in Verilog. When a signal (a, b or

sel) changes, the statements inside the “always” block will be executed sequentially.

module mux_2_to_1(a, b, out, outbar, sel);

input a, b, sel; // see last example for explanation

output out, outbar;

reg out, outbar;

// the always block runs once whenever a signal in the sensitivity list changes value

always @ (a or b or sel)

// Statements within the always block are executed sequentially.

begin

 if (sel) out = a; // if sel is true, then out = a, else out = b

 else out = b;

 outbar = ~out; //

end

endmodule

Table 4. Behavior method in Verilog

Structural methods express the design as an arrangement of interconnected pre-

defined components designed by data-flow and/or structural methods. Figure 8 shows the

relationship among data-flow, behavioral and structural methodologies.

 54

Package

(libraries)

Entity

Behavioral

Methodology

Data flow

Methodology

Structural

Methodology

Concurrent

statement

Sequential

statement

Ports (IOs)Generics (parameters)

Figure 8 HDL hierarchy

6. FPGA Design Methodology—HDL Approach

FPGA design by using hardware-description languages adopts top-down

methodology as shown in Figure 9 with a hierarchical and modular approach defined at

different levels of abstraction [44,45].The design flow has four stages [46].Simulation

and validation can be performed at all four.

1. System level: Specifications are given.

2. Behavior level: Design is described in texted algorithms.

3. Register transfer level (RTL): Design is described in components. RTL

stands for register transfer language, a language for describing the

behavior of computers in terms of stepwise register contents.

4. Physical level: Design is described in target hardware.

Traditional standard FPGA design flows are shown on the right hand side in

Figure 9. The most important disadvantage of this individual approach is that each stage

is addressed separately. This often involves the use of different computer aided design

tools, software platforms, and environments at various stages.

 55

System level

Behavior level

for design

RTL level for

synthesis

Physical level

for

implementation

HDL

Design,

simulation (test),

synthesis,

implementation

Specification

Product

(instantiation)

Synthesis

Design

Simulation

Design

Design

Design

Simulation

Simulation

Modeling approach

(Unified platform,

environment)

HDL approach

(separated tools,

platforms, environments)

Figure 9 Hierarchic flow of the top–down design method.

A holistic system-level approach to the FPGA design and development enables a

top-down design methodology in a single unique environment as shown on the left hand

side in Figure 9. It starts with modeling an idea at an abstract level, and proceeds through

the iterative steps to refine this idea into a detailed system. A test environment is

developed simultaneously to check if the design is in compliance with the original

specifications. Concepts are tested before final physical implementation [46].

Table 5 describes the steps from design to FPGA implementation and some

available software tools in today’s market [47].

 56

FPGA design flow Xilinx tools

Synopsys tools

(Synplicity

tools) Others

Design entry

(create source files)

VHDL or Verilog

(text-based)

Core generator

for reuse Synphony®

CoreFire® (model-based) by

Annapolis Micro Systems

Simulink®/MATLAB®

(model-based)

Functional

simulation

(test design

functionality) ISIM® VCS

ModelSim® by Mentor

Graphics

NC – Verilog by Cadence

Synthesis

(convert VHDL to

netlist) XST®

Synplify

Synplify Pro

Synplify

Premier

Timing simulation

(check timing) ISIM®

Synplify

Synplify Pro

Synplify

Premier

Constraint

(provide timing and

placement

requirements)

 FPGA editor

PlanAhead

Synplify

Synplify Pro

Synplify

Premier

Implementation

Use netlist and

constraints

to create

programming

bit files

FPGA editor

ISE place-and-

route

Implementation

analysis

(debugging) ChipScope

Synplify

Synplify Pro

Synplify

Premier

Identify Debussy by Novas

Implementation

improvement

(change design

and/or constraints)

 FPGA editor

PlanAhead

Synplify

Synplify Pro

Synplify

Premier

Programming

(program design on

a chip) iMPACT confprosh

Table 5. FPGA design tools survey

E. DESIGN PATTERNS

There are design patterns for software, firmware, and hardware of embedded

systems. In this section, we list some major patterns for each type. Design patterns are

more important for firmware and hardware because of the cost of making modifications.

 57

1. Software Design Patterns

To have good modularity and reusability in software design, an object-oriented

language itself is not sufficient; higher-level building blocks (design patterns) are highly

desirable. A design pattern is a typical solution to a recurring problem in a software

system. According to Gang of Four (GoF), there are 23 major software design patterns

generally considered as the foundation for all other patterns in object-oriented design

[48].These patterns are categorized as creational, structural, and behavioral as shown in

Table 6.

Groups Patterns

Creational

Patterns

1 Abstract Factory

2 Builder

3 Factory Method

4 Prototype

5 Singleton

Structural

Patterns

6 Adapter

7 Bridge

8 Composite

9 Decorator

10 Facade

11 Flyweight

12 Proxy

Behavioral

Patterns

13 Chain of Resp.

14 Command

15 Interpreter

16 Iterator

17 Mediator

18 Memento

19 Observer

20 State

21 Strategy

22 Template

23 Visitor

Table 6. Software design patterns

 58

2. Embedded Software Design Patterns

In general, embedded software (or firmware) is based either on a CPU or on

reconfigurable computing. The key components in a CPU-based embedded system are

microprocessors and microcontrollers. The key components in a reconfigurable-

computing embedded system are FPGAs and complex programmable logic devices

(CPLDs).

a. CPU-Based Firmware Design Patterns

Table 7 contains 28 typical firmware design patterns for CPU-based embedded

systems [49].

b. Reconfigurable Computing Based Design Patterns

Table 8 contains 89 firmware design patterns grouped into five classes and twelve

subclasses for reconfigurable computing systems. These patterns are based on the

existing literature collected by André DeHon et al in 2004 [50].

One example is the coarse-grained time multiplexing design pattern, number 3 in

Table 8 which allows a large design to be run on a smaller or fixed-capacity

reconfigurable-computing platform. Another example is template specialization design

pattern (number 41 in the Table 8) which implements a specialized computation instead

of a generic computation in the reconfigurable computing to reduce space and/or time to

meet special requirements for a task [50].

 59

Class Subclass

Object

1 Half call

2 Manager

3 Resource manager

4 Message factory and message interface

5 Publish-subscribe

State

6 Hierarchical state machine

7 State machine inheritance

8 Collector state pattern

9 Parallel wait state pattern

10 Serial wait state pattern

Hardware

interface

11 Serial port

12 High speed serial port

13 Hardware device

14 Synchronizer

Protocol

15 Transmit protocol handler

16 Receive protocol handler

17 Protocol packet

18 Protocol layer

19 Protocol stack

Architecture

20 Processor architecture patterns

21 Processor architecture patterns II

22 Feature coordination patterns

23 Task design patterns

24 Resource allocation patterns

25 Timer management

Implementation

26 C++ header file include patterns

27 STL design patterns

28 STL design patterns II

Table 7. Design patterns for embedded systems

 60

Class Subclass Expression Implementation

A
re

a-
ti

m
e

tr
ad

eo
ff

s

B
as

ic

1 Sequential vs. Parallel

2 Fine-grain Time-Multiplexing

3 Coarse-grain Time-Multiplexing

4 Element Share Regular Graphs

5 Operator Share General Graphs

6 Synthesis Objective

7 Scheduled Operator Sharing

8 Data path Sizing and Serialization

P
ar

al
le

l

9 Extract Control Flow 17 If-Conversion/Predication

10 Dataflow 18 Parallel Prefix, Reduce, Scan

11 Synchronous Dataflow 19 SIMD

12 Acrylic Dataflow Graph 20 Vector

13 Functional 21 Data path Duplication

14 Data Parallel 22 Communicating FSMDs

15 Multithreaded 23 Direct Implementation of Graph

16 Futures

P
ro

ce
ss

o
r-

F
P

G
A

24 Interfacing/IO

25 Co-processor

26 Streaming Co-processor

27 Instruction Augmentation

28 Sequencer/Controller

C
o

m
m

o
n

-C
as

e

29 Caching

30 Simple Hardware with Escape

31 Exception

32 Trace-Schedule/Exceptional Exit

33 Prediction

34 Speculation

35 Parallel Verifier

R
ed

u
ci

n
g

 a
re

a
o

r
ti

m
e

R
eu

se

h
ar

d
w

ar
e

36 Pipelining

37 Wave Pipelining

38 Retiming

39 C-Slow

40 Software Pipelining

S
p

ec
ia

li
za

ti
o

n
 46 Constructor 41 Template

 42 Worst-Case Footprint

 43 Constructive Instance Generator

 44 Instance Generator

 45 Partial Evaluation

P
ar

ti
al

re
co

n
fi

g
u

ra

ti
o

n

47 Isolate Fixed/Varying

48 Constant Fill-in

49 Unify Data path Variants

 61

Class Subclass Expression Implementation

50 1D Function Space

51 Fixed-Size and Std. IO Page

52 Bus Interface
C

o
m

m
u

n
ic

at
io

n
s

B
as

ic

53 Streaming Data 67 Shared Bus

54 Message Passing 68 Token Ring

55 Remote-Procedure Call 69 Reconfigurable Interconnect

56 Shared Memory 70 Pipelined Interconnect

 71 Serialized Communications

 72 Time-Switched Routing

 73 Circuit-Switched Routing

 74 Packet-Switched Routing

L
ay

o
u

t

62 Cellular Automata 62 Cellular Automata

63 Systolic, Semi-systolic 63 Systolic, Semi-systolic

 64 Fixed-Radius Communication

 65 Folded/Interleaved Torus

 66 Tree-of-Meshes and Fold-and-Squash

S
y

n
ch

ro
n
iz

at
io

n
 57 Synchronization Synchronous Clock

 58 Asynchronous Handshaking

 59 Tagged Data Presence

 60 Queues with Back Pressure

 61 H-Tree

M
em

o
ry

V
al

u
e-

ad
d

ed

 75 Address Generator

 76 Content-Addressable Memory

 77 Read-Modify-Write

 78 Data Filter

 79 Indirection/Redirection

 80 Scan-Select-Reorganize

 81 Data Compression/Digest

 82 Stack, Queue

 83 Data Structure

N
u

m
b

er
s

an
d

 f
u
n

ct
io

n
s

R
ep

re
se

n
ta

ti
o
n
 87 Abstract operators 84 Parameterize Data path Operators

 85 Redundant Number System

 86 Distributed Arithmetic

 88 Stochastic Bit-Serial Computation

 89 Bit-Slice Data path

Table 8. Design patterns for reconfigurable computing

 62

3. Hardware Components Selection

Component selection is a process of selecting a suitable component or a set of

similar components from different suppliers for the designed circuit to perform its

intended operation [51]. Some important generic factors for consideration are:

 Availability (lifecycle)

 Affordability (cost)

 Traceability (component's history)

 Reliability of the component's performance over a period of time

The important technical parameters in selecting an electronic component can be

categorized into electrical, mechanical, and environmental. Table 9 lists these three

categories and their associated major parameters.

Categories Parameters Example

Electrical

parameters

Component category Microcontroller

Key attribute 1 Speed

Key attribute 2 Peripherals

Key attribute 3 Program memory size

…

Key attribute N Core size

Mechanical

parameters

Mounting type Surface mount

Number of terminals or pin count 8

Package dimensions (2.2~3.2) × (2.7~3.1) mm

Package style SOT-23

Pin diameter 0.2~0.51 mm

Pin style Gull wing

Seated height 0.9~1.45 mm

Weight

Terminal spacing 0.95 mm

 Environmental

parameters

Standards conformance ASME Y14.5M (see below)

Derating temperature

Material composition Silicon

Moisture sensitivity levels (MSL)

Operating and storage temperature ranges 0° ~70°C

Peak reflow temperature

Radiation effect RoHS compliant (see below)

Temperature grades Commercial

Table 9. Electronics component selection

 63

A gull wing device is a surface mount component that has its pins leads folded out

from its body in the shape of an “L.” ASME Y14.5 standard is considered the

authoritative guideline for the design language of geometric dimensioning and

tolerancing [52]. RoHS stands for Restriction of Hazardous Substances Directive

2002/95/EC; it was adopted in February 2003 by the European Union to restrict the use

of certain hazardous substances in electrical and electronic equipment [53].

F. A* AND AO* ALGORITHMS

Created by Peter Hart, Nils Nilsson and Bertram Raphael in 1968, the A*

algorithm finds the least-cost path from an initial node to the goal node. This can be

accomplished by using a best-first search using the estimated total path cost. Best-first

always chooses the path with lowest estimate until the goal is reached. The estimated

total path cost is defined as the sum of the actual cost from the initial node to the current

node and the estimated (heuristic) cost from the current node to the goal node. An A* tree

only contains OR nodes (disjunctions).

If the heuristic cost is always less than the subsequent actual cost to the goal (that

is, we never overestimate or we always underestimate the heuristic cost), then the

solution is guaranteed to be optimal. This is the definition of admissibility of the heuristic

cost. If the heuristic cost at node n is always less than the sum of the heuristic cost at

node n’ and the actual cost from node n to n’ (suggesting the triangle inequality that the

sum of the lengths of any two sides must be greater that the length of the remaining side

in a triangle), then the first path found to the goal is guaranteed to be the best.. This is the

definition of consistency. If b is the maximum branching factor (the number of children

at each node) and d is the depth of goal (solution), an upper bound on the number of

nodes visited by an A* search is
db . We summarize the definition and properties of A*

algorithm in Table 10.

AO* is similar to A* algorithm except that it has conjunctions as well as

disjunctions for branches. The nodes in conjunction must be all true; as a result, the

estimated cost for a conjunction is the sum of all nodes in this conjunction, or f(n) = f(n1)

 64

+ f(n2) + … + f(nk) where n1, n2, ….. , nk are the nodes in conjunction; f(ni) is the

estimated cost for node i in this conjunction, where i is between 1 and k.

 Term Expression Definition

A* search f(n) = g(n) + h(n)

f(n) = estimated cost from node n to goal,

g(n) = actual cost from root to node n,

h(n) = heuristic cost from node n to goal

Admissibility h(n) ≤ h*(n)

h(n) = heuristic cost,

h*(n) = actual cost.

Consistency h(n) ≤ c(n,n') + h(n')

h(n) = heuristic cost at node n,

h(n’) = heuristic cost at node n’,

c(n,n’) = actual cost from node n to n’

Worst case

time and space

complexity b
d

b = branching factor,

d = depth of solution

Table 10. A* algorithm

 65

III. METHODOLOGY

A. SW/FW/HW PARTITIONING METHODOLOGY

Software/firmware/hardware partitioning is a difficult task; oftentimes it depends

on an expert’s knowledge [7, 30]. In this chapter, we propose a procedure to

systematically partition components into software, firmware or hardware, and then map

partitioned components unto appropriate design patterns for implementation. The

procedure is:

1. Develop Requirements

Write down the requirements.

2. Define Constraints

Define constraints on components. Constraints generally come from requirements

and they include (but are not limited to):

 Constraints on input and output signals that cannot be changed

 Minimum speeds of processing

 Synchronization necessary within specified windows

 Constraints on use of proprietary software/firmware/hardware

 Others

3. Form an Architecture

This step can be divided into three sub-steps below.

a. Consider Design Options

First, list all design options and associated design problems; second, link design

problems to requirements and constraints in steps one and two; third, disqualify the

designs with problems and select the optimal design among qualified ones. Domain

knowledge is helpful in qualifying and disqualifying design options.

 66

b. Form an Architecture for the Optimal Option

Draw a block diagram of functional components and their data connections

without presumptive software/firmware/hardware partitioning.

c. Simplify Architecture for Partitioning Analysis

A component can be eliminated from further software/firmware/hardware

partitioning analysis if it has only one feasible choice from the set of {software,

firmware, hardware}.

4. Build a Tree to Assign Modalities to Functional Components

a. Software, Firmware and Hardware Partitioning

Build a tree of possible mappings from the remaining functional components to

the set of {software, firmware, hardware} for each mapping that fulfills the requirements

and constraints. Note that interface components may be needed between connected

components.

Starting at the root, expand it into 3×n child nodes at the first level of expansion,

where n is the number of functional components in the architecture without being

assigned to certain modalities. At this level, (1) each node has an embedded AND of n

functional components; (2) each component could be mapped to three modalities in the

set of {software, firmware, hardware}; (3) only one functional component is assigned to a

modality and others are don’t-cares. Therefore, there are 3×n child nodes (successors)

from the root. Only the child nodes satisfying requirements and constraints are

considered for further expansion; unqualified nodes are terminated by being assigned

infinite costs. Among the qualified nodes, an optimal one is selected for further

expansion to the second level; this optimal node inherits all requirements and constraints

from the parent node (root) [54]. But we must allow for the possibility of backtracking to

the other choices if the expansion of the original node is disappointing.

At the second level, since one component is already assigned to a modality, there

are n-1 functional components must be mapped in the node selected at level one. For the

same reason as the first level, this selected node (now a parent node) can be expanded

 67

into 3×(n-1) child nodes. Use the same process as level one to select an optimal node

among these 3×(n-1) child nodes. If the estimated cost of this selected node at level two

is not the least estimated cost among all qualified nodes, we must move our search to the

node with the least estimated cost anywhere in the tree, consistent with the A* algorithm.

Repeat this process until all n components are assigned to certain modalities. Because

there are n functional components, there are n levels of expansion from the root to the

final solution.

Our methodology specializes the A* algorithm in the following ways.

 Nodes are disqualified if they violate requirements or constraints. Infinite

costs are assigned to disqualify nodes; we do not want to revisit

disqualified nodes.

 Among the qualified nodes, we use cost estimation to find the least-cost

node for further expansion. If there are ties, we will select a node for

expansion by alphanumeric order.

 We are interested in feasible solutions, not necessarily the best solutions.

Feasible solutions meet our requirements and constraints at reasonable

costs. Ultimately, the stakeholders will select the best solution among the

feasible solutions.

 The tree is an OR tree with embedded AND. The advantage of having an

OR tree with embedded AND is that we can simplify the tree and use A*

search instead of more complicated AO* search algorithm.

 The branching factor is a constant which is the number of modalities.

 The number of levels of expansion is the number of components in the

architecture without being assigned to certain modalities.

The least number of nodes in the tree using this methodology occurs when there is

no need to backtrack. That is 3×n×(n+1)/2, because there are 3×n mappings at the first

level, at least 3×(n-1) mappings at the second level, at least 3×(n-2) mappings at the third

level, and so on. The sum of this arithmetic series is 3×(1+2+3+… + n). In general, 3

can be replaced by the number of modalities in a set, so that the least number of mapping

can be expressed as (#modalities) × (#components) × (#components+1) / 2. Using brute-

force exhaustion methodology, the most number of mappings is 3
n
, because each

functional component has 3 possible modalities in the set of {software, firmware,

hardware} and there are n functional components; 3×3×3×3×…×3=3
n
. Table 11 shows

 68

some comparisons between these two methodologies. It is expected that many problems

will have close to the least number of mappings since in many real-world problems the

costs of alternatives are quite different and revisiting other qualified nodes is not

required.

#functional

components

Least number

of mappings using

our methodology

when backtracking

is unnecessary

Most number

of mappings

(exhaustion methodology)

Ratio of

Most/Least

1 3 3 1

5 45 243 5

10 165 59,049 358

100 15,150 5.E+47 3.E+43

Table 11. Least and most numbers of mappings

b. Design Patterns Mapping

Once all components are partitioned as software, firmware or hardware, we can

map each component to a design pattern if existing, and otherwise synthesize a new one.

The procedure of mapping design patterns is the same as step 4a; simply replace

modalities {software, firmware and hardware} with the existing design patterns.

c. Rate the Cost

Rate the cost of each mapping, including costs of the interfaces, and including a

weighted sum of the following factors:

 Monetary costs of the equipment

 Execution time

 Power required

 Space required

 Design complexity

 Monetary costs of necessary further development

 Cost of debugging the implementation

 Degree of lack of satisfaction of the ultimate user needs

 Others

 69

The cost estimation is not critical for our methodology in this dissertation since

(1) requirements and constraints are used to qualify or disqualify options, and an infinite

cost is assigned to a disqualified option; (2) among the qualified options, the

implementation costs for software, firmware and hardware vary significantly and the cost

comparisons among them are apparent. Typically, the cost for hardware implementation

is in hundreds of thousands of dollars, a firmware implementation is in thousands of

dollars, and a software implementation is in hundreds of dollars (explained in Table 15);

(3) in terms of design patterns mapping, each design pattern is unique and multiple

successful mappings are not likely.

5. Repeat Steps 3 through 5

If the optimal solution is not detailed enough, return to step 3 and refine it further.

6. Repeat Steps 4 through 6

If more feasible solutions are required, return to step 3.

7. Repeat Steps 1 through 7

If there are no solutions, return to step 1 and modify requirements, constraints

and/or modalities until one or several feasible solutions are found. Ultimately,

stakeholders will decide which solution is optimal. Figure 10 shows the process flow.

 70

Step 1: develop

requirements

Step 2: define

constraints

Step 3: form an

architecture

Step 4: build a tree

Step 5: detailed

enough?

Step 6: more

feasible

solutions?

yes

Step 7: solutions

found?

no

no

yesno

Decision

making

yes

Figure 10 Software/firmware/hardware codesign methodology process flow

B. EXAMPLE—FILTERING FOR ULTRA-HIGH FREQUENCY SIGNALS

1. Develop Requirements

As an example, consider a filtering task for ultra-high radiofrequency signals. We

summarize the requirements in Table 12.

 71

 Description Comment

R1 Input signal frequency range 0-6 gigahertz analog format

R2 Output signal frequency range 0-6 gigahertz analog format

R3 Filtering

Apply specified filtering;

frequency dependent preferable;

must be reconfigurable for future use

Table 12. Functional requirements

2. Define Constraints

Non-functional constraints are summarized in Table 13.

 Description Comment

C1 Latency (real-time) Less than 5 microseconds for signals going through the filter.

C2 Throughput Up to 120 gigabits-per-second.

C3 Flexibility
Must be adapted for various data rates (up to 12 gigabytes-per-

second).

C4 Synchronization

Parallel data bits must be synchronized (aligned) before digitally

filtering the signal they represent as a whole (if digital filtering is

used.)

C5 Environment

Not important since the application is in a laboratory (equipment is

used to test electronics to be put in planes, but is not in the planes

physically).

C6 Development time Less than a year.

C7 Material budget
Depending on the availability of capital investment property

funding ($250K typically).

C8 Quantity One prototype for feasibility test.

C9 Temperature Room temperature (70º±5º F).

C10
SWaP

(size, weight, and power)

Not important since the application is in a laboratory (see C5 for

explanation).

C11 Degree of consistency Only one data alignment per day.

C12 Information completeness Information cannot be lost.

Table 13. Non-functional constraints

3. Form an Architecture

a. Consider Design Options

Table 14 lists five design options for filtering and their associated design

problems. The first option, using a single analog filter, violates the third requirement and

the third constraint, since an analog filter cannot be easily reconfigured (being not

flexible). The second option, using only an analog-to-digital converter, a digital-to-analog

 72

converter and a digital filter, violates the first and second requirements, since the digital

filter cannot handle signals in the gigasamples-per-second range. The third option,

subsampling the digitized stream at different frequencies, violates the first constraint,

since it takes too much time to switch from one frequency to another to cover a wide

spectrum. The fourth option, sampling for a fixed number of samples and transferring

them into a buffer for processing, violates the first and twelfth constraints, since

information will be lost while processing data in the buffer; this will cause aliasing.

Aliasing means frequency ambiguity due to insufficient sampling [55]. The fifth option,

using an analog-to-digital converter, a digital-to-analog converter, a digital filter, a

multiplexer and a demultiplexer, has no violations; as a result, we select option five for

our design as shown in Figure 11

 Design options for filtering Design problems

O1 A single analog filter

The filtering task is inflexible. It requires

hardware redesign for certain type of filtering.

R3, C3

O2

ADC, DAC, digital filter without

demultiplexing and multiplexing

This only works for low-frequency signals, since

the processing speed is limited by the digital filter

R1, R2

O3

subsample the digitized stream at

different frequencies rather than

different phases

The overall frequency bandwidth is too narrow.

With the help of down-converters, the switching

time from one frequency to another might violate

the minimum latency requirements.

C1

O4

Sampling for a fixed number of

samples, transferring them to a

buffer, waiting a while, then

sampling another fixed number of

samples

Not real-time, data are missing while processing

data in the buffer which could cause aliasing

C1, C12

O5

ADC, demultiplexer, digital filter,

multiplexer, DAC

No

Table 14. Five options for filtering

Filter

A1 A2 A3 A4 O5O1 O2 O3 O4

Figure 11 Five options for filtering

 73

b. Form an Architecture for the Optimal Option

Option five is the only architecture meeting the requirements and constraints. For

this architecture, we need five components, and they are an analog-to-digital converter, a

demultiplexer, a filter, a multiplexer and a digital-to-analog converter. Based on their

definitions, the only logical arrangement is shown in Figure 12.

ADC Filter DAC

d
e
-

M
U

X
M

U
X.....

.....

Figure 12 An architecture satisfying our requirements and constraints

c. Simplify Architecture for Partitioning Analysis

An analog-to-digital converter is a device that converts analog signals to digital

signals, and a digital-to-analog converter is a device that converts digital signals to analog

signals; both of them act like bridges between physical real-world and man-made

computer world. As a result, we can exclude the analog-to-digital converter and digital-

to-analog converter from our analysis because they must be hardware (see Figure 13.)

ADC Filter DAC

d
e-

M
U

X
M

U
X.....

.....

HW HW

Figure 13 Exclude ADC and DAC from analysis

4. Build a Tree to Map Functions to Modalities

a. Map to Software/Firmware/Hardware

By our methodology there are 18 (3×3×4÷2) mappings to consider. Now we will

build an OR tree with embedded ANDs. They are 9 possible branches from the root, and

each node is an embedded AND as listed in Table 16. In Table 16, D stands for

demultiplexer, F stands for filter, M stands for multiplexer and * stands for don’t-care.

 74

Due to non-recurring engineering (NRE) effort, the cost for hardware filtering

(hardware implementation) is very high if the number of units used is low [56]. The unit

cost for an 8-multicore processor (software implementation) from Texas Instruments is

about $300 [57, 58]. The unit cost for a Xilinx Virtex-6 FPGA (firmware

implementation) is about $3,200 [59]. The cost comparisons among software, firmware

and hardware implementations are listed in Table 15. Node A6, filter being hardware, can

be eliminated form our analysis due to its high cost.

Modality Cost for 5 units Rating

Hardware (ASIC) $ 350,150 High-cost

Software (CPU) $ 1,500 Low-cost

 Firmware (FPGA) $ 16,000 Medium-cost

Table 15. Filter cost rating

We can also eliminate A1, A2, A7 and A8 from our analysis because software and

firmware implementations are too slow for ultra-high data rate applications and too costly

compared to commercial-off-the-shelf hardware high-speed multiplexers and

demultiplexers. The cost for a multiplexer or demultiplexer is less than $50. The

estimated costs for other nodes (A3, A4, A5 and A9) are within our budget constraints

and considered equal at this stage.

Filter D F M Violation Set representation

A1 SW * *

A dedicated CPU is required;

too slow for high-speed applications

{D=SW,F=*,M=*}

A2 FW * * Speed too slow, cost too high {D=FW,F=*,M=*}

A3 HW * * OK {D=HW,F=*,M=*}

A4 * SW * OK {D=*,F=SW,M=*}

A5 * FW * OK {D=*,F=FW,M=*}

A6 * HW * Cost is too high for a small quantity of chips {D=*,F=HW,M=*}

A7 * * SW

A dedicated CPU is required;

too slow for high-speed applications

{D=*,F=*,M=SW}

A8 * * FW Speed too slow, cost too high {D=*,F=*,M=FW}

A9 * * HW OK {D=*,F=*,M=HW}

Table 16. Nine options from the root

 75

We can express Table 16 in a tree structure as shown in Figure 14.

Filter

{D=*, F=*, M=*}

A3

{D=HW, F=*, M=*}

A4

{D=*, F=SW, M=*}
A5

{D=*, F=FW, M=*}

A9

{D=*, F=*, M=HW}

Figure 14 Four possible branches from the root

For the rest of this dissertation, we will simplify the tree representations without

including the set symbols as shown in Figure 15.

Filter

A3 A4 A5 A9

Figure 15 Four possible branches from the root in a simplified form

To satisfy ultra-high frequency, flexible processing, and reasonable cost

requirements/constraints, the demultiplexer and multiplexer should be hardware (fast and

low-cost), and the filter should be firmware (fast, flexible, and medium-cost) based on

Table 15. Searching the tree in Figure 15 from left to right for an optimal solution, A3 is

the first node satisfying the requirements/constraints, so we will expand node A3.

Because HW is assigned to D in node A3, there are only two components (F and M) to be

mapped; this leads to six possible mappings (3×2 = 6). Among these six mappings, 2

 76

nodes, A3-2 and A3-6, meet the requirements/constraints as shown in Table 17. The

estimated costs for A3-2 and A3-6 are within our budget constraints and considered equal

at this stage.

 A3 D F M Violation

A3-1 HW SW * Too slow - violates real-time constraint

A3-2 HW FW * OK

A3-3 HW HW * Cost is too high

A3-4 HW * SW Too slow - violates real-time constraint

A3-5 HW * FW Too slow - violates real-time constraint

A3-6 HW * HW OK

Table 17. Six mappings under A3

Searching the tree in Figure 16 from left to right at the second level, we expand

node A3-2. Now there is only one component (M) to be mapped to three modalities

because HW and FW are assigned to D and F. A3-2-3 is the only qualified node among

these three mappings as shown in Table 18.

 A3-2 D F M Violation

A3-2-1 HW FW SW Too slow - violates real-time constraint

A3-2-2 HW FW FW Too slow - violates real-time constraint

A3-2-3 HW FW HW Optimal (only) mapping

Table 18. Three mappings under A32

Filter

A3 A4 A5 A9

A3-2 A3-6

A3-2-

3

Figure 16 An OR tree for filtering of ultra-high frequency signals

 77

b. Map to Design Patterns

Node A3-2-3 is the optimal solution {D=HW, F=FW, M=HW}. Now we would

like to form an architecture for the firmware in node A3-2-3. According to the fourth

constraint in Table 13 and the architecture in Figure 12, we need alignment firmware to

meet synchronization constraint. Since a demultiplexer and a multiplexer are used, we

have to have firmware to re-arrange bits after demultiplexing and before multiplexing.

Regarding filtering, we decide to use polyphase DFT filter banks to meet the third

requirement in Table 12. The only logical arrangement of alignment, post-

demultiplexing, filtering and pre-multiplexing is shown in Figure 17. We use the same

methodology to match each component to an optimal existing firmware design pattern; if

none existing, synthesize a new one.

ADC Filter DAC
d
e-

M
U

X
M

U
X.....

.....

HWHW

Post-ADC bits

remapping
Alignment

Pre-DAC bits

remapping

Polyphase

DFT filter

banks

.....

.....

.....

.....

.....

Figure 17 Firmware components

The parallel data bit streams from the demultiplexer must go through alignment,

Post-ADC bits remapping, polyphase DFT filter banks and pre-DAC bits remapping

algorithms in firmware (shown as four boxes above) to meet our requirements and

constraints. Further details of these boxes in Figure 17 are:

 Alignment firmware (AL): When multiple parallel bit-streams arriving at

the reconfigurable computing from a demultiplexer, they are misaligned

due to different propagation path delays and narrow data windows.

 78

 Post-ADC bits remapping firmware (PA): Bits are not in a proper order for

data processing after demultiplexing data from an analog-to-digital

converter; consequently, bits must be remapped after demultiplexing.

 Polyphase DFT filter banks (UT): This is application dependent. The

polyphase DFT filter banks are used for our particular application.

 Pre-DAC bits remapping firmware (PD): Bits are not in a sequential order

after multiplexing multiple parallel data bit-streams for digital to analog

conversion; consequently, bits must be remapped before multiplexing.

We will build an OR tree with embedded ANDs (AL•PA•UT•PD) to find the

optimal design patterns. According to Table 8 in section E.2.b, Chapter II, there are 89

major design patterns for reconfigurable computing based embedded systems, and they

are organized at three levels: (1) class, (2) subclass and (3) purpose.

(1) Level-one (class): After mapping the functional components to firmware

in Figure 16 and creating firmware architecture in Figure 17, we would like to further

map the firmware algorithms (AL, PA, UT and PD) to the existing 89 design patterns

collected by André DeHon [50] if possible. These patterns are organized at three levels;

the first level has five classes {ATT, RAT, C, M, NAF} as listed in Table 19. ATT stands

for “area-time tradeoffs,” RAT stands for “reducing area or time,” C stands for

“communications,” M stands for “memory,” and NAF stands for “numbers and

functions.” Among these five classes, ATT and C possibly match our design

requirements.

 79

Classes Descriptions

Area-time tradeoffs class (ATT)

Fitting the logical design to the hardware; Parallelism

patterns are considered a subset of ATT

Reducing area or time class (RAT) Hardware is efficient when it can be reused rapidly.

Communications class (C)

Parallel implementation will be data communication between

portions of the computation.

Memory class (M) Memory bandwidth

Numbers and functions class (NAF)

Allow us to use just as little or as much precision and

representation as necessary for the problem

Table 19. Five classes

After four levels of expansion as shown in Table 20 and Figure 18, the first

possible solution is B1-1-1-1 = {ATT, ATT, ATT, ATT}. The cost estimates for all

possible qualified nodes are within our budget constraints, and considered equal at this

stage.

 80

B AL PA UT PD

Possible

match

B1 AL PA UT PD

Possible

match

B1 ATT * * * Yes

B1-1 ATT ATT * * Yes

B2 RAT * * * No

B1-2 ATT RAT * * No

B3 C * * * Yes

B1-3 ATT C * * Yes

B4 M * * * No

B1-4 ATT M * * No

B5 NAF * * * No

B1-5 ATT NAF * * No

B6 * ATT * * Yes

B1-6 ATT * ATT * Yes

B7 * RAT * * No

B1-7 ATT * RAT * No

B8 * C * * Yes

B1-8 ATT * C * Yes

B9 * M * * No

B1-9 ATT * M * No

B10 * NAF * * No

B1-10 ATT * NAF * No

B11 * * ATT * Yes

B1-11 ATT * * ATT Yes

B12 * * RAT * No

B1-12 ATT * * RAT No

B13 * * C * Yes

B1-13 ATT * * C Yes

B14 * * M * No

B1-14 ATT * * M No

B15 * * NAF * No

B1-15 ATT * * NAF No

B16 * * * ATT Yes

 B17 * * * RAT No

 B18 * * * C Yes

 B19 * * * M No

 B20 * * * NAF No

B1-1 AL PA UT PD

Possible

match

B1-1-1 AL PA UT PD

Possible

match

B1-1-1 ATT ATT ATT * Yes

B1-1-1-1 ATT ATT ATT ATT Yes

B1-1-2 ATT ATT RAT * No

B1-1-1-2 ATT ATT ATT RAT No

B1-1-3 ATT ATT C * Yes

B1-1-1-3 ATT ATT ATT C Yes

B1-1-4 ATT ATT M * No

B1-1-1-4 ATT ATT ATT M No

B1-1-5 ATT ATT NAF * No

B1-1-1-5 ATT ATT ATT NAF No

B1-1-6 ATT ATT * ATT Yes

 B1-1-7 ATT ATT * RAT No

 B1-1-8 ATT ATT * C Yes

 B1-1-9 ATT ATT * M No

 B1-1-

10 ATT ATT * NAF No

Table 20. Only ATT and C are possible mappings

 81

A323

B1 B3 B6 B8 B11 B13

B1-1 B1-3

B1-1-1

B16 B18

B1-6 B1-8 B1-11 B1-13

B1-1-3 B1-1-6 B1-1-8

B1-1-1-

1

B1-1-1-

3

Figure 18 Only ATT and C are possible mappings

(2) Level-two (subclass): Under class area-time tradeoffs (ATT), there are 4

subclasses {B, P, F, C}; B stands for “basic,” P stands for “parallel,” F stands for

“processor-FPGA,” and C stands for “common-case.” Table 21 lists these four subclasses

and their descriptions. Among these four subclasses, only P possibly matches our design

requirements.

Subclasses Descriptions

Basic (B) fitting the logical design to the hardware

Parallel (P) use parallelism to increase performance

FPGA processor (F) use FPGAs and processors together

Common-Case (C)

implement the common-case spatially in minimal hardware and

have an escape mechanism to handle the less common cases

Table 21. Four subclasses

After four levels of expansion as shown in Figure 19 and Table 22, the first

possible solution is C2-2-2-2 = {P, P, P, P}. The cost estimates for all possible qualified

nodes are within our budget constraints, and considered equal at this stage.

 82

C=B1111 AL PA UT PD

Possible

match

C2 AL PA UT PD

Possible

match

C1 B * * * No

C2-1 P B * * No

C2 P * * * Yes

C2-2 P P * * Yes

C3 F * * * No

C2-3 P F * * No

C4 C * * * No

C2-4 P C * * No

C5 * B * * No

C2-5 P * B * No

C6 * P * * Yes

C2-6 P * P * Yes

C7 * F * * No

C2-7 P * F * No

C8 * C * * No

C2-8 P * C * No

C9 * * B * No

C2-9 P * * B No

C10 * * P * Yes

C2-10 P * * P Yes

C11 * * F * No

C2-11 P * * F No

C12 * * C * No

C2-12 P * * C No

C13 * * * B No

 C14 * * * P Yes

 C15 * * * F No

C16 * * * C No

C2-2 AL PA UT PD

Possible

match

C2-2-2 AL PA UT PD

Possible

match

C2-2-1 P P B * No

C2-2-2-1 P P P B No

C2-2-2 P P P * Yes

C2-2-2-2 P P P P Yes

C2-2-3 P P F * No

C2-2-2-3 P P P F No

C2-2-4 P P C * No

C2-2-2-4 P P P C No

C2-2-5 P P * B No

 C2-2-6 P P * P Yes

 C2-2-7 P P * F No

C2-2-8 P P * C No

Table 22. Only P is a possible mapping

 83

B1-1-1-

1

C2 C6 C10 C12 C14

C2-2 C2-6 C2-10

C2-2-2 C2-2-6

C2-2-2-

2

Figure 19 Only P is a possible mapping.

(3) Level-three (purpose): Under subclass parallel (P), there are 6 design

patterns {EC, DF, SD, DP, MT, FU}; EC stands for “extract control flow,” DF stands for

“dataflow,” SD stands for “synchronous dataflow,” DP stands for “data parallel,” MT

stands for “multithreaded,” and FU stands for “futures.” Table 23 lists these six purposes

and their descriptions. Among these six purposes, DF, SD and DP possibly match our

design requirements.

 84

Purposes Descriptions

Extract Implicit Parallelism from

Control Flow (EC) [Callahan, 2000]
Connecting FPGAs

Dataflow (DF) [Rinker, 2001]

The system consists of an optimizing compiler which produces

dataflow graphs, and a dataflow graph to VHDL translator.

Synchronous dataflow (SD) [Lee,

1987]

A method of partitioning of a signal processing task into

multiple programs that execute concurrently.

Data parallel (DP) [Hillis et al, 1986]

A series of algorithms appropriate for fine-grained parallel

computers with general communications.

Multithreaded (MT) [Caspi et al,

2002]

Dividing a computation up into fixed-size “pages” and time-

multiplexing the virtual pages on available physical hardware.

Futures (FU) [Halstead, 1985]

Multilisp is a version of the Lisp dialect Scheme extended with

constructs for parallel execution.

Table 23. Eight purposes

After four levels of expansion as shown in Table 24 and Figure 20, the first

possible solution is D2-2-2-2 = {DF, DF, DF, DF}. The cost estimates for all possible

qualified nodes are within our budget constraints, and considered equal at this stage.

 85

D AL PA UT PD

Possible

match

D2 AL PA UT PD

Possible

match

D1 EC * * * No

D2-1 DF EC * * No

D2 DF * * * Yes

D2-2 DF DF * * Yes

D3 SD * * * Yes

D2-3 DF SD * * Yes

D4 AD * * * No

D2-4 DF AD * * No

D5 FN * * * No

D2-5 DF FN * * No

D6 DP * * * Yes

D2-6 DF DP * * Yes

D7 MT * * * No

D2-7 DF MT * * No

D8 FU * * * No

D2-8 DF FU * * No

D9 * EC * * No

D2-9 DF * EC * No

D10 * DF * * Yes

D2-10 DF * DF * Yes

D11 * SD * * Yes

D2-11 DF * SD * Yes

D12 * AD * * No

D2-12 DF * AD * No

D13 * FN * * No

D2-13 DF * FN * No

D14 * DP * * Yes

D2-14 DF * DP * Yes

D15 * MT * * No

D2-15 DF * MT * No

D16 * FU * * No

D2-16 DF * FU * No

D17 * * EC * No

D2-17 DF * * EC No

D18 * * DF * Yes

D2-18 DF * * DF Yes

D19 * * SD * Yes

D2-19 DF * * SD Yes

D20 * * AD * No

D2-20 DF * * AD No

D21 * * FN * No

D2-21 DF * * FN No

D22 * * DP * Yes

D2-22 DF * * DP Yes

D23 * * MT * No

D2-23 DF * * MT No

D24 * * FU * No

D2-24 DF * * FU No

D25 * * * EC No

 D26 * * * DF Yes

 D27 * * * SD Yes

 D28 * * * AD No

 D29 * * * FN No

 D30 * * * DP Yes

 D31 * * * MT No

D32 * * * FU No

 86

D2-2 AL PA UT PD

Possible

match

D2-2-2 AL PA UT PD

Possible

match

D2-2-1 DF DF EC * No

D2-2-2-1 DF DF DF EC No

D2-2-2 DF DF DF * Yes

D2-2-2-2 DF DF DF DF Yes

D2-2-3 DF DF SD * Yes

D2-2-2-3 DF DF DF SD Yes

D2-2-4 DF DF AD * No

D2-2-2-4 DF DF DF AD No

D2-2-5 DF DF FN * No

D2-2-2-5 DF DF DF FN No

D2-2-6 DF DF DP * Yes

D2-2-2-6 DF DF DF DP Yes

D2-2-7 DF DF MT * No

D2-2-2-7 DF DF DF MT No

D2-2-8 DF DF FU * No

D2-2-2-8 DF DF DF FU No

D2-2-9 DF DF * EC No

 D2-2-10 DF DF * DF Yes

 D2-2-11 DF DF * SD Yes

 D2-2-12 DF DF * AD No

 D2-2-13 DF DF * FN No

 D2-2-14 DF DF * DP Yes

 D2-2-15 DF DF * MT No

D2-2-16 DF DF * FU No

Table 24. Only DF, SD and DP are possible mappings

C2222

D2 ... D30

D2-2 D2-3 D2-6 D2-10 D2-11 D2-14 D2-18 D2-19 D2-22

D2-2-

2

D2-2-

3

D2-2-

6

D2-2-

10

D2-2-

11

D2-2-

14

D2-2-2-2 D2-2-2-3 D2-2-2-6

Figure 20 Only DF, SD, and DP are possible mappings

 87

Once a possible optimal leaf-node D2-2-2-2 is identified, we study the design

pattern in the published literature carefully [60], and find out that it does not meet our

requirements/constraints (see the purpose of dataflow in Table 25.) We will have to use

A* algorithm to search all other possible matches. In summary, after exhausting all

possible searches, there are only seven patterns which might meet our requirements as

listed in Table 25.

 Design pattern
 Published

literature Purpose

 Dataflow (DF) [60]

The system consists of an optimizing compiler

which produces dataflow graphs and a dataflow

graph to VHDL translator.

 Synchronous Dataflow

(SD)
[61] A method of partitioning of a signal processing task

into multiple programs that execute concurrently.

 Data parallel (DP) [62, 63, 64]
A series of algorithms appropriate for fine-grained

parallel computers with general communications.

 Streaming data (SD)

[65, 66, 67]
Cheops abstracts out a set of basic, computationally

intensive stream operations that may be performed

in parallel and embodies them in specialized

hardware.

 Message passing (MP)

[68, 69, 70, 71]
This “Cosmic Cube” computer is a hardware

simulation of a future VLSI implementation that

will consist of single-chip nodes.

 Synchronous clocking

(SC)
[72]

VLSI system timing

 Tagged Data Presence

(TDP)
[73, 74] The processors are pipelined to support many

concurrent processes.

Table 25. Possible optimal leaf-nodes

After reading these seven papers carefully, we conclude that none of the patterns

in Table 25 matches our requirements. As a result, we have to synthesize new design

patterns; these new design patterns are briefly described in Table 26 (detailed

descriptions are in Chapter IV.) We use the term “new design patterns” because they are

not among the 89 reconfigurable computing design patterns collected by André DeHon in

Table 8 [50]; however, it does not mean that we are the first group invented these

patterns.

 88

Design patterns Description

Among

89

patterns

Application specific:

polyphase Discrete Fourier

transform filter banks

[Vaidyanathan, 1993]

Separate an ultra-wide bandwidth input signal into multiple

subbands, process each subband independently and

differently, and then combine all subbands into one serial

output in an efficient way (Chapter IV)

No

Data bit-streams alignment

Multiple parallel data bit-streams must be aligned with

respect to the source-synchronous sampling clocks to ensure

correct data sampling at the filter (Chapter IV)

No

Switch-and-filter

architecture

Bring an ultra-fast signal from an ADC to a slower device

(filter) through a demultiplexer, process the signal, and then

output the processed signal to a DAC through a multiplexer

(Chapter IV)

No

Post-ADC bits remapping
Data bits must be remapped after demultiplexing for proper

data processing (Chapter IV)

No

Pre-DAC bits remapping
Data bits must be remapped before multiplexing for digital

to analog conversion (Chapter IV)

No

Table 26. New design patterns descriptions

C. EXAMPLE—FILTERING FOR LOW FREQUENCY SIGNALS

This example is the continuation of the prior example except that the input

frequency is low (in megahertz range). To satisfy low-frequency, flexible-processing, and

reasonable-cost requirements/constraints, the demultiplexer and multiplexer are most

likely unnecessary (parallelism is not required), and filtering can be implemented either

by software or firmware. There are two solutions as shown in Figure 21, Figure 22 and

Table 27.

ADC Filter DAC

d
e-

M
U

X
M

U
X.....

.....

HW HW

Figure 21 An architecture without parallelism

Filter F Violation Solution

A1 SW Low-cost Optimal

A2 FW Medium-cost Yes

A3 HW Cost is too high No

Table 27. Eliminate A3 from analysis

 89

Filter

A1 A2

Figure 22 OR tree for low frequency signals

In average, the cost for a Texas Instruments multi-core processor is $300, and the

cost for a Xilinx Virtex-6 FPGA is $3,200 with the assumption of using the same analog-

to-digital converter and digital-to-analog converter for both solutions. Following

decision analysis, a software filter is the optimal solution as shown in Table 28.

ADC Filter DAC
Solution

HW SW FW HW Characteristics Cost HW

A1 HW SW
1s cores, 1s GHz

$300 HW Optimal
$300

A2 HW FW

100s cores, 100s

MHz
$3,200 HW

Yes

$3,200

Table 28. Cost association

Apply the same methodology to find an optimal CPU-based embedded system

design pattern in Table 7 (section E.2.a, Chapter II) for the problem. We can expand node

A1 into one of the six groups {object, state, hardware interface, protocol, architecture,

implementation} as shown in Table 29, and then further expand the selected group into a

particular subclass as shown in Table 30. The leaf-node B3-1 is the optimal possible

solution as shown in Figure 23.

 90

B=A1 Class Intent

B1 Object Similar to object oriented language (no match)

B2 State State machine (no match)

B3 Hardware interface Hardware device (possible match)

B3 Protocol Protocol layers management (no match)

B4 Architecture Processor, timer, resource and task management (no match)

B6 implementation Standard template library (STL) and header files (no match)

Table 29. Six major groups for CPU-based embedded system design patterns

B3 Subclass Intent
Possible

Match

B3-1 Serial port

The Serial Port design pattern defines a generic interface with a

serial port device. The main intention here is to completely

encapsulate the interface with the serial port hardware device.

All classes interfacing with the serial port will not be impacted

by change in the hardware device. (possible match)

Yes

B3-2
High speed

serial port

This design pattern covers interfacing techniques with high

speed serial communication devices. The main objective is to

encapsulate the interface with the device and provide a hardware

independent interface to the high speed serial port. (no match)

No

B3-3
Hardware

device

The Hardware Device Design Pattern encapsulates the actual

hardware device being programmed. The main idea is to

encapsulate device register programming and bit manipulation

into a single class dealing with the device. (no match)

No

B3-4 Synchronizer

The Synchronizer Design Pattern is used to look at the raw

incoming bit or byte stream and detect and align to the frame

structure. The frame structure is detected by searching for a sync

pattern in the frame. Once the synchronization is achieved, the

Synchronizer confirms the presence of the sync pattern in every

frame. If the sync pattern in missed a certain number of times,

loss of sync is declared. (no match)

No

Table 30. Four subclasses design patterns for hardware interface

 91

Filter

A1 A2

B3

B3-1

Figure 23 Optimal design pattern mapping

D. EXAMPLE—AIR DATA TEST SET

Consider implementing an air data test set (ADTS) to monitor and simulate air

data for altitude and air speed. In each aircraft, there is a static tube and a Pitot tube. The

static tube reads the static air pressure (PS), and then translates it into altitude. The Pitot

tube reads the moving air pressure (PT), and then calculate the air speed by using the

equation: QC = PT–PS. To simulate air data, a PS valve is used to generate static air

pressure, and a PT valve (along with the PS valve) is used to generate air speed.

The functional components are listed in Figure 24 and Table 31. There are 16

components, and the number of possible mappings to {SW, FW, HW} is 3
16

=43,046,721

if we use the brute-force (exhaustion) methodology.

 92

PS

ADC

PS

ADC
S1

PT

ADC

PT

ADC
T1 T2

PT

DAC

PT

DAC

PS

XDR

PS

XDR

PT

XDR

PT

XDR

I

PT

valve

PT

valve

S2
PS

DAC

PS

DAC
PS

valve

PS

valve

HIHI C M

Figure 24 Air data test set architecture

We can reduce the number of possible mappings by imposing requirements and

constraints as listed in Table 31.

Component Symbol HW FW SW Reasoning

PS transducer HW must be hardware

PS ADC HW must be hardware

PS unit converter S1 FW SW not hardware due to high cost

PS pressure control S2 FW SW not hardware due to high cost

PS DAC HW must be hardware

PS valve HW must be hardware

Human interface HI HW Keyboard, display, etc.

Interface I FW SW not hardware due to high cost

Air data calculator C FW SW not hardware due to high cost

Math co-processor M HW SW too complex for FW

PT transducer HW must be hardware

PT ADC must be hardware

PT unit converter T1 FW SW not hardware due to high cost

PT pressure control T2 FW SW not hardware due to high cost

PT DAC HW must be hardware

PT valve HW must be hardware

Table 31. Components descriptions

For software/hardware/firmware partitioning analysis, we can first assign the

components that can be only mapped to a single modality without other options.

 93

Furthermore, we can group S1 and S2 into a single component (S1-S2) to reduce the

number of components for analysis. Similarly, we can group T1 and T2 into (T1-T2), and

I and C into (I-C). We redraw Figure 24 as Figure 25.

PS

ADC

PS

ADC
S1

PT

ADC

PT

ADC
T1 T2

PT

DAC

PT

DAC

PS

XDR

PS

XDR

PT

XDR

PT

XDR

H1

PT

valve

PT

valve

S2
PS

DAC

PS

DAC
PS

valve

PS

valve

HIHI H2

S1 S2

T1 T2

S1 S2I C M

HW HW HW HW

HW HW HW HW

HW

Figure 25 A simplified architecture for analysis

Based on Figure 25 and Table 32, the number of possible mappings is reduced

from 3
16

=43,046,721 to 3×4×5÷2=30 (from 16 to 4 components).

Component Symbol HW FW SW Reasoning

PS unit converter
(S1-S2) FW SW not hardware due to high cost

PS pressure control

Interface
(I-C) FW SW not hardware due to high cost

Air data calculator

Math co-processor M HW SW too complex for FW

PT unit converter
(T1-T2) FW SW not hardware due to high cost

PT pressure control

Table 32. A simplified table for analysis

An air data calculator involves with complex mathematical calculations, and the

timing for component (I-C) is not critical, so that {SW} is a better mapping than {FW};

as a result, the number of possible mappings is further reduced to 3×3×4÷2=18 (from 4 to

3 components). The modalities for (S1-S2) and (T1-T2) should be identical, since they

 94

are similar in functionality. Now, 18 mappings are reduced to 9 (from 3 to 2 components)

as shown in Table 33, Table 34, Table 35 and Figure 26.

ADTS (S1-S2), (T1-T2) M

A1 SW *

A2 FW *

A3 HW * No, cost is too high

A4 * SW

A5 * FW No, too complicated

A6 * HW

Table 33. Possible mappings for 2 components

A1

(S1-S2),

(T1-T2) M

A2

(S1-S2),

(T1-T2) M

A1-1 SW SW Option 1

A2-1 FW SW Option 3

A1-2 SW FW No, too complicated

A2-2 FW FW No, too complicated

A1-3 SW HW Option 2

A2-3 FW HW Option 4

Table 34. Expand nodes A1 and A2

Expanding nodes A4 and A6 does not provide any additional benefits as shown in

Table 35, so that they are terminated from the tree.

A4

(S1-S2),

(T1-T2) M

A6

(S1-S2),

(T1-T2) M

A4-1 SW SW Same as A1-1

A6-1 SW HW Same as A1-3

A4-2 FW SW No, too complicated

A6-2 FW HW No, too complicated

A4-3 HW SW No, cost is too high

A6-3 HW HW No, cost is too high

Table 35. Expand nodes A4 and A6

ADTS

A1 A2

A2-1 A2-3A1-1 A1-3

Figure 26 Four possible mappings

 95

After reducing the possible components mappings to four as shown in Figure 26,

we are able to propose reasonable options for design decision-making in Table 36, Table

37, Table 38 and Table 39.

1. Option 1 (A1-1)

A1-1 Symbol

Partition/

Implementation Description

Interface and air

data calculator (I-C) SW/CPU

Altitude and air -speed

calculations

PS unit converter and

valve control (S1-S2) SW/CPU

(1) Convert frequency to in-hg;

(2) Pressure control

PT unit converter and

valve control (T1-T2) SW/CPU

(1) Convert frequency to in-hg;

(2) Pressure control

Mathematical coprocessor M SW/CPU Mathematics library

Advantages Low-cost; simple programming and design

Disadvantages Slow in valve control; slow in display

Table 36. Option 1

2. Option 2 (A1-3)

A1-3 Symbol

Partition/

Implementation Description

Interface and air

data calculator (I-C) SW/CPU Altitude and air-speed calculations

PS unit converter and

valve control (S1-S2) SW/CPU

(1) Convert frequency to in-hg;

(2) Pressure control

PT unit converter and

valve control (T1-T2) SW/CPU

(1) Convert frequency to in-hg;

(2) Pressure control

Mathematical coprocessor M HW/chip Mathematics library

Advantages Low-cost; simple programming and design; fast in display

Disadvantages Slow in valve control

Table 37. Option 2

 96

3. Option 3 (A2-1)

A2-1 Symbol

Partition/

Implementation Description

Interface and air

data calculator (I-C) SW/CPU Altitude and air-speed calculations

PS unit converter and

valve control (S1-S2) FW/FPGA

(1) Convert frequency to in-hg;

(2) Pressure control

PT unit converter and

valve control (T1-T2) FW/FPGA

(1) Convert frequency to in-hg;

(2) Pressure control

Mathematical coprocessor M SW/CPU Mathematics library

Advantages Fast in valve control

Disadvantages Medium cost; complex programming and design; slow in display

Table 38. Option 3

4. Option 4 (A2-3)

A2-3 Symbol

Partition/

Implementation Description

Interface and air

data calculator (I-C) SW/CPU Altitude and air-speed calculations

PS unit converter and

valve control (S1-S2) FW/FPGA

(1) Convert frequency to in-hg;

(2) Pressure control

PT unit converter and

valve control (T1-T2) FW/FPGA

(1) Convert frequency to in-hg;

(2) Pressure control

Mathematical coprocessor M HW/chip mathematics library

Advantages Fast in valve control; fast in display

Disadvantages Medium-cost; complex programming and design

Table 39. Option 4

E. A TOOL FOR SW/FW/HW CODESIGN

Though we did not build a tool for our software/firmware/hardware codesign

methodology in this dissertation, we present a procedure for building this tool. This

procedure is similar to Figure 10 in section A but with more details.

1. List and enumerate design requirements in a table.

2. List and enumerate design constraints in a table.

3. List and enumerate design options in a table.

 97

4. Disqualify design options which cost too much or violate requirements/

constraints. Link disqualified design options to the requirements/

constraints for traceability.

5. Select the best design from the qualified options by cost estimation, and

then form an architecture from this option. The architectural components

are described in the selected design option; the connections among these

components can be easily constructed if inputs and outputs are clearly

defined in each component.

6. Define modalities in a set {modality #1, modality #2…modality #L}. The

number of modalities is L=|{modality #1, modality #2… modality #L}|.

7. Simplify the analysis by excluding the components which must be

assigned to certain modalities.

8. Form an N×M table. N is the number of columns; each column represents

an unassigned component in the architecture. M is the number of rows;

each row represents a condition with one component being assigned to a

modality in the set of modalities and other components being don’t cares

(unassigned). There are N×L rows with N being the number of

components and L being the number of modalities.

9. Disqualify the condition (row) if it costs too much or violates any

requirement/constraint by tagging it with “FALSE,” and then link it to the

requirements/constraints for traceability. Qualify the condition if it

satisfies all requirements/constraints by tagging it with “TRUE.”

10. Use A* algorithm to find a feasible solution. For tie-breaker nodes,

expand the node in an alphanumerical order.

11. Continue to step 12 if we have enough design details; otherwise, return to

step 5.

12. If the leaf-node is not a solution or more leaf-nodes are required, return to

step 10; otherwise, continue to step 13.

13. If no solutions are found, return to step 1 to modify requirements,

constraints or modalities; otherwise, present solutions to decision makers.

Figure 27 shows this procedure in a diagram.

 98

1. List and enumerate design

requirements in a table

2. List and enumerate design

constraints in a table

6. Simplify the architecture

8. form a table

11. detailed

enough?

12. is the leaf-node

a solution or more

leaf-nodes needed?

yes

13. solution

found?

no

no

yes

no

Decision

making

yes

3. List and enumerate design

options in a table

7. Define modalities

4. Apply requirements and

constraints

5. Select the best design option

and form an architecture

9. Apply requirements and

constraints

10. Perform A* search

Figure 27 Tool design flowchart

 99

IV. RECONFIGURABLE COMPUTING DESIGN PATTERNS

This chapter describes some example design patterns. The ones described here

were used in the implementation of the filtering example for ultra-high frequency signals

in Section B, Chapter III and the case study in Chapter V. They follow the standardized

format and set of contents suggested by Gang of Four (GoF) [48]. These five

reconfigurable computing based firmware design patterns are not in the 89 collected by

André DeHon et al [50].

A. POLYPHASE DFT FILTER BANKS

Polyphase DFT filter banks were first proposed by Vaidyanathan in 1993 [75].

They are one of the most important applications of multirate digital signal processing. A

multirate system processes digital signals at different sampling rates in various parts of

the system. The DFT, which stands for discrete Fourier transform, is used to convert the

polyphase inputs to multiple frequency subbands. Polyphase inputs are generated by the

split sequences of the input digital signal being going through polyphase filters. A

subband is a specific range of frequencies in the frequency spectrum [76]. See the

collaborations in section A.6 for further explanation.

We do not claim that we invented this design pattern; rather, our focus is on signal

decomposition into subbands for high computational efficiency. This decomposition

provides a way to process input wideband signals in different frequency bands; this

makes frequency-dependent applications possible. High computational efficiency is

critical for reconfigurable computing based firmware due to its limited resource.

1. Name and Classification

 Name: polyphase DFT filter banks design pattern

 Classification: digital signal processing class, filter banks subclass

2. Intent

The intent of Polyphase DFT filter banks is for multirate digital signal processing,

analysis and reconstruction. Polyphase DFT filter banks can separate a wide bandwidth

 100

serial input signal at a high data sampling rate into multiple parallel subsequences so that

they can be processed at a lower data sampling rate. The analysis stage converts

polyphase input signals into multiple subbands for frequency-dependent applications. In

the reconstruction we recombine parallel data channels into a single output for

transmission.

3. Motivation

The motivation is the popular applications of subband coding to speech, audio and

video and multiple-carrier data transmission [76].

4. Applicability

For single-frequency signals, an analog filter is a better choice than this design

pattern.

5. Participants

There are five components in this design pattern: (1) polyphase filters, (2) an

inverse discrete Fourier transform (IDFT) operator, (3) processors, (4) a discrete Fourier

transform (DFT) operator, and (5) conjugated polyphase filters. These five components

reside in the square box (polyphase DFT filter banks) in Figure 28; typically there is an

analog-to-digital converter and a demultiplexer before, and a multiplexer and a digital-to-

analog converter after these components.

ADC

Polyphase

DFT filter

banks

DAC

d
e-

M
U

X
M

U
X.....

.....

Figure 28 Typical components interfacing with polyphase DFT filter banks

6. Collaborations

Based on [76], these five components collaborate in the following way.

 101

1. All split sequence digital signals {x[i], x[M+i], …} , for i=1 to M, M =

number of channels go through polyphase filters {Hi(z), for i=0 to M, and

become polyphase input signals.

2. The polyphase input signals are converted to M subbands by going

through an M×M inverse discrete Fourier transform operator (IDFT).

3. All M subbands are processed in parallel independently.

4. The processed M subbands go through an M×M discrete Fourier transform

operator (DFT) and ready to be converted to M polyphase outputs.

5. All M output signals from the discrete Fourier transform operator are

converted to M polyphase outputs {y[i], y[M+i],…}, for i=1 to M, by

going through conjugated polyphase filters {Ĥi(z)}, for i=0 to M.

Figure 29 shows these five steps.

H0(z)

H1(z)

IDFT

(M×M)

DFT

(M×M)

Ĥ0(z)

Ĥ1(z)

X[1], x[M+1],

x(2M+1],...

H2(z)

HM(z)

Ĥ2(z)

ĤM(z)

…
…
…

..

…
…
…

..

(1) (2) (3) (4) (5)

X[2], x[M+2],

x[2M+2]...

X[3], x[M+3],

x[2M+3]...

X[M], x[2M],

x[3M]...

Y[1], y[M+1],

y[2M+1]...

Y[2], y[M+2],

[2M+2]...

Y[3], y[M+3],

y[2M+3]...

Y[M], y[2M],

y[3M]...

Figure 29 Polyphase DFT filter banks

The mathematical proof can be found in Appendix E.

7. Consequences (Benefits)

According to Schniter [77], the number of multiplications required for computing

the DFT can be estimated as

 102

where N = order of finite impulse response (FIR) filter, and M = number of

polyphase components. According to [78], the propagation delay is determined by the

order of polyphase finite impulse response filter (N). For linear phase (symmetrical

coefficients), the propagation delay can be estimated as:

8. Implementation

A finite impulse response filter, an inverse discrete Fourier transform operator,

and a discrete Fourier transform operator consume much reconfigurable computing

resources, so the number of parallel channels is limited. This design pattern can be

implemented on a general-purposed computer, but our focus is on reconfigurable

computing based embedded systems.

9. Algorithm

Refer to [75] for established algorithm.

10. Known Uses (Examples)

a. Example 1

The program in Table 89 (Appendix C) written in MATLAB demonstrates how to

divide an input signal into 32 subbands as the analysis filter banks. In this example, we

apply a set of unit sinusoids at different frequencies for the incoming data. Only 16

channels of filters in the magnitude response of the filter banks are shown in Figure 30,

because fast Fourier transforms (FFTs) produce conjugate signals for real-valued inputs.

Each color in Figure 30 represents a frequency subband. Signals within this subband are

passed through with slight attenuation; however, signals outside this subband are greatly

attenuated (blocked). Same effect is applied to other subbands.

 103

Figure 30 16 magnitude responses of a polyphase DFT filter banks for real inputs

b. Example 2

This example shows the entire operation of discrete Fourier transform filter banks

which are composed of analysis and synthesis filter banks. Synthesis filter banks are used

to combine multiple parallel subbands into a single output signal; its algorithm is the

mirror image of analysis filter banks.

The configurations for this example are (1) the input signal is a 3-second voice

recording, (2) the number of channels is 32 and the order for each polyphase FIR filter is

8, and (3) there are no changes between the polyphase inputs and outputs (a straight-

through condition). We conclude that this example is successful since the input and

output signals are nearly identical as shown in Figure 31. For a complete and detailed

program in MATLAB, see Table 90 in Appendix C.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-80

-70

-60

-50

-40

-30

-20

-10

0
Filter Bank Frequency Response

Frequency (normalized to channel center)

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e
 (

d
B

)

 104

Figure 31 Signal before and after polyphase DFT filter banks

11. Related Patterns

The post-deserialization bits remapping design pattern provides inputs for the

polyphase filters before the IDFT operator; the polyphase filters after the DFT operator

provides inputs for the pre-serialization bits remapping design pattern.

B. DATA ALIGNMENT DESIGN PATTERN

Even though data-alignment problems have been widely addressed in

telecommunication applications to produce error-free transmissions, they are unusual for

reconfigurable-computing embedded systems, and only arise when dealing with ultra-fast

data. In this section, we will describe a new data-alignment design pattern of ours at a

high level of abstraction without bias for any type of implementation. See appendix D for

background information.

1. Name and Classification

 Name: data-alignment design pattern

 Classification: ultra-fast communication class, synchronization subclass

2. Intent

When moving multiple parallel bit streams and forwarding source-synchronous

sampling clocks to a device at an ultra-high data rate, we are facing two problems. One

 105

problem is caused by the shrinking of the data window. The data window is the time

period when the data is stable. As shown in Figure 32, when the data rate gets faster (or

data window shrinks), the sampling clock could arrive when data is in transition, or even

a few bits late. Another problem is caused by different data and clock path delays; each

data bit-stream arrives at the destination device at a different time. Figure 33 shows three

timing cases: (1) data is sampled correctly, (2) data is sampled near transition, and (3)

data is sampled at a wrong bit.

timing window

(a clock arrives)

data is stable

data is in transition

data is a bit late

data at a slower rate

data at a medium rate

data at a faster rate

Case (1)

Case (2)

Case (3)

Sampling window: sampling clock is

guaranteed to appear within this window
Time

V(high)

V(low)

Figure 32 Shrinking of data window at higher data rate

D0 D1 D2 D3 D4 D5

D0 D1 D2 D3 D4 D5

D1 D2 D3 D4 D5 D6

D6

D0

D7D7

D7

D7

Good

transition

1 bit late

Sampling window: sampling clock is guaranteed

to appear within this window
Time

V(high)

V(low)

Figure 33 Three timing cases

3. Motivation

A data source sends data and clocks to a data receiver; the receiver must decide

where the middle of the data bit is, and find the beginning and the end of incoming bits.

 106

This is important to sample the data correctly because the rising and falling edges of the

data bits are distorted.

4. Applicability

For embedded systems, data-alignment design patterns only apply to ultra-fast

(gigahertz) parallel data communication. At a lower rate, data communication typically is

conducted in serial instead of parallel and data alignment is not required. In addition, at a

lower rate, even the data communication is parallel; the data windows are probably wide

enough to be sampled correctly by the source synchronized clocks without any

calibration.

5. Participants

There are three components involved in this design pattern: a bit-alignment

algorithm, a byte-alignment algorithm, and a memory device. See Figure 36 for their

relationship.

6. Collaborations

These three components collaborate in the following way.

1. The bit-alignment algorithm inserts a delay to each data channel so that

each bit is sampled at the middle of its data window, not at the edges.

2. The byte-alignment machine rotates the bits in a data byte until the byte

matches the predefined pattern from the data source.

3. The memory device reads bit- and byte-aligned data from all input bit-

streams with their local clocks, and then writes this data to a processor

with a global clock for data synchronization. This is called overall

alignment.

7. Consequences

The data-alignment design pattern fails to function if data windows are too

narrow. The data window size at the receiver must be greater than zero to operate

correctly. The shrinking of data window is caused by clock jitter, duty-cycle distortion,

receiver input capacitance, power supply, and temperature, etc. [79]

 107

8. Implementation

The bit-alignment algorithm, the byte-alignment algorithm and the memory

device are typically built in the ISerDes which is in the fabric of reconfigurable

computing. ISerDes stands for Input Serializer/Deserializer, which converts input data

from serial to parallel format, and can be considered as a demultiplexer.

9. Algorithm

a. Bit-Alignment

Even though the precisely predetermined synchronization relationship between

the data and clocks is degraded by path delays, we can align the data bits by shifting the

sampling edge of the clock to the center of the data window (where data is stable) by

adding delay to the data paths. A single bit-alignment procedure is described below.

Figure 34 is the flowchart of this algorithm.

1. A data source sends a predefined serial data pattern to a data receiver. It

initializes a timer to zero.

2. The data receiver samples the incoming serial data bits by using the

synchronous sampling clock from the data source.

3. If the read data bit is stable, add delay to a timer. Being stable means that

multiple consecutive reads have the same value; otherwise, data bit is

unstable. Repeat steps (2) and (3) until data is unstable.

4. If the read data bit is unstable the first time, save the timer value which is

the total amount of delay, Ta, from a stable state to an unstable state. Start

a new timer and add delay to the new timer. Repeat steps (2) to (4).

5. If the read data bit is unstable the second time, save the timer value which

is the total amount of delay, Tb, from an unstable state to another unstable

state.

6. The calibration factor can be calculated as Ta + Tb/2.7. If this algorithm

fails to complete after a certain amount of time, it will reset to step (1).

 108

Send a pre-defined

serial data to the

receiver

Read data with the

sampling clock

Add delay

to Ta

Is data stable?yes

Tb = total delay

Unstable

before?

no

yes
no

Ta = total delay

Replace Ta with Tb

Save Ta

no

Adjustment =Ta + Tb/2

TimersTa,Tb = 0

Figure 34 Bit-alignment flowchart

b. Byte-Alignment

If the data rate increases, the sampled data (after bit-alignment) will be possibly

one or few bits late. This error can be removed if we know exactly how many bits late.

The algorithm below shows the mechanism of calculating the number of bits being late

for a single data bit-stream. Figure 35 is the flowchart of this algorithm.

1. A data source sends a predefined data pattern to a data receiver.

2. The data receiver aligns bit-stream according to the bit-alignment

algorithm in the prior section.

3. Initialize a counter to zero.

4. The aligned bit-stream is demultiplexed into a byte (in parallel form).

5. Compare the demultiplexed byte with the predefined data byte. If they are

the same, save the counter as the calibration factor; otherwise, increment

the counter by one, rotate the byte by one bit left, and repeat step (5).

 109

6. If this algorithm fails to complete after a certain amount of time, it will

reset to step (1).

Aligned serial data

after bit-alignment

Save counter

for calibration

Same as pre-

defined data?yes no

Rotate byte

counter++

demultiplexer

counter = 0

Figure 35 Byte-alignment flowchart

c. Overall Alignment

Once all input bit-streams are aligned according to the bit-alignment and byte-

alignment algorithms, we will perform an overall alignment below. Figure 36 is the

flowchart of this algorithm.

1. The data source sends a predefined data pattern to the data receiver.

2. Bit alignment and byte alignment are performed on each bit stream.

3. When all bit streams are aligned, the data receiver sends a signal to the

data source indicating that all bit-streams are aligned.

4. The data source sends a new predefined data pattern to the data receiver.

5. The data receiver detects the data pattern change.

6. The data receiver writes this data into the WRITE side of a memory

device with individual local clocks.

7. The READ side of the memory device is accessed with a global clock.

 110

Data receiver

Bit-alignment

Memory

…..Byte-alignment

Bit-alignment

Memory

Byte-alignment

Bit-alignment

Memory

Byte-alignment

Local

clock

Global

clock

Local

clock

Local

clock

Figure 36 Overall-alignment flowchart

10. Known Uses (Examples)

The ChipSync™ features in the input of Xilinx Virtex-6 devices are able to

dynamically adjust the delay of the data paths in the receiver with 75 picoseconds

resolution. The BIT_ALIGN_MACHINE is similar to the bit-alignment algorithm; the

BITSLIP_MACHINE is similar to the byte-alignment algorithm; and first-in first-out

stacks can be used for the memory device [79]. An application example is in the first case

study in Chapter V.

11. Related Patterns

There are no related design patterns.

C. POST-DESERIALIZATION BITS REMAPPING DESIGN PATTERN

Originated in telegraphy in the 1870s [80] and telephony in 1910 [81],

multiplexing/demultiplexing has been widely used in telecommunications and computer

networks. Multiplexing/demultiplexing technologies may be divided into space,

frequency, time and code divisions. A typical application is that multiple low data rate

 111

signals are multiplexed over a single high data rate link, then demultiplexed at the other

end [80].

For our application, post-deserialization means to demultiplex (split) serial data

from an analog-to-digital converter into multiple parallel channels. Since the serial data

from the analog-to-digital converter is in sequential order, bits must be remapped for

proper digital signal processing after demultiplexing. See detailed explanation in section

C.2.

1. Name and Category

 Name: post-deserialization bits remapping design pattern

 Category: communication class, serial-to-parallel subclass

2. Intent

To reduce the data rate from one device to another device, oftentimes multiple

levels of demultiplexing are required. The problem is that the multiple parallel data bit-

streams after demultiplexing (deserializing) are no longer in proper order for data

processing. For example, a stream of ordered serial data bits from a faster device is

demultiplexed into four data bit-streams at level one as shown in Figure 37, and then each

data bit-stream is further demultiplexed into four data bit-streams at level two as shown

in Figure 38. The 16 parallel data bit-streams (1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8,

12, 16) after 2 levels of demultiplexing are not usable for digital signal processing. It was

necessary for us to develop a new design pattern.

...13,9,5,1

...16,12,8,4

...15,11,7,3

...14,10,6,2
...8,7,6,5,4,3,2,1

Serial data bits

1=1st bit,

2= 2nd bit,

etc

Multiplexer

Figure 37 Level one demultiplexing

 112

...61,57,53,49,45,41,37,33,29,25,21,17,13,9,5,1

...49,33,17,1

...62,58,54,50,46,42,38,34,30,26,22,18,14,10,6,2

...63,59,55,51,47,43,39,35,31,27,23,19,15,11,7,3

...64,60,56,52,48,44,40,36,32,28,24,20,16,12,8,4

...53,37,21,5

...57,41,25,9

...61,45,29,13

...50,34,18,2

...54,38,22,6

...58,42,26,10

...62,46,30,14

...51,35,19,3

...55,39,23,7

...59,43,27,11

...63,47,31,14

...52,36,20,4

...56,40,24,8

...60,44,28,12

...64,48,32,15

Parallel

data

bits

Figure 38 Level two demultiplexing

3. Motivation

Demultiplexing is used to convert serial data at a higher data rate from a faster

device to parallel data at a lower data rate to a slower device.

4. Applicability

This design pattern only applies to two-level demultiplexing.

5. Participants

Simple memory addresses manipulation.

6. Collaborations

Simple memory addresses manipulation.

7. Consequences

None.

 113

8. Implementation

This algorithm can be implemented by manipulating reconfigurable computing

block RAM addresses and data byte widths with the array feature built in hardware

description language.

9. Algorithm

If the overall input data width is N (N bit streams), and each bit stream is

demultiplexed by an input port (such as an ISerDes) into M bit streams, then the total

number of bit streams in the reconfigurable computing is N × M. Due to demultiplexing,

these N × M bit-streams are not in a proper order which digital signal processing can be

performed; therefore, they must be remapped. The post-deserialization bits remapping

algorithm is listed in Table 40.

 ‘N_Channel = number of subbands

‘N_ISerDes = 1 to N_ISerDes demultiplexer

Dim bits(1 To N_Channel * N_ISerDes) As Single

Dim bits_Post_ADC(1 To N_Channel * N_ISerDes) As Single

Private Sub Post_ADC_Remap()

For i = 1 To N_Channel Step 1

 For j = 1 To N_ISerDes

 bits_Post_ADC(i + N_Channel * (j - 1)) = bits(i * N_ISerDes - (N_ISerDes - j))

 Next j

Next i

End Sub

Table 40. VB6 program: post-deserialization bits remapping algorithm

10. Known Uses (Examples)

The following algorithm (written in Visual Basic 6.0) is an instantiation of the

post-ADC data bits remapping algorithm in Table 40. The terms “post-ADC” and “post-

deserialization” are used interchangeably in this chapter. Bits() is an array of 256 cells

 114

which contains the scattered data bits from demultiplexing, and bits_Post_ADC() is an

array of 256 cells which contains the remapped data bits. The remapping algorithm is in

Table 41.

Stage A: 128 data bit-streams coming from a data source to the reconfigurable computing

Stage B: 2: each bit-stream is demultiplexed into 2 data bit-streams. At this stage, data bits

are scattered in different memory locations in the reconfigurable computing

Stage C: put data bits in the proper order for digital signal processing

Private Sub Post_ADC_Remap()

For i = 1 To 128 Step 1

For j = 1 To 2

 bits_Post_ADC(i + 128 * (j - 1)) = bits(i * 2 - (2 - j))

Next j

Next i

End Sub

Stage D: digital signal processing

Table 41. VB6 program: post-deserialization bits remap algorithm

11. Related Patterns

The Pre-serialization bits remapping design pattern is the counterpart of post-

deserialization bits remapping design pattern.

D. PRE-SERIALIZATION BITS REMAPPING DESIGN PATTERN

References are the same as section C. For our application, pre-serialization means

to multiplex (combine) parallel data from a processor into serial data for digital to analog

conversion. Since the parallel data from the processor is in sequential order, bits must be

remapped for proper digital to analog conversion before multiplexing (serialization). See

detailed explanation in section D.2.

 115

1. Name and Classification

 Name: pre-serialization bits remapping design pattern

 Classification: communication class, parallel-to-serial subclass

2. Intent

In Figure 39 and Figure 40, 16 parallel data bit-streams are combined

(multiplexed) into a single serial output, resulting in a bit order at output

(…14,10,6,2,13,9,5,1) that is not sequential.

...52,51,50,49,36,35,34,33,20,19,18,17,4,3,2,1

...49,33,17,1

...56,55,54,53,40,39,38,37,24,23,22,21,8,7,6,5

...60,59,58,57,44,43,42,41,28,27,26,25,12,11,10,9

...64,63,62,61,48,47,46,45,32,31,30,29,16,15,14,13

...50,34,18,2

...51,35,19,3

...52,36,20,4

...53,37,21,5

...54,38,22,6

...55,39,23,7

...56,40,24,8

...57,41,25,9

...58,42,26,10

...59,43,27,11

...60,44,28,12

...61,45,29,13

...62,46,30,14

...63,47,31,15

...64,48,32,16

Parallel

data

bits

Figure 39 Level one multiplexing

...14,10,6,2,13,9,5,1

...52,51,50,49,36,35,34,33,20,19,18,17,4,3,2,1

...56,55,54,53,40,39,38,37,24,23,22,21,8,7,6,5

...60,59,58,57,44,43,42,41,28,27,26,25,12,11,10,9

...64,63,62,61,48,47,46,45,32,31,30,29,16,15,14,13

Serial data bits

Figure 40 Level two multiplexing

 116

3. Motivation

Multiplexing is used to convert parallel data at a lower data rate from a slower

device to serial data at a higher data rate to a faster device.

4. Applicability

This design pattern only applies to 2-level multiplexing.

5. Participants

Simple memory addresses manipulation.

6. Collaboration

Simple memory addresses manipulation.

7. Consequences

None.

8. Implementation

This algorithm can be implemented by manipulating reconfigurable computing

block RAM addresses and data byte widths with the array feature built in hardware

description language.

9. Algorithm

Before multiplexing N parallel channels into a single output data bit stream, we

must rearrange the data bits addresses for proper digital to analog conversion. The pre-

serialization bits remapping algorithm is listed in Table 42.

 117

For i = 1 To N_DAC_bytes

bits2 (1 + 2 * (i - 1)) = bits1 (1 + N_DAC_RES * (i - 1))

bits2 (2 + 2 * (i - 1)) = bits1 (2 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*2+1) + 2 * (i - 1)) = bits1 (3 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*2+2) + 2 * (i - 1)) = bits1 (4 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*4+1) + 2 * (i - 1)) = bits1 (5 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*4+2) + 2 * (i - 1)) = bits1 (6 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*6+1) + 2 * (i - 1)) = bits1 (7 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*6+2) + 2 * (i - 1)) = bits1 (8 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*8+1) + 2 * (i - 1)) = bits1 (9 + N_DAC_RES * (i - 1))

bits2 ((N_DAC_bytes*8+2) + 2 * (i - 1)) = bits1 (10 + N_DAC_RES * (i - 1))

Next i

Table 42. VB6 program: pre-serialization bits remapping algorithm

10. Known Uses (Examples)

The algorithm (written in Visual Basic 6.0) in Table 43 is an instantiation of the

pre-DAC data bits remapping algorithm in Table 42. The terms “pre-DAC” and “pre-

serialization” are used interchangeably in this chapter. N_DAC_bytes (number of digital-

to-analog converter bytes) is 32, and N_DAC_RES (digital-to-analog converter

resolution) is 10-bit. Bits1() is an array of 320 cells which contain data bits after digital

signal processing operations, and bits2() is an array of 320 cells which contain the

remapped bits.

 118

Private Sub Pre_DAC()

For i = 1 To N_DAC_bytes

 bits2 (1 + 2 * (i - 1)) = bits1 (1 + N_DAC_RES * (i - 1))

 bits2 (2 + 2 * (i - 1)) = bits1 (2 + N_DAC_RES * (i - 1))

 bits2 (65 + 2 * (i - 1)) = bits1 (3 + N_DAC_RES * (i - 1))

 bits2 (66 + 2 * (i - 1)) = bits1 (4 + N_DAC_RES * (i - 1))

 bits2 (129 + 2 * (i - 1)) = bits1 (5 + N_DAC_RES * (i - 1))

 bits2 (130 + 2 * (i - 1)) = bits1 (6 + N_DAC_RES * (i - 1))

 bits2 (193 + 2 * (i - 1)) = bits1 (7 + N_DAC_RES * (i - 1))

 bits2 (194 + 2 * (i - 1)) = bits1 (8 + N_DAC_RES * (i - 1))

 bits2 (257 + 2 * (i - 1)) = bits1 (9 + N_DAC_RES * (i - 1))

 bits2 (258 + 2 * (i - 1)) = bits1 (10 + N_DAC_RES * (i - 1))

Next i

End Sub

Table 43. VB6 program: pre-serialization bits remap algorithm

11. Related patterns

The post-deserialization bits remapping design pattern is the counterpart of pre-

serialization bits remapping design pattern.

E. SWITCH-AND-FILTER ARCHITECTURE

References are the same as section C. The switch-and-filter architecture is the

reverse of the typical architecture used in telephony [80] with an additional analog-to-

digital converter being the data pump and another additional digital-to-analog converter

being the data consumer.

1. Name and Classification

 Name: switch-and-filter architecture

 Classification: ultra-fast communication class, architecture subclass

 119

2. Intent

As technologies advance, the data sampling rates of analog-to-digital converters

and digital-to-analog converters are getting faster, and the number of logic cells in an

FPGA is getting higher. To accommodate these rapid changes, a generic scalable

dataflow architecture is highly desirable. In addition, since the processing speed of an

analog-to-digital converter (or digital-to-analog converter) is higher than that of an FPGA

(the routing paths for an FPGA are programmable so are not optimized), it is necessary to

have a mechanism to deserialize a single data stream at a higher data rate from an analog-

to-digital converter into multiple parallel data streams at a lower data rate to an FPGA.

Similarly, a mechanism to serialize multiple parallel data streams at a lower data rate

from an FPGA into a single data stream to a digital-to-analog converter at a higher data

rate is also required.

3. Motivation

The goal is to move ultra-fast serial data from a faster data source to a slower

filter for processing by deserializing it into parallel channels, process the data, and then

combine into a single serial data stream for output.

4. Applicability

This design pattern is not practical for low data rate applications, since they can

transmit and receive data in serial instead of parallel.

5. Participants

There are five components involved in this design pattern, and they are a data

pump, a demultiplexer, a filter, a multiplexer, and a data consumer. Figure 41 shows the

relationship among these five components.

6. Collaborations

These five components collaborate in the following way.

1. A data pump produces serial data at an ultra-fast rate.

2. A demultiplexer converts serial data to parallel data at a slower rate.

 120

3. A filter processes the parallel data.

4. A multiplexer combines all parallel data into serial data.

5. A data consumer consumes the serial data.

Data pump Filter
Data

consumer

d
e-

M
U

X

M
U

X.....

.....

Figure 41 A switch-and-filter architecture

The data sampling rate, clock, throughput, and bit width at each stage are

calculated in Table 44. In this table, we instantiate a data pump with an analog-to-digital

converter (ADC), a filter with an FPGA, and a data consumer with a digital-to-analog

converter (DAC).

 121

1 A B C D E

2

A
D

C

#Interleaved Defined by users

3 system clock GHz Defined by users

4 ADC clock =D3/D2 GHz System clock / #interleaved

5 #bytes =D2 Same as #interleaved

6 sampling rate =D4*D5 bytes/sec ADC clock * #bytes

7 resolution_ADC 8 bits Defined by users

8 #bits =D5*D7 bits #Bytes * resolution

9 throughput =D8*D4 gigabits/sec ADC clock * #bits

10

 11

D
E

M
U

X

#demux defined by users

12 clock_DEMUX =D4/D11 GHz ADC clock / #demux

13 #bytes_DEMUX =D5*D11 bytes #bytes * #demux

14 sampling rate =D13*D12 Gbytes/sec clock * #bytes

15 #bits =D13*D7 bits #bytes * ADC resolution

16 throughput =D15*D12 Gbits/sec #bits * clock

17

 18

F
P

G
A

#demux_FPGA defined by users

19 #bits_DSP =D15*D18 bits #bits_DEMUX * #demux_FPGA

20 sampling rate_FPGA =D12/D18 GHz clock_DEMUX / #demux_FPGA

21 #bytes_DSP =D19/D7 bytes #bits_DSP / resolution

22 #bits_DAC =D19*D30/D7 bits

#bits_DSP * resolution_DAC /

resolution_ADC

23

 24

M
U

X
 #mux deinfed by users

25 #bits mux =D22/D24 bits #bits_DAC / #mux

26 clock_mux =D20*D24 GHz sampling rate_FPGA * #mux

27 throughput =D25*D26 Gbits/sec #bits_mux * clock_mux

28

 29

D
A

C

#mux_DAC deinfed by users

30 resolution_DAC bits defined by users

31 clock_DAC =D3 GHz same as system clock

32 throughput =D30*D31 Gbits/sec resolution_DAC * clock_DAC

Table 44. Data rate, throughput, and width calculation

7. Consequences

For this architecture to function correctly, data alignment, post-deserialization bits

remapping, and pre-serialization bits remapping design patterns are required as

subpatterns.

8. Implementation

The most critical components in this architecture are ultra-fast analog-to-digital

converter and digital-to-analog converter. The best way to implement this architecture is

 122

to use commercial-off-the-shelf (COTS) products (such as demo boards) from the

ADC/DAC manufacturers, and only work with the reconfigurable computing

programming.

9. Known Uses (Examples)

Figure 42 exemplifies a real system with TADC-1000 being the data pump,

TDAC-2000 being the data consumer, and HAPS-62 being the filter. TADC-1000 and

TDAC-2000 are from Tektronix, and HAPS-62 is a Xilinx Virtex-6 based FPGA from

Synopsys. The clock, sampling rates, throughputs and bit width are calculated in Table

45.

TADC-

1000
HAPS-62

TDAC-

2000

d
e
-

M
U

X
M

U
X.....

.....

Figure 42 An instantiation of switch-and-filter architecture

 123

A
D

C

#interleaved 4 defined by users

system clock 12 GHz defined by users

ADC clock 3 GHz system clock / #interleaved

#bytes 4 same as #interleaved

sampling rate 12 Gbytes/sec ADC clock * #bytes

resolution_ADC 8 bits defined by users

#bits 32 bits #bytes * resolution

throughput 96 Gbits/sec ADC clock * #bits

D
E

M
U

X

#demux 4 defined by users

clock_DEMUX 0.75 GHz ADC clock / #demux

#bytes_DEMUX 16 bytes #bytes * #demux

sampling rate 12 Gbytes/sec clock * #bytes

#bits 128 bits #bytes * ADC resolution

throughput 96 Gbits/sec #bits * clock

F
P

G
A

#demux_FPGA 2 defined by users

#bits_DSP 256 bits #bits_DEMUX * #demux_FPGA

sampling rate_FPGA 0.375 GHz clock_DEMUX / #demux_FPGA

#bytes_DSP 32 bytes #bits_DSP / resolution

#bits_DAC 320 bits #bits_DSP * resolution_DAC / resolution_ADC

M
U

X

#mux 8 deinfed by users

#bits mux 40 bits #bits_DAC / #mux

clock_mux 3.000 GHz sampling rate_FPGA * #mux

throughput 120 Gbits/sec #bits_mux * clock_mux

D
A

C

#mux_DAC 4 deinfed by users

resolution_DAC 10 bits defined by users

clock_DAC 12 GHz same as system clock

throughput 120 Gbits/sec resolution_DAC * clock_DAC

Table 45. Throughputs calculations

10. Related Patterns

The data alignment, post-deserialization bits remapping, and pre-serialization bits

remapping design patterns are the basic building components for this architecture.

 124

THIS PAGE INTENTIONALLY LEFT BLANK

 125

V. CASE STUDY ONE

For detailed background and test setup for this case study, refer to Appendices A

and B.

A. METHODOLOGY

1. Develop Requirements and Define Constraints

The goal of this case study is to test the feasibility of digitizing radio-frequency

signals up to 6 gigahertz by programming an FPGA-based embedded system. Some

additional requirements are listed below.

1. Signal simulation must be frequency dependent to increase simulation

accuracy based on free-space path loss equation. Free-space path loss is

proportional to the square of the distance between the transmitter and

receiver, and also proportional to the square of the frequency of the radio

signal.

 (

)

c is the speed of light, d is distance, f is frequency

2. When the number of radiofrequency sources to be simulated (N) increases

scalably, the hardware complexity (cable connections) must not grow

unscalably (meaning N
i
, i ≥ 2). In other words, the number of connections

among N signal sources is O(N*N)=N(N-1)÷2 which is not acceptable.

3. The system must not have power division problem. If the power loss in a

transmitter is proportional to the number of receivers to be simulated, it

has power division problem. This limits the number of signal sources

which can be simulated. These transmitters and receivers are real physical

devices, not simulated.

4. Signal simulation must be in real-time.

5. The project duration is one-year due to funding availability.

6. The instantaneous bandwidth must be in the gigahertz range instead of the

conventional megahertz for our research.

7. If there are new technical challenges, it is preferable to overcome these

challenges in the software domain at research and development phase to

avoid expensive hardware redesign.

 126

We group these requirements into four categories to reduce the number of

conditions we have to analyze.

 Category A: items (1), (2), (3), and (7) lead to the use of a digitizer

 Category B: items (4) and (7) lead to the use of an FPGA-based embedded

system (explained in section B, Chapter I)

 Category C: item (5) leads to the use of a commercial-off-the-shelf

platform

 Category D: item (6) leads to new innovations

2. Form an Architecture

We form an architecture in Figure 43 to satisfy the requirements/constraints. For

detailed derivation of this architecture, see filtering example in Section B, Chapter III.

Interleaved

ADC
FPGA DAC

d
e
-

M
U

X
M

U
X.....

.....

Figure 43 Architecture for ultra-wide instantaneous bandwidth signal processing

3. Build a Tree to Map Functions to Modalities

Applying the A* search with embedded ANDs methodology, we mapped

functional components {ADC, de-MUX, FPGA, MUX, DAC} to modalities {HW, HW,

FW, HW, HW}. For detailed mapping process, see filtering example in section B,

Chapter III.

We synthesized five design patterns to meet our requirements and constraints.

For detailed description of these design patterns, see the filtering example in Section B,

Chapter III and Chapter IV.

When implementing the design, the discrete Fourier transform filter banks were

not used. The first reason was that our primary goal for this project was to prove or

disprove the concept that ultra-high instantaneous bandwidth signals can be digitized at 6

gigahertz with acceptable performance, so a simple pass-through finite impulse response

 127

filter (FIR) is sufficient to serve the purpose. The second reason was that programming

discrete Fourier transform filter banks in an FPGA by using the Verilog language is not

trivial; we would like to use high-level model building tools to design discrete Fourier

transform filter banks in the future research. The third reason was that discrete Fourier

transform filter banks might not fit into the FPGA (Xilinx Virtex-6) due to their

complexity.

The pass-through finite impulse response filter has 18 taps (coefficients), h[k]

where k=0, 1, 2, 3… 17. The convolution of h[k] and an input signal x[n] where n=0 to

31, representing 32 parallel input data channels, is shown in the equation below:

 [] [] [] [] [] ∑ [] []

If we set h[0]=1, and the rest of coefficients to zeroes, then y[n] = x[n], a pass-

through condition. This algorithm can be implemented by programming multipliers and

adders inside an FPGA.

4. Implementation

We designed various requirements models (theoretical design patterns) for ultra-

high frequency signal filtering design. However, the implementation was accomplished

by Tektronix Component Solutions at Beaverton, Oregon. This is due to the fact that the

demo prototype was under development in 2012, and we did not have access to the

system until late 2012.

B. FPGA SOFTWARE TEST METHODOLOGY

FPGA test methodology is iterative as shown in Figure 44. A brief description for

each process is in Table 46 [42, 47,82].

 128

Pre-synthesis

functional test

no

Synthesis

Post-synthesis

functional test

Pass?

no

yes

yes

Post-map static

timing report

yes

Post-place & route

static timing report

Post-place &

route timing test

no

Constraints

Map

Place & route

Create design
Create test

bench

Pass?

Pass?

Pass?

no

yes

Pass?

no

Ready for

programming

yes

Tests

Figure 44 FPGA test methodology

 129

Process/test Description

Create design Process Create designs by writing code in hardware description language, and

apply reuse code as much as possible. Reuse code includes

intellectual properties and modules, etc.

Create test bench Process A test bench, written in hardware description language code, provides

a set of stimuli to create function and timing simulations.

Pre-synthesis

functional test

Test Verify the design is correct without considering timing and layout

constraints. After the desired functionality is achieved, use the output

data to create a self-checking test bench.

Synthesis Process Transform hardware description language sources into an

architecture-specific design netlist (connectivity of an electronic

design)

Post-synthesis

functional test

Test Differences between synthesis interpretation of language in different

simulators

Constraints Process Timing, I/O (Input/output) pins and layout constraints

Mapping Process Fits the design into the available resources (such as CLBs and IOBs)

on the target device. CLB: Configurable Logic Block, IOB:

Input/output Block.

Post-map static

timing report

Test Determine timing violations against timing constraints by estimated

logical block delays and routing delays

Place and route Process Places and routes the design according to device utilization and

timing constraints

Post-place and route

timing report

Test Determine timing violations against timing constraints by real logical

block delays and routing delays

Post-place and route

timing test

Test It allows you to check that the implemented design meets all

functional and timing requirements and behaves as you expect in the

device.

Programming Process Download design and configure FPGAs

Table 46. FPGA process definitions

 130

C. TEST RESULTS

Considering the ADC/FPGA/DAC system as a black box, the function of this

black box is to pass through a radiofrequency signal without any alteration. Under this

condition, the input and output signals should be almost identical with some minor

degradation caused by signal digitization and reconstruction. Based on equivalence

partition and boundary conditions, we choose test signals at 500 MHz, 1 GHz, 3 GHz and

6 GHz. Three test categories and their subtests are listed below.

Functional tests (pass-through tests) include the following subtests.

 Data in the FPGA

 Comparison between an ADC and an FPGA

 Test without proper alignment software

 Test with proper alignment software

Performance tests include the following subtests.

 Power flatness

 Linearity

 Noise floor

 Sensitivity

Application tests include the following subtests. The system is tested with a Joint

Electronic Warfare Effects Laboratory (JEWEL) jamming device for certain real

applications.

 At bandwidths of 6 and 1.8 gigahertz

 At bandwidths of 1 gigahertz and 200 megahertz

 At bandwidth of 1 megahertz

1. Setup

a. ADC/FPGA/DAC Specifications

Digitizer specifications:

 Bandwidth 300KHz to 8.0 GHz (-3dB)

 Channels 1 at 12.5 GS/s, or 2 at 6.25 GS/s each

 Physical bits 8

 131

 Effective bits 6.7-7.0 to 2 GHz, 6.2-6.9 from 2-5 GHz

 SFDR >47 dB to 5 GHz

 Input: +/- 256 mV differential into 100 ohms

 AC coupled, common mode noise limit 350 mV p-p

 Input VSWR 1.3:1 @ 2 GHz, 1.6:1 @ 6 GHz

External clock specifications:

 Frequency range 1.6GHz to 3.2 GHz1

 Short Term Jitter <400 fs

DAC specifications [90]:

 Channels 1

 Physical bits 10

 Sample rate 12 GS/s

 SFDR >45 dB to 2 GHz

 Non-Linearity 0.2% of full scale DC DNL, 0.4% of full scale DC INL

 Analog Output 8.5 GHz 3dB bandwidth

ADC inputs

 CH1+ -256mV to +256mV

 CH1- terminated with a 50-ohm load

Figure 45 ADC input limits

For single-ended input, the maximum power in dBm can be calculated as below:

 (

√
⁄

)

(

⁄)

 132

b. Equipment

Table 47 contains the equipment used for this case study.

 Model # Serial # Range Manufacturer

Signal generator E4438C 00686 250K~6G Agilent

Spectrum analyzer 1164.4391.38 00080 9K-40G Rohde Schwarz

Termination PE6071 N/A 50-ohm Pasternack

Table 47. Equipment models and serial numbers

2. Test Specifications

a. Alignment Tests

The digital data in the FPGA should be identical to the digital data in the analog-

to-digital converter.

b. Harmonics Tests

If the input signal has no harmonics, the output signal should not have any

harmonics as shown in Table 48.

Frequency
Input Output

Harmonics Power Harmonics Power

500 MHz None 30 dB None -30 ± 2 dB

1 GHz None 30 dB None -30 ± 3 dB

3 GHz None 30 dB None -30 ± 5 dB

6 GHz None 30 dB None -30 ± 8 dB

Table 48. Harmonics test specifications

c. Flatness Tests

Sweeping the frequency from 0 to 6 GHz with 10 MHz increments, the flatness

deviation should be less than the specifications in Table 49.

 133

Frequency Input power Output power

1 GHz -20 dB -20 ± 3 dB

2 GHz -20 dB -20 ± 4 dB

3 GHz -20 dB -20 ± 5 dB

4 GHz -20 dB -20 ± 6 dB

5 GHz -20 dB -20 ± 7 dB

6 GHz -20 dB -20 ± 8 dB

Table 49. Flatness test specifications

d. Linearity Tests

At 500 MHz, the linearity should be less than 2% for a dynamic range of 40 dB

(0-40 dB).

e. Noise Floor Tests

The noise floor should be less than the specifications in Table 50.

Frequency RBW=300 KHz RBW=1 KHz

2.5 GHz ≤ -70 dB ≤ -60 dB

5.5 GHz ≤ -70 dB ≤ -60 dB

6 GHz ≤ -70 dB ≤ -60 dB

Table 50. Noise floor test specifications

f. Sensitivity Tests

The sensitivity should be less than the specifications in Table 51.

Frequency RBW=300 KHz RBW=1 KHz

2.5 GHz ≤ -65 dB ≤ -65 dB

5.5 GHz ≤ -65 dB ≤ -65 dB

6 GHz ≤ -65 dB ≤ -65 dB

Table 51. Sensitivity test specifications

 134

g. Test with JEWEL RF Jamming Device

The simulated signal should be able to work with JEWEL RF jamming device

from 0 to 2 gigahertz.

3. Functional Tests

a. Data in the FPGA

We validated our alignment algorithms by the following sequence: (1) apply a

500 MHz sinewave to a Tektronix TADC-1000 digitizer; (2) transfer the digitized data to

the memory in Synopsys HAPS-62 FPGA board; (3) download the digitized data in the

FPGA (HAPS-62) to a host computer through an USB interface; (4) plot the waveform

by using MATLAB. The waveform (Figure 46) was identical to the input waveform;

therefore, we concluded that we were able to move data from TADC-1000 to HAPS-62

FPGA successfully by using our three alignment algorithms.

Figure 46 Digitized sinewave in the FPGA

b. Comparison between Analog-to-digital Converter and FPGA Data

We generated 16,384 pseudo-random patterns to check bit accuracy across the

interface from TADC-1000 to the HAPS FPGA board. The data file in the analog-to-

digital converter analyzer is identical to the data file in the FPGA. Table 52 only shows

the first 20 LFSR patterns in the analog-to-digital converter and FPGA. LFSR stands for

linear feedback shift register, an n-bit shift register which pseudo-randomly scrolls

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

50

100

150

200

250

Digitizer samples (80 ps)

D
ig

it
iz

e
r

c
o
d
e
s

 135

between 2
n
-1 values. Once it reaches its final state, it will traverse the sequence exactly as

before. Again, this table proves that we were able to move data from TADC-1000 to

HAPS-62 FPGA successfully by using our three alignment algorithms.

 LFSR pattern in ADC LFSR pattern in FPGA

File name usbcom_data_lfsr_16k_reference.txt usbcom_data_HAPS-62_lfsr_070912.txt

The first 20 patterns

out of 16,384

pseudo-random

patterns

FFFFFEFC01

FFFFFEFC01

FFFFFEFC01

FFFFFEFC01

FCFFFFFE00

FCFFFFFE00

FCFFFFFE00

FCFFFFFE00

FEFCFFFF00

FEFCFFFF00

FEFCFFFF00

FEFCFFFF00

FFFEFCFF00

FFFEFCFF00

FFFEFCFF00

FFFEFCFF00

7FFFFFFE00

7FFFFFFE00

7FFFFFFE00

7FFFFFFE00

FFFFFEFC01

FFFFFEFC01

FFFFFEFC01

FFFFFEFC01

FCFFFFFE00

FCFFFFFE00

FCFFFFFE00

FCFFFFFE00

FEFCFFFF00

FEFCFFFF00

FEFCFFFF00

FEFCFFFF00

FFFEFCFF00

FFFEFCFF00

FFFEFCFF00

FFFEFCFF00

7FFFFFFE00

7FFFFFFE00

7FFFFFFE00

7FFFFFFE00

Table 52. The first 20 LFSR patterns

c. Tests without Proper Alignment Software

Without proper alignment software, the output spectrum contained numerous

harmonics as shown in Figure 47, which would be unacceptable for any data processing.

The picture on the left has at a unit division of 100 MHz, and the picture on the right has

a unit division of 10 MHz. The input signal for this test is a one-gigahertz sinusoidal

wave. Theoretically, the expected output spectrum should be a single-tone pulse (a single

spike) without harmonics in frequency domain.

 136

Output=1GHz Zoom in 10x

Figure 47 Tests without proper alignment software (in frequency domain)

d. Tests with Proper Alignment Software

With proper alignment software, input and output signals were nearly identical as

shown in Figure 48 and Figure 49. We used a spectrum analyzer to measure all spectra in

this section at various RBW (Resolution Bandwidth) settings. The resolution bandwidth

is the smallest frequency that can be resolved, or the FFT bin size.

Input at 1GHz

Output at 500MHz Output at 1GHz

Input at 500MHz

Figure 48 Signals at 500 MHz and 1 GHz; RBW=3 MHz

 137

Figure 49 Signals at 3 GHz and 6 GHz, RBW=1 MHz

Test results are recorded in Table 53.

Frequency
Input Output

Harmonics Power Harmonics Power

500 MHz None 30 dB None 32 dB

1 GHz None 30 dB None 30 dB

3 GHz None 30 dB None 27 dB

6 GHz None 27 dB None 23 dB

Table 53. Harmonics test specifications

4. Performance Tests

a. Flatness Test

This test swept input signals from 0 to 6 GHz at a constant power level (-20 dBm)

and a sweeping increment is 10 MHz. The output power signal dropped to -27 dB at 6

GHz as shown in Figure 50 and Table 54.

 138

Figure 50 Sweeping, RBW=3 MHz; increment=10 MHz

Frequency Input power Output power

1 GHz -20 dB -20 dB

2 GHz -20 dB -20 dB

3 GHz -20 dB -22 dB

4 GHz -20 dB -23 dB

5 GHz -20 dB -25 dB

6 GHz -20 dB -27 dB

Table 54. Flatness test specifications

b. Linearity Test (500 MHz, RBW=3 MHz)

This test applied a 500 MHz sinusoidal wave at various power levels as listed in

Table 55, and then observed the output power levels. Output power was adjusted for

cable loss for this test. The power from -10 dBm to -40 dBm is relatively linear (about

0.2 percent); after -40 dBm, it becomes less linear.

 139

Input (dBm)

C
a

lib
ra

te
d

 o
u

tp
u

t
(d

B
m

)

Table 55. Linearity test

c. Noise Floor Test

This test found the power of the noise floor in dBm at various frequencies. The

noise floor is the measurement of the sum of all the noise sources and unwanted signals

within a measurement system. Table 56 contains the results.

 RBW=300KHz RBW=1KHz

2.5 GHz -78 -65 dBm

5.5 GHz -75 -65 dBm

6 GHz -75 -63 dBm

Table 56. Noise floor test

d. Sensitivity Test

This test finds the lowest signal power in dBm that a receiver can detect at various

frequencies. Table 57 contains the results.

 RBW=300KHz RBW=1KHz

2.5 GHz -73 -70 dBm

5.5 GHz -73 -70 dBm

6 GHz -73 -70 dBm

Table 57. Sensitivity test

 140

5. Validate with an Existing JEWEL RF Jamming Device

We tested the system with an existing RF jamming device at various frequency

bandwidths and amplitudes (strength): 6 GHz (-50 to 10 dBm), 1,800 MHz (-50 to 10

dBm), 1 GHz (-50 to -10 dBm), 200 MHz (-50 to -10 dBm), and 1 MHz (-50 to -40 dBm)

as shown in Figure 51, Figure 52 and Figure 53. The jamming device was connected to

the digitizer through a cable inside the laboratory.

Input: 0-1GHz

Output: 0-1GHz

Input: 0.8-1GHz

Output: 0.8-1GHz

Figure 51 At bandwidths of 6 GHz and 1.8 GHz

Input: 0-6GHz

Output: 0-6GHz

Input: 0-1.8GHz

Output: 0-1.8GHz

Figure 52 At bandwidths of 1 GHz and 200 MHz

 141

Figure 53 At bandwidth of 1 MHz

These test results are within our expectations since the signals from 0 to 2 GHz

are extremely linear and stable as shown in the harmonics, linearity, sensitivity and noise

floor tests.

D. TESTS CONCLUSION

Based on the test results in section C.3, it appears that our design for gigahertz

signal filtering was sound.

 142

THIS PAGE INTENTIONALLY LEFT BLANK

 143

VI. CASE STUDY TWO

In this chapter, we use software/firmware/hardware codesign methodology to

develop requirements and design for a multi-channel radar signal digital receiver which is

a part of a pulse Doppler radar receiver subsystem. In the near term, the digital receiver is

intended to process conventional pulse Doppler waveforms. However, it shall be capable

of performing analysis on other advanced waveforms as commanded. The input carrier

frequency is at 5 megahertz.

A. METHODOLOGY

1. Develop Requirements and Define Constraints

According to the requirements from our clients, the system must do the following

[83].

1. Perform analog-to-digital conversion.

2. Operate in real-time.

3. Implement range gates.

4. Digitally down-convert to baseband (including platform motion

compensation).

5. Generate in-phase/quadrature (I/Q) samples.

6. Construct a pulse repetition frequency (PRF) line FIR filter and decimate.

7. Implement a fast Fourier transform (FFT) with Doppler filter banks to

span Doppler bandwidth.

8. Form signal magnitude for each filter.

9. Establish a detection threshold for filter banks.

10. Declare and report target detection by filter number, and send this

information to a data processor.

11. These operations shall be simultaneously performed upon three radar

channels: sum, delta and guard.

12. It must be low-cost.

13. It must be well supported due to lack of experience in radar signal

processing.

14. It must have high reusability to reduce development time.

 144

We group these requirements into five categories to reduce the number of

conditions we have to analyze.

 Category A: Items (1) and (11) are related to analog-to-digital converters.

 Category B: Items (2) to (10) are related to radar signal processing.

 Category C: Item (12) is related to funding availability.

 Category D: Item (13) is related to vendor’s technical support ability.

 Category E: Item (14) is related to vendor’s technology reusability.

Requirements (1) and (11) suggest the use of digitizers, and requirements (2)–(10)

suggest the use of FPGAs. Besides the requirements and constraints from our clients, an

additional constraint for our design is listed below:

 Use products of a single vendor: Each intellectual property is designed and

tested for a particular piece of hardware manufactured by a particular

vendor; therefore, we cannot mix intellectual properties from different

vendors.

2. Form an Architecture

The data bits from an analog-to-digital converter are in serial (single-channel) at

the rate of 56 megabits-per-second which can be easily processed by a filter without

using parallelism (multiple parallel channels); therefore demultiplexers and multiplexers

are not required. To align input serial data bits, inside the filter, there is a built-in

mechanism searching for the start and stop bits for each data byte for proper data

synchronization; this is accomplished automatically by most hardware chips with serial

communication capability.

Even though we have sum, delta and guard channels, each channel has its own

data source and can be processed independently without considering different

propagation delays among them. Table 58 lists the justification for the selection of

functional components and Figure 54 shows the architecture. For detailed derivation of

this architecture, see filtering example in Chapter III.

 145

Components Requirements references Comment

ADC (1), (11) For sum channel in (11)

ADC (1), (11) For delta channel in (11)

ADC (1), (11) For guard channel in (11)

Filter (2), (3), (4), (5), (6), (8), (9) Perform basic radar signal processing

Processor (7), (10)

Receive detected target signals from

the filter; perform discrete fast Fourier

transform if required

Table 58. Architectural components

Processor

ADC

ADC

ADC

Filters

Data

pumps

Data

consummer

Figure 54 An architecture

3. Build a Tree to Map Functions to Modalities

Table 59 shows the first level of mapping. Table 60 and Table 61show the second

level of mapping. Here, “ADC” stands for analog-to-digital converter; “F” stands for

filter and “P” stands for processor.

 146

A ADC ADC ADC F P Possible mapping

A1 HW HW HW SW *

Software does not work for multiple Doppler signals. For

hundreds (thousands) of Doppler signals, parallelism must

be used. This parallelism is not for the overall

architecture, but for the processing inside the filter (F).

A2 HW HW HW FW * OK

A3 HW HW HW HW * The cost is too high and the design is not flexible.

A4 HW HW HW * SW OK

A5 HW HW HW * FW The cost is medium and the design is too complex.

A6 HW HW HW * HW The cost is too high and the design is not flexible.

Table 59. Node A

A2 ADC ADC ADC F P Possible mapping

A2-1 HW HW HW FW SW OK

A2-2 HW HW HW FW FW The cost is medium and the design is too complex.

A2-3 HW HW HW FW HW The cost is too high and the design is not flexible.

Table 60. Node A2

Table 61. Node A4

A4 ADC ADC ADC F P Possible mapping

A4-1 HW HW HW SW SW

Software does not work for multiple Doppler signals. For

hundreds (thousands) of Doppler signals, parallelism must

be used. This parallelism is not for the overall architecture,

but for the processing inside the filter (F).

A4-2 HW HW HW FW SW OK

A4-3 HW HW HW HW SW The cost is too high and the design is not flexible.

 147

A

A2

A2-1

A4

A4-2

Figure 55 Node A2 (A4) is the only solution

The functional components {ADC, ADC, ADC, filter, computer} are mapped to

the modalities {HW, HW, HW, FW, SW}. Before assigning design patterns (reusable

intellectual properties for this case) to the functional components, we first must select a

qualified vendor. Table 62 lists four candidates manufacturing FPGA systems in terms of

cost, technical support and technology reuse. Technology reuse is defined as the products

(such as intellectual properties and example codes) from a vendor that can be reused for

our design. Vendors A, B and C are pseudo names; but Pentek is the actual vendor

selected for our second case study.

 Vendor-A Vendor-B Pentek Vendor-C

Model Model A Model B 78661/4995A/4953 Model C

Cost $17,500 $249,726 $21,925 $24,303

Technical

Support

$600 per year Annual renewal

fee of $45,000

Free for one project Fee based

Technology

Reuse

Radar, software radio,

 electronic warfare

(limited IPs)

High

performance

DSP systems

(limited IPs)

Conventional Radar

signal processing

(basic radar function

IPs)

Cellular phone

applications

(limited IPs)

Table 62. Vendors analysis

 148

We disqualify Vendor-B and Vendor-C for the following reasons.

 Vendor-B: the product cost is too high; the annual software license

renewal fee is $45K.

 Vendor-C: the focused market is cellular phone applications; therefore, it

has low technology reusability for radar signal processing.

The costs for implementation and technical support are about the same for Pentek

and Vendor-A, so the deciding factor is the technology reusability. After studying their

published literatures and conversing with their engineers through telephone calls, we

concluded that Pentek was the optimal vendor for our project since Pentek had more

intellectual properties (reusable assets) than Vendor-A for radar signal processing.

4. Reusable Assets

We use the same methodology to map our requirements to Pentek intellectual

properties. Pentek provides many built-in IPs which are frequently used for radar signal

processing. Analog-to-digital Acquisition IP modules capture and move data into

memories. Digital down converter (DDC) IP cores decimate input samples and output In-

phase/quadrature (I&Q) values. Beamformer IP core has a power meter that continuously

measures the individual average power output, and threshold detector to automatically

send an interrupt to the processor if the average power level of any digital down

converter core falls below or exceeds a programmable threshold [84].

We will build an OR tree with embedded ANDs (RG • DC • IQ • DEC • FFT •

FMG • THD) to find the optimal reusable assets for our requirements. Here, RG stands

for “range gate”; DC stands for “digital down convert”; IQ stands for “I/Q samples”;

DEC stands for “decimation“; FFT stands for “fast Fourier transform “; FMG stands for

“form filter signal magnitude “; THD stands for “threshold detection.” These

components represent the requirements.

There are 3 modalities (IP cores) {AM, DC, BF}; AM stands for “A/D acquisition

and memory control“; DC stands for “DDC IP core “; BF stands for “Beamforming IP

core. Table 63 shows 21 possible mappings. Table 64 shows possible 18 possible

mappings with RG=AM; Table 65 shows 15 possible mappings with RG=AM and

DC=DC; Table 66 shows 12 possible mappings with RG=AM, DC=DC and I/Q=DC;

 149

Table 67 shows 9 possible mappings with RG=AM, DC=DC, I/Q=DC and DEC=DC;

Table 68 shows 6 possible mappings with RG=AM, DC=DC, I/Q=DC, DEC=DC and

FMG=BF.

A2-1 RG DC I/Q DEC FFT FMG THD Possible matching

B1 AM * * * * * * yes

B2 DC * * * * * * no

B3 BF * * * * * * no

B4 * AM * * * * * no

B5 * DC * * * * * yes

B6 * BF * * * * * no

B7 * * AM * * * * no

B8 * * DC * * * * yes

B9 * * BF * * * * no

B10 * * * AM * * * no

B11 * * * DC * * * yes

B12 * * * BF * * * no

B13 * * * * AM * * no

B14 * * * * DC * * no

B15 * * * * BF * * no

B16 * * * * * AM * no

B17 * * * * * DC * no

B18 * * * * * BF * yes

B19 * * * * * * AM no

B20 * * * * * * DC no

B21 * * * * * * BF yes

Table 63. Expanding node A2-1

 150

B1 RG DC I/Q DEC FFT FMG THD Possible matching

B1-1 AM AM * * * * * no

B1-2 AM DC * * * * * yes

B1-3 AM BF * * * * * no

B1-4 AM * AM * * * * no

B1-5 AM * DC * * * * yes

B1-6 AM * BF * * * * no

B1-7 AM * * AM * * * no

B1-8 AM * * DC * * * yes

B1-9 AM * * BF * * * no

B1-10 AM * * * AM * * no

B1-11 AM * * * DC * * no

B1-12 AM * * * BF * * no

B1-13 AM * * * * AM * no

B1-14 AM * * * * DC * no

B1-15 AM * * * * BF * yes

B1-16 AM * * * * * AM no

B1-17 AM * * * * * DC no

B1-18 AM * * * * * BF yes

Table 64. Expanding node B1

B1-2 RG DC I/Q DEC FFT FMG THD Possible matching

B1-2-1 AM DC AM * * * * no

B1-2-2 AM DC DC * * * * yes

B1-2-3 AM DC BF * * * * no

B1-2-4 AM DC * AM * * * no

B1-2-5 AM DC * DC * * * yes

B1-2-6 AM DC * BF * * * no

B1-2-7 AM DC * * AM * * no

B1-2-8 AM DC * * DC * * no

B1-2-9 AM DC * * BF * * no

B1-2-10 AM DC * * * AM * no

B1-2-11 AM DC * * * DC * no

B1-2-12 AM DC * * * BF * yes

B1-2-13 AM DC * * * * AM no

B1-2-14 AM DC * * * * DC no

B1-2-15 AM DC * * * * BF yes

Table 65. Expanding node B1-2

 151

B1-2-2 RG DC I/Q DEC FFT FMG THD Possible matching

B1-2-2-1 AM DC DC AM * * * no

B1-2-2-2 AM DC DC DC * * * yes

B1-2-2-3 AM DC DC BF * * * no

B1-2-2-4 AM DC DC * AM * * no

B1-2-2-5 AM DC DC * DC * * no

B1-2-2-6 AM DC DC * BF * * no

B1-2-2-7 AM DC DC * * AM * no

B1-2-2-8 AM DC DC * * DC * no

B1-2-2-9 AM DC DC * * BF * yes

B1-2-2-10 AM DC DC * * * AM no

B1-2-2-11 AM DC DC * * * DC no

B1-2-2-12 AM DC DC * * * BF yes

Table 66. Expanding node B1-2-2

B1-2-2-2 RG DC I/Q DEC FFT FMG THD Possible matching

B1-2-2-2-1 AM DC DC DC AM * * no

B1-2-2-2-2 AM DC DC DC DC * * no

B1-2-2-2-3 AM DC DC DC BF * * no

B1-2-2-2-4 AM DC DC DC * AM * no

B1-2-2-2-5 AM DC DC DC * DC * no

B1-2-2-2-6 AM DC DC DC * BF * yes

B1-2-2-2-7 AM DC DC DC * * AM no

B1-2-2-2-8 AM DC DC DC * * DC no

B1-2-2-2-9 AM DC DC DC * * BF yes

Table 67. Expanding node B1-2-2-2

B1-2-2-2-6 RG DC I/Q DEC FFT FMG THD Possible matching

B1-2-2-2-6-1 AM DC DC DC AM BF * no

B1-2-2-2-6-2 AM DC DC DC DC BF * no

B1-2-2-2-6-3 AM DC DC DC BF BF * no

B1-2-2-2-6-4 AM DC DC DC * BF AM no

B1-2-2-2-6-5 AM DC DC DC * BF DC no

B1-2-2-2-6-6 AM DC DC DC * BF BF yes

Table 68. Expanding node B1-2-2-2-6

 152

Reuse

B1 B5 B8 B11 B18 B21

B1-2 B1-5 B1-8 B1-15 B1-18

B1-2-2 B1-2-5
B1-2-

12

B1-2-

15

B1-2-

2-2

B1-2-

2-9

B1-2-

2-12

B1-2-2-2-6 B1-2-2-2-9

B1-2-2-2-

6-6

Figure 56 Reusable assets mappings

The apparently best solution is B1-2-2-2-6-6 {AM, DC, DC, DC, *, BF, BF} as

shown in Figure 56 and Table 69. Six out of seven (86 percent) requirements are mapped

to reusable assets; only one requirement (14 percent of all requirements), the Fast Fourier

Transform Doppler filter bank, cannot be mapped to an intellectual property module, and

we will have to design this module.

 153

Requirements Mapped IP cores

RG (range gate) AM (ADC acquisition and memory control)

DC (digital down convert) DC (DC IP core)

IQ (I/Q samples) DC (DDC IP core)

DEC (decimation) DC (DDC IP core)

FFT (fast Fourier transform) None

FMG (form filter signal

magnitude)
BF (beamforming IP core)

THD (threshold detection) BF (beamforming IP core)

Table 69. Map requirements to IP cores

B. TESTS

1. Purpose of Our Tests

The purpose of this section is to prove that we are able to implement correct

designs consistent with the design pattern mapping in Table 69. Filter signal magnitude

forming (FMG) and threshold detection (THD) were not tested due to the lack of funding

as shown in Table 70.

Requirements Mapped IP cores Tested

RG (range gate) AM (ADC acquisition and memory control) Yes

DC (digital down convert) DC (DDC IP core) Yes

IQ (I/Q samples) DC (DDC IP core) Yes

DEC (decimation) DC (DDC IP core) Yes

FFT (fast Fourier transform) None Yes

FMG (form filter signal magnitude) BF (beamforming IP core) No

THD (threshold detection) BF (beamforming IP core) No

Table 70. Map requirements to IP cores

2. Test Specifications

Our overall goal is to demonstrate the capability in programing Pentek digital

signal processing card to perform pulse Doppler processing to detect two Doppler shifts,

one at 40 kilohertz and the other at 25 kilohertz; the carrier frequency is at 5 megahertz.

Detailed test specifications are in Section B.4 [85].

 154

3. Pentek Software IP Cores

There are three major IP cores built in Pentek embedded system and they are

analog-to-digital converter acquisition and memory control, digital down-converter

(DDC) and beamformers as described in Table 71 [86].

IP cores Description

ADC acquisition &

memory control

“Each IP module can receive data from any of the four ADCs or a test signal

generator. Each IP module has an associated memory bank for buffering data

in FIFO mode or for storing data in transient capture mode. All memory

banks are supported with DMA engines for easily moving ADC data through

the PCIe interface. DMA, direct memory access, is a way to access memory

without going through the central processing unit. PCIe (peripheral

components interconnect express) is a high-speed serial computer expansion

standard.” [86]

DDC

(digital down converter)

“Each DDC has an independent 32-bit tuning frequency setting that ranges

from DC to ƒs, where ƒs is the ADC sampling frequency. Each DDC can have

its own unique decimation setting, supporting as many as four different output

bandwidths for the board. Decimations can be programmed from 2 to 65,536

providing a wide range to satisfy most applications. The decimating filter for

each DDC accepts a unique set of user-supplied 18-bit coefficients. The 80%

default filters deliver an output bandwidth of 0.8*ƒs/N, where N is the

decimation setting. The rejection of adjacent-band components within the

80% output bandwidth is better than 100 dB. Each DDC delivers a complex

output stream consisting of 24-bit I + 24-bit Q or16-bit I + 16-bit Q samples at

a rate of ƒs/N.” [86]

Beamformer “Each DDC core contains programmable I & Q phase and gain adjustments

followed by a power meter that continuously measures the individual average

power output. In addition, each DDC core includes a threshold detector to

automatically send an interrupt to the processor if the average power level of

any DDC core falls below or exceeds a programmable threshold. A

programmable summation block provides summing of any of the four DDC

core outputs. A power meter and threshold detect block is provided for the

summed output. “[86]

Table 71. Pentek intellectual property cores

4. Tests Configurations, Methodology and Results

a. Signals and IP Cores Configurations

The first input signal was a pulse radar signal at 5.04 megahertz with pulse width

of 1.14 microseconds. This signal simulated an echo at 5 megahertz carrier frequency

with 40 kilohertz Doppler shift frequency as shown in Table 72.

 155

Input signal #1

 Frequency Period

Input signal 5.04E+06

Tuning frequency 5.00E+06

Doppler shift 4.00E+04 2.5E-05

Pulse width 1.14E-06

Table 72. Input signal #1 characteristics

The second input signal was a pulse radar signal at 5.025 megahertz with pulse

width of 1.14 microseconds. This signal simulated an echo at 5 megahertz carrier

frequency with 25 kilohertz Doppler shift frequency as shown in Table 73.

Input signal #2

 Frequency Period

Input signal 5.025E+06

Tuning frequency 5.00E+06

Doppler shift 2.50E+04 4.00E-05

pulse width 1.14E-06

Table 73. Input signal #2 characteristics

The periodic frequency (PRF) is 109,375 hertz; the PRF is the number of pulses

per second. The reciprocal of the pulse repetition frequency is the pulse repetition period

(PRT) as shown in Table 74.

Trigger (PRF)

 Frequency (PRF) Period (PRT)

trigger period 109,375 9.14E-06

Table 74. External trigger characteristics

We removed the 5 megahertz carrier frequency form the input signals with a DDC

at a tuning frequency of 5 megahertz. DDC stands for digital down-converter which

converts a digitized signal to a baseband signal. Baseband is the original band of

frequencies of the signal before being modulated with 5 megahertz carrier for

transmission. After down conversion, we decimated the baseband signal at a factor of 16;

decimation means a reduction in the number of samples. For this case, we kept every 16
th

 156

sample of the input digital signal. DDC sampling rate is calculated as (ADC sampling

rate ÷ 16) = (56 megahertz ÷ 16) = 3.5 megahertz. The configurations of DDC IP core are

listed in Table 75.

DDC

 Frequency Period

decimation 16

DDC sampling rate 3.50E+06 2.86E-07

Table 75. DDC IP core configurations

The configurations of ADC IP core are listed in Table 76. The ADC sampling rate

is 56 megahertz.

ADC

 Frequency Period Note

ADC sampling rate 5.60E+07 1.79E-08

software delay (1st) 60 1.125E-06 Delay after the trigger

#ADC samples (1st) 80 1.429E-06 Samples after the 1
st
 delay

software delay (2nd) 11 2.500E-07 Delay after the 1
st
 sampling

 2.804E-06

#ADC samples (2nd) 80 1.429E-06 Samples after the 2
nd

 delay

 4.232E-06

Table 76. ADC IP core configurations

b. Methodology (Software Program in C Programming Language)

The program for the FPGA is briefly described below:

 Step 1: Wait for an external trigger.

 Step 2: Once triggered, delay for 60 ADC cycles.

 Step 3: Capture ADC samples for 80 ADC cycles.

 Step 4: Decimate at 16 (only keep 16
th

 data sample).

 Step 5: Filter out aliasing and noise.

 Step 6: Store 4 DDC samples into a FIFO memory.

 Step 7: Delay for another 11 ADC cycles.

 Step 8: Capture ADC samples for 80 ADC cycles.

 Step 9: Decimate at 16 (only keep 16
th

 data sample).

 157

 Step 10: Filter out aliasing and noise.

 Step 11: Store 4 DDC samples into the same FIFO memory.

 Repeat steps 1 through 11 for 64 times.

 Transfer FIFO data to a workstation.

 Separate signals one and two into two different data files.

 Apply FFT to both data files by using MATLAB.

c. Test Results

Figure 57 and Figure 58 show the captured two Doppler shifts in two-dimensional

and three-dimensional plots. The frequency and power level for the first Doppler shift are

25 kilohertz and about 90,000 raw counts. The frequency and power level for the second

Doppler shift are 40 kilohertz and about 130,000 raw counts.

Figure 57 Two detected pseudo pulse Doppler target returns in a 2-D plot

 158

Figure 58 Two detected pseudo pulse Doppler target returns in a 3-D plot

The generated source Doppler signals are shown in Figure 59. The orange square

wave represents the trigger signals; the taller blue pulse represents the 40 kilohertz

Doppler shift at about 4.2 volts; the shorter blue pulse represents the 25 kilohertz Doppler

shift at about 3 volts; the green and purple pulses are used to measure timing for blue

pulses (Doppler shifts).

 159

Figure 59 Two input signals before detection

For this case study, we are only looking for the presence of Doppler shifts and

their frequencies; the exact power levels of these signals are not important. As a result,

based on Table 77, we conclude that our test is successful.

 Generated Captured

 Delay 60 ADC cycles 60 ADC cycles

1st

Doppler

Frequency 40 kilohertz 40 kilohertz

Power 4.2 volts 140K raw count

 Delay 11 ADC cycles 11 ADC cycles

2nd

Doppler

Frequency 25 kilohertz 25 kilohertz

Power 3.0 volts 90K raw count

Table 77. Generated and captured Doppler shifts

C. TESTS CONCLUSION

By using our new software/firmware/hardware codesign methodology, we

showed we can partition the embedded system into appropriate modalities and then map

them to existing intellectual properties for design efficiently.

We would like to point out that this is not the first time we worked on this project.

From 2011 to 2012, we worked on the same project with ten engineers, $3.16 million and

a period of more than 12 months, but failed to deliver any software product that worked,

 160

even though all software and hardware parts were procured and partial analog hardware

(e.g., a waveform generator and an analog microwave receiver) was designed and built.

In 2013, with two engineers, $90K and a period of five months, we were able to

deliver a Doppler range gating successfully without reusing any software tools and design

from the previous work. This was because the software tool license from the first attempt

had expired and we could not afford to pay the annual renewal fee of $45,000 in 2013

and there were no software deliverables from the first attempt anyway. Table 78 shows

the comparisons between these two attempts; the first attempt did not use any systematic

methodology and the second attempt used the systematic software/firmware/hardware

codesign methodology.

SW/FW/HW

methodology
Duration Cost Man Software deliverables

No 12+ months (2011-2012) $3.16M 10 None

Yes 5 months (May-Sep, 2013) $95K 2 Doppler range gating

Ratio 3:1 33:1 5:1

Table 78. Comparisons between with and without the SW/FW/HW methodology

 161

VII. CASE STUDY THREE—HIDDEN MARKOV MODEL

A. INTRODUCTION

A hidden Markov model (HMM) is a triple (Π, A, B) as described below [87].

Π = (πi) is the vector of the initial state probabilities, where 1 ≤ i ≤ M, M = the

number of hidden states; each hidden state has M outgoing transitions to the other M-1

states and back to itself.

 () is the transition matrix; (|
 is the probability from a hidden

state at time t-1 to another hidden state at time t.

 () is the confusion matrix; |) is the probability from a hidden

state to an observed state at time t.

Two assumptions are made when calculating a hidden Markov model: one is that

each probability in the state transition matrix and in the confusion matrix is time-

independent, and the other is that the choice of state is made entirely on the basis of the

previous state (first order Markov model).

Evaluation and decoding are two important applications for hidden Markov

models. Evaluation uses a forward algorithm to calculate the probability of an

observation sequence given a particular hidden Markov model. If a sequence of

observations is described by multiple hidden Markov models, we can use the forward

algorithm to select the most probable hidden Markov model. Decoding uses the Viterbi

algorithm to determine the most probable sequence of hidden states given a sequence of

observations for a particular hidden Markov model.

Table 79 summarizes the calculations for initialization and recursion as well as

the objectives for forward algorithm and Viterbi algorithm.

 162

 Forward algorithm Viterbi algorithm

Observed states

Hidden states

Initial probability

Transition matrix

Confusion matrix

t=1

Initialization

t=2 to N

Recursion

 ∑

Objective

 () ∑

Table 79. Forward algorithm and Viterbi algorithm

B. FORWARD ALGORITHM CASE STUDY

1. Develop Requirements and Define Constraints

The requirement is to map the functional components in the forward algorithm to

software, firmware or hardware. The constraint is to assign all functional components to

one single modality (software, firmware or hardware) without mixing them together to

avoid interface design among different platforms (modalities).

2. Form an Architecture

The functional components are an analog-to-digital converter (ADC), a process

for extracting initial state probabilities (I), a process for extracting probabilities from a

transition matrix (T), a process for extracting probabilities from a confusion matrix (C),

recursive computations (partial probabilities) (R), and the sum of all partial probabilities

(S) as shown in Figure 60.

 163

R SADC

TI C

HW

Figure 60 Hidden Markov model architecture

The analog-to-digital converter (ADC) must be hardware since input signal is

analog. The initial, transition and confusion probabilities are predefined in memory. The

forward algorithm is based on recursive computations, i.e. obtaining the new value by

using the old value.

3. Build a Tree to Map Functions to Modalities

To simplify the design, we will focus on the core computations of forward

algorithm without considering human interface software and system configurations. In

addition, we prefer to assign all remaining functions (I, T, C, R and S) to one single

modality (software, firmware or hardware) without mixing them together to avoid

interface design among different platforms (modalities).

Table 80 and Table 81 show the first mapping solution (software) and Table 82

shows the second mapping solution (firmware) for the two possible options shown in

Figure 61. Here, “ADC” stands for analog-to-digital converter; “I” stands for

initialization; “T” stands for transition matrix; “C” stands for confusion matrix; “R”

stands for recursion; “S” stands for sum of partial probabilities.

 164

A ADC I T C R S

 Possible

Mapping Justification

A1 SW * * * * * NO ADC must be hardware

A2 FW * * * * * NO ADC must be hardware

A3 HW * * * * * OK ADC must be hardware

A4 * SW * * * * OK

A5 * FW * * * * OK

A6 * HW * * * * NO too costly, not flexible

A7 * * SW * * * OK

A8 * * FW * * * OK

A9 * * HW * * * NO too costly, not flexible

A10 * * * SW * * OK

A11 * * * FW * * OK

A12 * * * HW * * NO too costly, not flexible

A13 * * * * SW * OK

A14 * * * * FW * OK

A15 * * * * HW * NO too costly, not flexible

A16 * * * * * SW OK

A17 * * * * * FW OK

A18 * * * * * HW NO too costly, not flexible

A3 ADC I T C R S

 Possible

Mapping Justification

A3-1 HW SW * * * * OK

A3-2 HW FW * * * * OK

A3-3 HW HW * * * * NO too costly, not flexible

A3-4 HW * SW * * * OK

A3-5 HW * FW * * * OK

A3-6 HW * HW * * * NO too costly, not flexible

A3-7 HW * * SW * * OK

A3-8 HW * * FW * * OK

A3-9 HW * * HW * * NO too costly, not flexible

A3-10 HW * * * SW * OK

A3-11 HW * * * FW * OK

A3-12 HW * * * HW * NO too costly, not flexible

A3-13 HW * * * * SW OK

A3-14 HW * * * * FW OK

A3-15 HW * * * * HW NO too costly, not flexible

Table 80. Nodes A and A3

Both A3-1 (I=SW) and A3-2 (I=FW) are acceptable, but first we will explore the

branch for I=SW.

 165

A3-1 ADC I T C R S

 Possible

Mapping Justification

A3-1-1 HW SW SW * * * OK

A3-1-2 HW SW FW * * * NO mutually exclusive

A3-1-3 HW SW HW * * * NO too costly, not flexible

A3-1-4 HW SW * SW * * OK

A3-1-5 HW SW * FW * * NO mutually exclusive

A3-1-6 HW SW * HW * * NO too costly, not flexible

A3-1-7 HW SW * * SW * OK

A3-1-8 HW SW * * FW * NO mutually exclusive

A3-1-9 HW SW * * HW * NO too costly, not flexible

A3-1-10 HW SW * * * SW OK

A3-1-11 HW SW * * * FW NO mutually exclusive

A3-1-12 HW SW * * * HW NO too costly, not flexible

A3-1-1 ADC I T C R S

 Possible

Mapping Justification

A3-1-1-1 HW SW SW SW * * OK

A3-1-1-2 HW SW SW FW * * NO mutually exclusive

A3-1-1-3 HW SW SW HW * * NO too costly, not flexible

A3-1-1-4 HW SW SW * SW * OK

A3-1-1-5 HW SW SW * FW * NO mutually exclusive

A3-1-1-6 HW SW SW * HW * NO too costly, not flexible

A3-1-1-7 HW SW SW * * SW OK

A3-1-1-8 HW SW SW * * FW NO mutually exclusive

A3-1-1-9 HW SW SW * * HW NO too costly, not flexible

A3-1-1-1 ADC I T C R S

 Possible

Mapping Justification

A3-1-1-1-1 HW SW SW SW SW * OK

A3-1-1-1-2 HW SW SW SW FW * NO mutually exclusive

A3-1-1-1-3 HW SW SW SW HW * NO too costly, not flexible

A3-1-1-1-4 HW SW SW SW * SW OK

A3-1-1-1-5 HW SW SW SW * FW NO mutually exclusive

A3-1-1-1-6 HW SW SW SW * HW NO too costly, not flexible

A3-1-1-1-1 ADC I T C R S

 Possible

Mapping Justification

A3-1-1-1-1-1 HW SW SW SW SW SW OK solution

A3-1-1-1-1-2 HW SW SW SW SW FW NO mutually exclusive

A3-1-1-1-1-3 HW SW SW SW SW HW NO too costly, not flexible

Table 81. Nodes A3-1, A3-1-1, A3-1-1-1 and A3-1-1-1-1

One solution is node A3-1-1-1-1-1 = {ADC, I, T, C, R, S} = {HW, SW, SW, SW,

SW, SW}. We can get another solution by expanding node A3-2 (I=FW).

 166

A3-2 ADC I T C R S

 Possible

Mapping Justification

A3-2-1 HW FW SW * * * NO mutually exclusive

A3-2-2 HW FW FW * * * OK

A3-2-3 HW FW HW * * * NO too costly, not flexible

A3-2-4 HW FW * SW * * NO mutually exclusive

A3-2-5 HW FW * FW * * OK

A3-2-6 HW FW * HW * * NO too costly, not flexible

A3-2-7 HW FW * * SW * NO mutually exclusive

A3-2-8 HW FW * * FW * OK

A3-2-9 HW FW * * HW * NO too costly, not flexible

A3-2-10 HW FW * * * SW NO mutually exclusive

A3-2-11 HW FW * * * FW OK

 A3-2-12 HW FW * * * HW NO too costly, not flexible

A3-2-2 ADC I T C R S

Possible

Mapping Justification

A3-2-2-1 HW FW FW SW * * NO mutually exclusive

A3-2-2-2 HW FW FW FW * * OK

A3-2-2-3 HW FW FW HW * * NO too costly, not flexible

A3-2-2-4 HW FW FW * SW * NO mutually exclusive

A3-2-2-5 HW FW FW * FW * OK

A3-2-2-6 HW FW FW * HW * NO too costly, not flexible

A3-2-2-7 HW FW FW * * SW NO mutually exclusive

A3-2-2-8 HW FW FW * * FW OK

A3-2-2-9 HW FW FW * * HW NO too costly, not flexible

3-2-2-2 ADC I T C R S

Possible

Mapping Justification

A3-2-2-2-1 HW FW FW FW SW * NO mutually exclusive

A3-2-2-2-2 HW FW FW FW FW * OK

A3-2-2-2-3 HW FW FW FW HW * NO too costly, not flexible

A3-2-2-2-4 HW FW FW FW * SW NO mutually exclusive

A3-2-2-2-5 HW FW FW FW * FW OK

A3-2-2-2-6 HW FW FW FW * HW NO too costly, not flexible

A3-2-2-2-2 ADC I T C R S

 Possible

Mapping Justification

A3-2-2-2-2-1 HW FW FW FW FW SW NO mutually exclusive

A3-2-2-2-2-2 HW FW FW FW FW FW OK solution

A3-2-2-2-2-3 HW FW FW FW FW HW NO too costly, not flexible

Table 82. Nodes A3-2, A3-2-2, A3-2-2-2 and A3-2-2-2-2

Another solution is node A3-2-2-2-2-2 = {ADC, I, T, C, R, S} = {HW, FW, FW,

FW, FW, FW}. Figure 61 shows these two options.

 167

A

A3

A3-1

A3-1-1

A3-1-1-

1

A3-1-1-

1-1

A3-1-1-

1-1-1

A3-2

A3-2-2

A3-2-2-

2

A3-2-2-

2-2

A3-2-2-

2-2-2

Figure 61 Two possible options

4. Discussion

Our methodology allows for two acceptable solutions here, so it is best to expand

both on the design tree. The software implementation of the forward algorithm has the

advantages of low design complexity and low cost, but its disadvantage is being slow in

speed. The firmware implementation has the advantage of being fast in speed, but has the

disadvantages of medium cost and high design complexity.

If speed is critical, firmware implementation is a better choice over software for

two reasons. First, if there are multiple hidden Markov models for a sequence of

 168

observations, we can compute these models in parallel (using firmware) instead of serial

(using software) and then select the one with the best probability for the observation.

Second, each intermediate hidden state depends on the probabilities of all previous

hidden states, transition probabilities, and confusion probabilities; the computations from

all previous hidden states can be performed in parallel (using firmware) instead of serial

(using software) for time efficiency. Table 83 summarizes the advantages and

disadvantages of these two options.

Options Option 1 Option 2

Leaf-node A3-1-1-1-1-1 A3-2-2-2-2-2

Partitioning Software Firmware

Design complexity Low High

Speed Slow Fast

Cost Low Medium

Sequential All sequential Sequential for recursion

Parallel None

Calculate partial probabilities for all M hidden states at time t

in parallel (simultaneously)

Multiple hidden

Markov models

Too slow for

software

When multiple hidden Markov models are used, all models can

be calculated simultaneously and then the model with the best

probabilities is selected for the observed sequence

Table 83. Two options

C. METHODOLOGY FOR VITERBI ALGORITHM

The mapping of the Viterbi algorithm to software, firmware or hardware is similar

to forward algorithm except that the summation (Σ) in the forward algorithm is replaced

with max to calculate the most likely route to the current position, rather than the

total probability. In addition, the Viterbi algorithm remembers the best route to the

current position by maintaining a “back-pointer” through the argmax calculation. Thus a

design for it will have a few differences but many similarities.

 169

VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE

RESEARCH

A. OUR CLAIM

Based on the test results in Chapters V and VI, we claim that rather than the trial-

and-error approach being currently practiced for embedded system design, our new

software/firmware/hardware codesign methodology using more software engineering has

the potential to systematically build correct designs efficiently to satisfy the requirements

provided by the stakeholders.

B. OUR CONTRIBUTIONS

Our first contribution is to create a new software/firmware/hardware codesign

methodology to systematically build correct designs efficiently to satisfy the

requirements provided by the stakeholders. This codesign methodology includes

requirements development, architecture forming, software/firmware/hardware

partitioning, design-pattern mapping, new-design pattern synthesis, integration, and

testing.

Software/hardware partitioning is difficult in codesign according to the codesign

group at U.C. Berkeley. Our codesign methodology first builds an tree with conjunctions

and disjunctions of possible mappings from functional components to the options of

software, firmware, and hardware following requirements and constraints; second, rates

the cost of each mapping; third, searches the tree to find a minimum weighted sum of the

costs; last, identifies existing design patterns once design is selected and otherwise,

synthesizes new design patterns.

Our second contribution is the identification of five design patterns for

reconfigurable-computing based embedded systems; these design patterns could be added

to the 89 patterns collected by André DeHon et al at California Institute of Technology

[50]. The data alignment design pattern can be used to align multiple parallel data bit-

streams and forwarded source-synchronous sampling clocks to ensure correct data

sampling. The post-deserialization bits remapping design pattern can be used to remap bit

 170

addresses after demultiplexing from an analog-to-digital converter for data processing.

The pre-serialization bits remapping design pattern can be used to remap bit addresses

before multiplexing for serial transmission. The polyphase DFT filter banks can be used

for dividing a wide bandwidth input signal into multiple frequency subbands, processing

all subbands in parallel independently and differently, and then combining the processed

subbands into a single serial output for transmission. The switch-and-filter architecture

design pattern can be used to move ultra-fast serial data from a faster data source to a

slower filter for processing by deserializing it into parallel channels, process the data, and

then combine parallel data into a single serial data stream for output. We have applied our

software/firmware/hardware codesign methodology to two projects with successful

results. One project was for ultra-wide instantaneous bandwidth signal digitization for a

period of 2 years from 2011 to 2012 as described in the first case study. The other was

airborne interceptor Doppler range gating for a period of five months in 2013 as

described in the second case study. We also applied our methodology to a third case

study that permitted more solution options, to illustrate the flexibility of the methodology,

but this study has not yet been implemented.

C. FUTURE RESEARCH DIRECTIONS

To simplify the analysis, we used an OR tree and A* search with embedded AND

algorithm for software/firmware/hardware partitioning and design pattern mapping. To

handle more complex design problems, a methodology of using an AND/OR tree and

AO* search algorithm should be investigated since AO* is the appropriate generalization

of A* then.

Even though cost estimation was not critical for our case studies of

software/firmware/hardware partitioning and in choosing design patterns, it could be

important for other applications. In the future, we would like to investigate the cost

estimation for low-level design implementation, such as identifying cost drivers,

modelling the cost-estimating relation for each cost driver, selecting the best probability

distribution models, and calculating weighted sum for different cost drivers.

 171

More research should be conducted in identifying and cataloging design patterns

for firmware and hardware because these patterns can drastically improve the success rate

and efficiency of design.

 172

THIS PAGE INTENTIONALLY LEFT BLANK

 173

APPENDIX A. CASE STUDY ONE BACKGROUND

Appendix A presents more detailed background for our first case study in Chapter

V.

A. CHALLENGES WE ARE FACING

1. Background (Two-Ray Segment Propagation Model)

Joint Electronic Warfare Effect Laboratory uses two-ray segment propagation

model to simulate the transmitter-to-receiver relationship. This model suggests that the

transmitting and receiving antennas are close to the ground, so that there are two paths

from a transmitter to a receiver: the direct path, and a second path due to ground

reflection. In lab, the distance for these paths is simulated by power attenuation. When

the range is less than RCROSS (crossover range) the path loss is approximated by “1 over R

squared” free space model. When the range is more than RCROSS, the path loss is

approximated by “1 over R to the 4” model [88].

Crossover range

RCROSS = cross over range

h1 = transmitting antenna height

h2 = receiving antenna height

λ = wavelength of the transmitted signal

Path loss for ranges less than crossover

Or in dB form:

 PR = Pt + Gt + GR – 32.4 – 20 log f – 20 log R

Equivalent attenuation between a transmitter and a receiver:

 174

 AR = PR - Pt = Gt + GR – 32.4 – 20 log f – 20 log R equation (1)

Path loss for ranges more than crossover

Or in dB form:

 PR = Pt + Gt + GR + 20 log (h1 × h2) – 40 log R

Equivalent attenuation between a transmitter and a receiver:

 AR = PR - Pt = Gt + GR + 20 log (h1 × h2) – 40 log R equation (2)

PR = received power in dBm

Pt = transmitted power in dBm

Gt = transmitter antenna gain

GR = receiver antenna gain

λ = transmitted wavelength

R = distance between transmitter and receiver in kilometers

f = frequency in MHz

Some assumptions are made when using the two-ray model. (1) The terrain must

be relatively flat, since only one reflection is calculated. (2) The antenna gains do not

vary appreciably over the desired ranges. (3) The range from the antenna is long enough

to be in the far-field (the distance must be greater than 2D
2
/ λ, where D is the largest

dimension of the antenna, λ is the transmitted wavelength). When calculating attenuation,

soil type and polarizations are also considered (not addressed in this dissertation).

2. Using an Example to Illustrate the Challenges in Signal Simulation

Figure 62 shows an example of signals interference caused by a ground-jamming

vehicle, represented by EMI (electromagnetic interference), to the communication

between two airplanes (a transmitter and a receiver). The power loss due to distance is

simulated by using a two-ray segment propagation software model.

 175

Figure 62 Distance is simulated by path loss

To simulate field condition, we use path loss equations to calculate signal

attenuation caused by distance, and apply this calculated power attenuation to a

programmable attenuator. In addition, a combiner is used to combine signals as an

antenna receiving multiple radiofrequency signals. A splitter is used to split signal into

multiple equal amplitude signals so that signals can be tested and measured

simultaneously. For example, the lab simulation for the signal interference among two

airplanes and one ground-jamming vehicle is shown in Figure 63. The functions and

limitations for each component used in this simulation are described in Table 84.

 Purpose Limitation

Attenuators
In field, a received signal gets weaker with increasing

distance. In lab, the signal is weakened with an attenuator.

Time delay, accuracy, flat

fading response, power

consumption

Combiners
In field, signal and EMI combine in the radio receiver

antenna. In lab, we use combiner to combine signals.

Power loss, narrow

bandwidth, isolation

(sneak path). Sneak path is

defined as a signal at one

input of a

combiner/splitter sneaks

over the other input.
Splitters

Split the signal into two signals with equal power for test

and measurement.

Table 84. Purpose and limitation of attenuators, combiners, splitters

 176

EMI

Receiver

transmitter

Fixed

attenutaor

Programmable

attenuator

Splitter

Combiner

Spectrum

Analyzer

Interference

Physics

based

model

Figure 63 Simulation by using programmable attenuators

Another limitation of analog approach to signals simulation is that the number of

interconnections among signal sources increases unscalably when the number of sources

increases as illustrated in Table 85, Figure 64 and Figure 65.

The number of connections among N transmitters/receivers for analog and digital

approaches can be calculated in equations (3) and (4).

 N (analog) = N × (N-1), bidirectional equation (3)

 N (digital) = 2 × N, bidirectional equation (4)

A comparison between analog and digital approaches is listed in Table 85 for 1, 2,

3, 4, 8, 16, 32, 64 and 128 signal sources.

#sources

Analog

Inter-connections

Digital

inter-connections

1 - 2

2 2 4

3 6 6

4 12 8

8 56 16

16 240 32

32 992 64

64 4,032 128

128 16,256 256

Table 85. Analog and digital interconnections

 177

To show the comparison in complexity graphically between analog and digital

approaches, four signal sources are used in Figure 64 and eight signal sources are used in

Figure 65.

N = 4

N (analog) = 4×3 = 12 (bi-directional)

N (digital) = 8 (bi-directional)

DSP

Figure 64 N=4, N(analog)=12, N(digital)=8

N=8

N (analog) = 8×7 = 56 (bi-directional)

N (digital) = 16 (bi-directional)

Figure 65 N=8, N(analog)=56, N(digital)=16

 178

To reduce the limitations in Table 84 and Table 85, an ADC/FPGA/DAC system

was used consisting of (1) an analog-to-digital converter, (2) an FPGA, and (3) a digital-

to-analog converter. An analog-to-digital converter converts input radiofrequency signals

to digital data. An FPGA reads digital data from an analog-to-digital converter, process

them, and then outputs the processed data to a digital-to-analog converter. The digital-to-

analog converter in terms converts the processed digital data to radiofrequency signals.

With this approach, we can (1) simulate frequency-dependent power attenuation by using

polyphase discrete Fourier transform filter banks inside an FPGA (attenuation factors are

calculated by an external personal computer), (2) combine signals by superimposing

(adding and subtracting) numerical data, (3) split signals by numerical duplications, and

(4) replace physical interconnections with software in an FPGA as shown in Figure 66.

EMI

FPGA

ADC

ADC

DAC

Receiver

transmitter

Spectrum

Analyzer
Interference

Figure 66 Simulation by using an ADC/FPGA/DAC system

B. HOW DO ADC/FPGA/DAC SYSTEMS SOLVE OUR PROBLEMS

The ADC/FPGA/DAC approach solves several problems inherent to the analog

approach.

 Frequency-fading issue: From equations (1) and (2), we can see that the

power attenuation is not only dependent of distance, but also frequency.

Polyphase filter banks permit easier implementation of this.

 Power-loss issue: There will be no power insertion loss caused by analog

combiners and splitters, since we are dealing with pure numbers inside an

FPGA. A total power loss budget for analog and digital approaches are

listed in Table 86. QD4-Linker and QD8-Linker are analog attenuators for

 179

4 and 8 radiofrequency sources respectively used in Joint Electronic

Warfare Effects Laboratory (JEWEL) for signal simulation.

Power Loss Analog Digital

QD4-Linker (4 RF sources) 28dB None

QD8-Linker (8 RF sources) 32dB None

Table 86. Analog and digital power budget

 Isolation Issue: A ”sneak path” is no longer an issue since we combine

multiple signals by superimposing them together digitally (numerically)

by addition and subtraction.

 Time Delay Issue: The time delay for an electromechanical relay

attenuator is replaced by software attenuation. The delay is in

microseconds instead of hundreds-of-milliseconds. The timing budget for

analog and digital approaches is listed in Table 87.

 Analog Digital

QD4-Linker (4 RF sources) 900 ms 3 us ± 5 ns

QD8-Linker (8 RF sources) 300 ms 3 us ± 5 ns

Table 87. Analog and digital time delays

 Proximity issue: If current non-software and non-digital technologies are

used for electronic warfare simulation, all electronic signals being tested

must be located in proximity (most likely inside the same laboratory).

However, once electronic signals are digitized, distributed testing can be

achieved. For example, a remote digitized signal can be fed into a digital

signal processing unit (an FPGA for our case) through a network.

 Recordability issue: Due to the nature of analog signals and unavailability

of recording media for high-speed signals, laboratory software simulation

with hardware-in-the-loop is based on real-time measurements. By

digitization, the signals can be stored more easily in a permanent memory

for further processing. This implies that not all real signal sources must be

present in a simulated electronic warfare environment, as some signal

sources can be played back from a memory device.

 180

THIS PAGE INTENTIONALLY LEFT BLANK

 181

APPENDIX B. TEKTRONIX ADC/FPGA/DAC DEMO SYSTEM

Our first case study in Chapter V is based on a Tektronix DCM–Digitizer/DCM-

DAC/HAPS-DSP single channel demo system as shown in Figure 67. DCM stands for

data converter module. DCM-Digitizer is an 8-bit analog-to-digital converter converting

analog input signal to digital format. DCM-DAC is a 10-bit digital-to-analog converter

converting digital data to analog waveform. HAPS-64 has two Xilinx Virtex-6 FPGAs

for digital signal processing.

Figure 67 ADC/FPGA/DAC demo system

Simplified and detailed overall architecture diagrams are shown in Figure 68 and

Figure 69. The operations of each component are described in the subsequent sections.

Figure 68 A simplified overall architecture for our case study

 182

Ref Clk

MARK

GATE

10

FPGA

alignment

DeMUX

1:2

FIFO

Map

DSP

test pattern

USB

USB

Data Converter Module-Digitizer ADC interposer ADC FPGA

DACDAC interposerDAC FPGA

MUX

8:1

MUX

8:1

MUX

8:1

MUX

8:1

MUX

8:1

analyzer
in

DeMUX

1:4

FPGA

3 GHz

SPI

ADC

PCI

P
C
I/serial

128@375Mb/s (DDR)16x8=1284x8=32

32x8

8@3Gb/s
DAC

4:1

DAC

clock

1
8

7
.5

M
H

z

3
 G

H
z

8@3Gb/s

8@3Gb/s

8@3Gb/s

8@3Gb/s

Alignment

Re-map

FIFO

FIFO

FIFO

FIFO

FIFO

64

64

64

64

64

187.5MHz

64@375Mb/s

64@375Mb/s

64@375Mb/s

64@375Mb/s

64@375Mb/s

CLK_EN

12 GHz

6

MUX

32x10

32x10

32x10

USB
card

32x10

USB

Figure 69 A detailed overall architecture for our case study

A. TADC-1000 DIGITIZER

The digitizer converts input analog signals to digital signals at a clock rate of 3

GHz. Inside the analog-to-digital converter, there are 4 interleaved analog-to-digital

converters (A, B, C and D), so the output data rate at the analog-to-digital converter is 3

GS/s × 4 (channels) = 12 GS/s, or 3 GS/s × 4 channels × 8 (bits/channel) = 96 Gb/s.

These 4 channels (32 bits) are further demultiplexed by 4 to 128 bits, so that the sampling

rate can be decreased from 3 GS/s to 375 Mb/s (DDR), since 375 Mb/s × 2 × 128 bits =

96 Gb/s.

The output samples from the analog-to-digital converter are in the following

sequence:

A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, D3, A4, B4, C4, D4

 183

The GATE signal can be used to start and stop data output from the module. The

MARK signal flags the output of each 128-bit word of the data capture triggered by the

assertion of the GATE signal to a precision of one sample and a resolution or granularity

of 16 samples. Figure 70 shows the internal architecture for TADC-1000 digitizer.

DEMUX 1:4

(configured as 8:32)

DEMUX 1:4

(configured as 8:32) Data

Analyzer

FPGA

(SX55)DEMUX 1:4

(configured as 8:32)

DEMUX 1:4

(configured as 8:32)

clocking

Controller

FGPA (FX12)

Config

EEPROM

ADC

HFD-204

8

8

8

8

32

32

32

32

128

3 GHz

50 ohms,

0-512mV

750MHz, or

375MHz DDR

GATE

128@750MHz or

375MHz DDR

SPI (calibration & control)

MARK

A

B

C

D

GND

Figure 70 TADC-1000 architecture

B. TIPA-3100 ADC INTERPOSER

The ADC interposer passes 128-bit data for maximum data integrity. A double

data rate (DDR) reference clock from the digitizer is buffered and multiplied to provide

10 clocks to various clock domains in the HAPS FPGA for high speed data input [89].

The reasons having ten clocks instead of one are (1) the way that the FPGA implements

regional clocks requires different clock inputs to clock different I/O banks that are

receiving the signals, and (2) it is easier to maintain alignment of 12–13 signals with one

clock than 128 signals with one clock. Figure 71 shows the architecture for TIPA-3100

interposer.

 184

FPGA

Digitizer

128

HAPS-

62-1

10

clk

cal

Data

Ref clk (DDR)

Gate

PCI

SPI

PCI serial

SPI

Gate trig

Figure 71 TIPA-3100 architecture

C. HAPS-62-1 FPGA

The HAPS-62-1 has two Xilinx Virtex-6 FPGAs (P/N XC6VLX760-1FF1760C).

The resource for each XC6VLX760-1 is listed in Table 88.

Table 88. XC6VLX760-1 resource

Configurable logic blocks (CLBs) are the main logic resources for implementing

digital sequential as well as combinatorial circuits. The mixed-mode clock manager

(MMCM) is used to generate multiple clocks with defined phase and frequency

relationships to a given input clock. GTX stands for gigabit transceiver.

XC6VLX760-1 Amount

Logic cells 758,784

CLBs
Slices 118,560

Max Distributed RAM (Kb) 8,080

Block RAM blocks

18 Kb 1,440

36 Kb 720

Max (Kb) 25,920

MMCMs (450MHz) 18

DSP48E1 slices (450MHz) 864

I/O 1,200

GTX transceivers (Gb/s) 5

Speed (MHz) 450

 185

D. TIPD-3200 DAC INTERPOSER

The DAC interposer passes unimpeded 320-bit data for maximum data integrity.

A double data rate (DDR) reference clock from the digital-to-analog converter is buffered

and distributed to provide six clocks to the FPGA for output of high speed data [89].

Figure 72 shows the architecture for TIPD-3200 interposer.

HAPS-

62-1

320@375MHz

DAC6

Data

Ref clk (DDR)

CLK_EN

Figure 72 TIPD-3200 architecture

E. TDAC-2000 DAC

The TDAC-2000 is a single-channel waveform generation engine comprised of

multiplexers and a digital-to-analog converter operating at 12 GS/s as shown in Figure

73.

 186

MUX

MUX

MUX

MUX

MUX

DAC

64

64

64

64

64

8

8

8

8

8

DATA

1
2
 G

H
z

C
L

K
_
E

N

S
Y

N
C

_
C

L
K

_
E

N

ANALOG

OUT

3 GHz=12G/4

375 MHz=3G/8

Figure 73 TDAC-2000 architecture

Data is supplied to the multiplexers via 320 data lines at 375 Mb/s using clocks

generated by the digital-to-analog converter and multiplexers from a 12 GHz input clock.

MUX 1 (divided by 8): 320 to 40 channels

Input: 3 Gb/s ÷ 8 = 375 Mb/s

 5 × 64-bit@375 Mb/s = 120 Gb/s

Output: 5 × 8-bit@3 Gb/s = 120 Gb/s

MUX 2 (divided by 4, inside digital-to-analog converter): 40 to 10 channels

Input: 5 × 8-bit@3 Gb/s = 120 Gb/s

Output: 5 × 2-bit@12 Gb/s = 120 Gb/s

CLK_EN is used to start and stop of the analog waveform output.

SYNC_CLK_EN is used for multiple DACs alignment [90]. When input data is

processed in the FPGA, the output data might have fractions. This is why the digital-to-

analog converter sampling rate (120 Gb/s) is higher than analog-to-digital converter

sampling rate (96 Gb/s).

 187

APPENDIX C. POLYPHASE DFT FILTER BANKS EXAMPLES

A. POLYPHASE DFT FILTER BANKS EXAMPLE 1

The program in Table 89, written in MATLAB, demonstrates how to cause an

FPGA to divide an input signal into 32 subbands using polyphase DFT analysis filter

banks.

% M = number of channels (subbands), N = number of taps in each polyphase FIR filter

M = 32;

N = 8;

b = fir1(M*N-2,1/M); % find coefficients for FIR filter

b = [b,zeros(1,M*N-length(b))];

% re-arrange coefficients to polyphase format

B = flipud(reshape(b,M,N));

Hq = cell(M,1);

% create polyphase FIR filters

for k=1:M

 Hq{k} = dfilt.dffir(B(k,:));

end

F = qfft('length',M,'scale',0.5*ones(1,log2(M))); % set FFT length

g = 1/prod(F.ScaleValues);

% number of frequencies to sweep

% sweep from 0 to pi

Nfreq = 200;

w = linspace(0,pi,Nfreq);

P = 100;

t = 1:M*N*P;

HH = zeros(M,length(w));

for j=1:length(w)

 x = sin(w(j)*t); % input signal

 X = [x(:);zeros(M*ceil(length(x)/M)-length(x), 1)];

% re-arrange input to polyphase format

 X = reshape(X,M,length(X)/M);

 Y = zeros(size(X));

% create FIR filter bank

 188

 for k=1:M

 Y(k,:) = filter(Hq{k},X(k,:));

 end

 Y = fft(F,Y); % create subbands

 HH(:,j) = var(Y.')'; % store output power

end

s = 1/prod(scalevalues(F));

HH = HH*s^2;

% plot output power

figure(1)

plot(w,10*log10(HH))

title('Filter Bank Frequency Response')

xlabel('Frequency (normalized to channel center)')

ylabel('Magnitude Response (dB)')

set(gca,'xtick',(1:M/2)*w(end)/M*2)

set(gca, 'xticklabel',(1:M/2))

Table 89. MATLAB program: polyphase DFT analysis filter banks

B. POLYPHASE DFT FILTER BANKS EXAMPLE 2

The program in Table 90 demonstrates how to cause an FPGA to divide and

reconstruct input signals using polyphase DFT filter analysis and synthesis filter banks.

M=32; %Number of channels, (decimation factor)

r=8; %number of taps in each sub filter

N=r*M-1; %order of the prototype filter

H=fir1(N, 1/M); %FIR filter

%reshape the filter in matrix form (decomposition, filter bank generation)

hh=reshape(H,M,length(H)/M);

 y=[];

X=y;

y1=y;

zi=zeros(M, r-1);

zi1=zi;

x=wavread('test.wav'); %reading input signal

xx=reshape(x,M,length(x)/M); %reshape input sigal into matrix form

 189

yy=zeros(size(xx)); %set matrix yy same size as xx

%Analysis filter bank, filtering the parallel channel data in xx with filter bank hh

for k=1:M

 [yy(k,:),zi(k,:)]=filter(hh(k,:),1, xx(k,:), zi(k,:));

end

yy=ifft(yy);

 %process subband signals here

 yy=fft(yy);

 %Synthesis filter bank processing

for m=1:M

 [yy(m,:),zi1(m,:)]=filter(hh(M+1-m,:),1,yy(m,:),zi1(m,:));

End

 %restore the output signal in a vector form and multiple the constant to overcome the loss

y=M*M*reshape(yy,1,length(x));

delay=length(H)-M+1; %Processing delay for the filter bank

%reorder the output signal to overcome the processing delay

y=[y(delay:end) y(1:delay-1)];

%calculate the difference between input and output signal

dif=x-y';

 %plot input, output and magnitude difference

figure

subplot(311)

plot(1:length(x), real(x))

axis([0 length(x) -.4 .4])

title('Input signal')

subplot(312)

plot(1:length(y), real(y))

axis([0 length(y) -.4 .4])

title('Output signal')

Table 90. MATLAB program: polyphase DFT analysis and synthesis filter banks

 190

THIS PAGE INTENTIONALLY LEFT BLANK

 191

APPENDIX D. BACKGROUND KNOWLEDGE

A. SETUP TIME AND HOLD TIME REQUIREMENTS

A flip-flop is a circuit that has two stable output states (0 and 1) and can be used

as a memory device to store information. The output states of a flip-flop can be changed

by signals applied to one or more inputs. An edge triggered flip-flop is set (to state 1) or

reset (to state 0) by inputs and a clock signal during the low-to-high or high-to-low

transition of a clock pulse. Edge triggered flip-flops are the most important building

blocks in a reconfigurable computing.

The data and clock signals must be synchronized so that when a clock triggers a

flip-flop, it reads correct data at the input. This synchronization-relationship is guaranteed

by the source device; however, when data and source clock are forwarded to a destination

device with a propagation delay, data and clock may no longer be in synchronization

(alignment). This problem is especially prominent for data at an ultra-high rate, since the

workable data window is very narrow.

B. INHERENT TIMING WINDOW

Every flip-flop has restrictive time regions around the active clock edge in which

input should not change. The setup time is the interval before the clock where the data

must be held stable. The hold time is the interval after the clock where the data must be

held stable. To satisfy setup time and hold time requirements for a flip-flop, a clock path

(the trace from a clock pin to the clock port of a flip-flop) must have a longer propagation

time delay (not data rate) than a data path (the trace from an input pin to the data port of a

flip-flop), so that data will arrive before the clock sampling edge.

The clock path delay must be longer than the data path delay to ensure correct

data sampling as explained earlier; so mathematically, the least amount of time that the

clock can be behind data is “the minimum clock path delay–the maximum data path

delay.” Similarly, the most amount of time that the clock can be behind data is “the

maximum clock path delay–the minimum data path delay.” We define δ(least) as the least

amount of time which data is ahead of the clock; and δ(most) as the most amount of time

 192

which data is ahead of clock. We can calculate δ(least) and δ(most) in the following

equations.

 δ(least) = Min clock path delay–Max data path delay

 δ(most) = Max clock path delay–Min data path delay

The inherent timing window is defined as the time period between δ(least) and

δ(most), expressed as (δ(least), δ(most)). The clock sampling edge is guaranteed to arrive

within the inherent timing window after data is arrived.

C. DEMULTIPLEXER

To reduce the data rate from a faster device to a slower device, we need to use a

demultiplexer. A demultiplexer is a device that takes a single input signal and selects one

of many data-output lines connected to a single input [91]. Figure 74 shows an example

of a one-to-four demultiplexer.

A

D

B

C
outputs

a b

select

input

F

Figure 74 A one-to-four demultiplexer

We can express this one-to-four demultiplexer in Boolean equations as below.

 (̅ ̅)

 (̅)

 ̅

 193

D. MULTIPLEXER

A multiplexer is a device that selects one of several analog or digital input signals

and forwards the selected input into a single line [91]. A multiplexer of 2
n
 inputs has n

select lines, which are used to select which input line to send to the output [92].Typically

the a and b inputs are cycle regularly through the space of all possible bits. Figure 75

shows an example of a four-to-one multiplexer.

input

A

D

B

C
Q

outputs

a b

select

Figure 75 A four-to-one multiplexer

We can express this four-to-one multiplexer as a Boolean equation:

 (̅ ̅) (̅) ̅

 194

THIS PAGE INTENTIONALLY LEFT BLANK

 195

APPENDIX E. DERIVATION OF POLYPHASE DFT FILTER

BANKS

In this Appendix, we derive the equation of DFT analysis filter banks by

expressing filter banks in z-domain and then applying polyphase decomposition equation

to these filter banks. This proof was developed by Professor Cristi at Naval Postgraduate

School, Monterey, California [93] and the author.

A. POLYPHASE DFT FILTER BANKS REPRESENTATION IN Z-DOMAIN

In frequency domain, filter banks are expressed as a set of filters with frequency

responses derived from a prototype filter as:

 , k = 0,…,M-1, M≥2 and k is an integer, 2π/M is spacing

In z domain, the transfer functions are expressed as:

 (1)

Proof:

A single filter in frequency domain H(ω) is expressed as:

 { []} ∑ []
 (2)

Figure 76 shows a single filter in frequency domain.

)(0 H

Figure 76 A single filter in frequency domain

For a bank of M filters spaced at 2π/M, the filter banks are expressed as:

 , k = 0, 1… M-1, M≥1 and k is an integer

 196

Figure 77 shows a filter bank of M filters spaced at 2π/M.

M

2

M

4

M k
M

2

)(kH)(0 H

Figure 77 A filter bank of M filters spaced at 2π/M in the frequency domain

(A) Express M filters by substituting H(ω) with Hk(ω), and h[n] with hk[n] in (2).

 ∑ []

 (3)

(B) Express M filters by substituting ω with (

) in (2).

 ∑ []

 ∑ []

 (4)

Since

 , (3) = (4).

 ∑ { []}

 ∑ { []

 }

 [] []

 (5)

Transfer hk[n] to z domain.

 ∑ []

 ∑ []

 , from (5)

 ∑ []

 ∑ []

 ∑ []

 z)

 □

 197

We summarize the filter banks relationship in Table 91. The basic technique in

proving equation (1) is converting filter banks expression in frequency domain to time

domain, and then from time domain to z domain.

Domain Filter Banks Expression Transform Prototype

Frequency

 ω { []} ∑ []

H(ω)

Time
 [] []

Intermediate step to bridge frequency and

z domains

h[n]

Z

 { []} ∑ []

H(z)

Table 91. Filter banks expressions

B. POLYPHASE DECOMPOSITION

We decompose the input signal sequence x[n] into its periodically interleaved

subsequences in z-domain by using general polyphase decomposition equation below:

 ∑ []

We also decompose the finite impulse response filter into polyphase components

as below.

 ∑ []

 ∑

 (6)

 ∑ []

 (7)

C. ANALYSIS POLYPHASE DFT FILTER BANKS WITH M FILTERS

The polyphase DFT filter banks with M filters are expressed as polyphase

components:

 ∑

 (8)

 198

 (9)

Proof:

 ∑

 , from (6)

 ∑

 , replace Hp with Ep, and p with –p (10)

From (1) and (9), we replace z with
 in (10).

 (

)

 ∑

 ∑

 □

We express polyphase DFT filter banks (8) in a matrix form.

 (11)

M-point DFT, N=M

 [] { []} ∑ []

 [] ∑ [] [] [] []

 [] ∑ [] (

) [] [] (

) [] (

)

 [] [] []

 [] ∑ [] (

)

 [] [] (

) []

 (

)

 [] []
 []

We express the matrix in equation (11) graphically as shown in Figure 78.

 199

E0(z
M)

E-1(z
M)

z

DFT

(MxM)

x[n]

E-2(z
M)

z

E-M+1(z
M)

z

…
.. …

…
…

..

v0[n]

vM-1[n]

v1[n]

v2[n]

↓M

↓M

↓M

↓M

…
…
…

..

Figure 78 M-filter polyphase representation

Each output from DFT is a polyphase component with a non-zero value only at

every M
th

 term. We can down-sample by M without losing information. In addition, since

 is polyphase, we apply the Noble Identity [75] to Figure 78 and obtain Figure

79.

E0(z)

E-1(z)

↓M

z

DFT

(MxM)

x[n]

↓M

E-2(z)

z

↓M

E-M+1(z)

z

↓M

…
.. …

…
…

..

…
…
…

..

v0[n]

vM-1[n]

v1[n]

v2[n]

Figure 79 Apply Noble identity to polyphase representation

 200

D. SYNTHESIS POLYPHASE DFT FILTER BANKS WITH M CHANNELS

The analysis polyphase DFT filter banks network in Figure 79 are used to

separate a wide-bandwidth serial input signal into M parallel subbands so that they can be

processed by digital signal processing at lower sampling rates. Once all subband signals

are processed, we have a nearly perfect reconstruction by applying the same principle for

synthesis network as shown in Figure 80. There is a multiplying factor M after IDFT to

compensate for 1/M in IDFT.

y[n]
+↑M

z-1

IDFT

(MxM)

F0(z)

F1(z)

M

M ↑M

z-1

F2(z)M ↑M

z-1

FM-1(z)M ↑M

…
..

…
…
…

..

…
…
…

..

…
…
…

..
v0[n]

vM-1[n]

v1[n]

v2[n]

Figure 80 Synthesis network

 201

LIST OF REFERENCES

[1] W. H. Wolf, “Hardware-Software Codesign of Embedded Systems,” Proc. IEEE

vol. 82, no. 7, Jul. 1994, pp. 967–989.

[2] Codesign Group, U.C. Berkeley, “A framework for hardware-software co-design

of embedded systems.” [Online].

http://embedded.eecs.berkeley.edu/research/hsc/. Accessed Apr. 16, 2013.

[3] J. A. Stankovic, “Real-time and embedded systems,” Proc. ACM Computing

Surveys vol. 28, no.1, pp. 205–208, Mar. 1996.

[4] T. Smith, “Electronic Warfare (EW) Principles and Concepts,” class lecture,

Naval Postgraduate School, Monterey, CA, Jun. 2010.

[5] S. Edwards, “Microprocessors or FPGAs?: Making the right choice,” RTC

Magazine, Feb. 2011.

[6] J. Krasner, “Model-based design and beyond: solutions for today’s embedded

systems requirements,” Embedded Market Forecasters, American Technology

International, Los Angeles, CA, Jan. 2004.

[7] W. Forster et al., “Automated generation of explicit connectors for component

based hardware/software interaction in embedded real-time systems,” in 2008

IEEE International Symposium on Parallel and Distributed Processing, Miami,

FL, Apr. 2008, pp. 1–8.

[8] R. F. Paige et al., “Revealing complexity through domain-specific modelling and

analysis,” in Development, Operation and Management of Large-Scale Complex

IT systems Monterey workshop, Monterey, CA, Mar. 2012, pp. 251–265.

[9] I. Sommerville, “Integrated requirements engineering: A tutorial,” Proc.

Software, IEEE, pp. 16–23, 2005.

[10] J. Cleland-Huang, “Software requirements,” Software Engineering, School of

Computing, DePaul University. [Online].

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1

&cad=rja&ved=0CCsQFjAA&url=http%3A%2F%2Fwww.researchgate.net%2Fp

ublication%2F228381037_Software_Requirements%2Ffile%2F3deec51dc556b2c

082.pdf&ei=4T_YUrqpFdWwoQSz9oHYBw&usg=AFQjCNFKhqmbQU64GLT

MwZ7KjgiHIWrgww&sig2=mulRZEX2rJMNu6Qi4k0NoQ. Accessed May 20,

2013.

 202

[11] D. Leffingwell and D. Widrig, Managing Software Requirements, 2
nd

 ed. Boston:

Addison-Wesley, 2003, pp. 165–172.

[12] C.J. Neill, “Requirements engineering: the state of the practice,” Proc. Software,

IEEE Journal, vol. 20, no. 6, pp. 40–45, Nov./Dec. 2003.

[13] F. P. Brooks, Jr., The Mythical Man-Month [anniversary ed]. Boston: Addison-

Wesley, 1995, p. 20.

[14] W. W. Royce, “Managing the development of large software systems: Concepts

and techniques,” in WESCON Technical Papers, Los Angeles, CA, August, 1970.

Reprinted in Proc. of the Ninth International Conference on Software

Engineering, Monterey, CA, Mar. 1987, pp. 328–338.

[15] B. W. Boehm, “A spiral model of software development and enhancement,” Proc.

IEEE Computer, vol. 21, no. 5, pp. 61–72, May, 1998.

[16] P. Kruchten, “Architectural blueprints—The ‘4+1’ view model of software

architecture,” Proc. IEEE Software, vol. 12, no. 6, pp. 42–50, Nov. 1995.

[17] P. Kruchten, “Tutorial: introduction to the rational unified process®,” in The 24th

International Conference on Software Engineering, Orlando, FL, May 2002, pp.

703–703.

[18] G. Booch, Object-Oriented Design with Application. Redwood: The

Benjamin/Cummings Publishing Company, Inc., 1991.

[19] A. Cockburn, Agile Software Development: The Cooperative Game, 2
nd

 ed.

Boston: Pearson Education, 2007.

[20] R. C. Martin and G. Melnik, “Tests and requirements, requirements and tests: A

Möebius strip,” Proc. IEEE Software, vol. 25, no. 1, pp. 54–59, Jan./Feb. 2008.

[21] “Manifesto for Agile software development,” (2001), Agile Alliance,

http://agilemanifesto.org/. Accessed Apr. 16, 2013.

[22] D. Harel, “Statecharts: A visual formalism for complex systems,” Proc. Science

of Computer Programming, vol. 8, no. 3, pp. 231–274, Jun. 1987.

[23] B. Berenbach et al., Software & Systems Requirements Engineering in Practice.

New York: McGraw Hill, 2009, pp. 20–16, 73–124.

[24] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad, and the

ugly,” Proc. IBM Systems Journal, vol. 45, no. 3, pp. 451–461, 2006.

 203

[25] J. Tolvanen and S. Kelly, “Integrating models with domain-specific modeling

languages,” in the 10th Workshop on Domain-Specific Modeling, article no. 10,

Reno/Tahoe, NV, Oct. 2010.

[26] G. Booch et al., “An MDA manifesto,” in MDA Journal, May 2004.

[27] R. W. Selby, Ed., Software Engineering, Barry W. Boehm’s Lifetime

Contributions to Software Development, Management, and Research. Hoboken,

NJ: John Wiley & Sons, 2007.

[28] National Instruments, “Shortening the embedded design cycle with model-based

design,” National Instruments, Austin, TX, 2012.

[29] G. D. Micheli and R. K. Gupta, ”Hardware/software codesign,” Proc. IEEE, vol. 85,

no. 3, pp. 349–365, Mar. 1997.

[30] F. Balarin, Hardware-Software Codesign of Embedded Systems, The POLIS

approach. MA: Kluwer Academic Publishers, 1997.

[31] F. Vahid, “What is hardware/software partitioning?” ACM SIGDA Newsletter,

vol. 39, no. 6, p. 1-1, Jun. 2009.

[32] L. P. Carloni et al., “Platform-based design for embedded systems,” in Embedded

Systems Handbook. Boca Raton, FL: CRC Press, 2005.

[33] K. Keutzer et al., “System level design: Orthogonolization of concerns and

platform-based design,’’ Proc. IEEE Trans. Computer-Aided Design Integrated

Circuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[34] A. Sangiovanni-Vincentelli et al., “Benefits and challenges for platform-based

design,” Proc. Design Automation Conference (DAC), San Diego, CA, Jun. 2004,

pp. 409–414.

[35] A. Sangiovanni Vincentelli, “Quo Vadis SLD: Reasoning about the trends and

challenges of system level design,” Proc. IEEE, vol. 95, no. 3, pp. 467–506, Mar.

2007.

[36] A. Pinto, “Metropolis design guidelines,” Codesign Group, U.C. Berkeley,

Berkeley, CA, Nov., 2004.

[37] J. Teich and C. Haubelt, Digitale Hardware/Software-Systeme: Synthese und

Optimierung, 2nd ed. Berlin, Germany: Springer-Verlag, 2007.

[38] J. Teich, “Embedded system synthesis and optimization,” in Workshop Syst. Des.

Autom. Rathen, Germany, Mar. 2000, pp. 9–22.

 204

[39] J. Teich, “Hardware/software codesign: The past, the present, and predicting the

future,” Proc. IEEE, vol. 100, pp. 1411–1430, May, 2012.

[40] K. Vissers, “Programming models and architectures for FPGA platforms,” in the

2004 International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, Washington DC, Sep. 2004, pp. 1–1.

[41] L. Cardelli and P. Wegner, “On understanding types, data abstraction, and

polymorphism,” Proc. ACM Computing Surveys, vol.17, no. 4, pp. 471–523, Dec.

1985.

[42] Xilinx Inc., ISE Design Suite Overview Xilinx ISE Help (v 13.1) Manual. San

Jose, CA: Xilinx Inc., 2011.

[43] Altera Inc., Altera VHDL Basics. Altera Inc., San Jose, CA, 2013.

[44] A. A. Jerraya et al., Behavioral Synthesis and Component Reuse With VHDL,

Norwell. Boston, MA: Kluwer, 1998.

[45] T. Riesgo et al., “Design methodologies based on hardware description

languages,” Proc. IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 3–12, Feb. 1999.

[46] E. Monmasson and M. N. Cirstea, “FPGA design methodology for industrial

control systems—A review,” Proc. IEEE Transactions on Industrial Electronics,

vol. 54, no.4, pp. 1824-1842, Aug. 2007.

[47] Xilinx Inc., “FPGA design flow overview,” Xilinx Inc., San Jose, CA, 2009.

[48] E. Gamma et al., Design Patterns: Elements of Reusable Object-Oriented

Software. Boston, MA: Addison-Wesley Professional Computing Series, 1995.

[49] EventHelix, “Embedded system design patterns,” [Online].

http://www.eventhelix.com/realtimemantra/patterns/#.UgT31NJJ4rw. Accessed

Apr. 23, 2013.

[50] A. DeHon et al., “Design patterns for reconfigurable-computing,” in IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM 2004),

Napa Valley, CA, Apr. 20–23, 2004.

[51] V. Meeldijk, Electronic Components Selection and Application Guidelines. New

York: John Wiley & Sons, 1995.

[52] The American Society of Mechanical Engineers, “Dimensioning and tolerancing,

Y14.5, an American National Standard,” 2009, pp. 224.

 205

[53] “Directive 2002/95/EC of the European parliament and of the council of 27

January 2003,” Official Journal of the European Union, Feb. 2003.

[54] N. J. Nilsson, Problem-solving Methods in Artificial Intelligence. New York:

McGraw-Hill Book Company, 1971.

[55] R. G. Lyons, Understanding Digital Signal Processing. Upper Saddle River, NJ:

Prentice Hall PRT, 2001, pp. 23–29.

[56] J. Kriegbaum, “FPGA’s vs. ASIC’s,” in EE Times, Sep. 2004.

[57] Texas Instruments Inc., “TMS320C6678 multicore fixed and floating-point digital

signal processor datasheets,” Texas Instruments Inc., Dallas, TX, May 2013.

[58] G. Blake et al., “A survey of multicore processors,” in IEEE Signal Processing

Magazine, Nov. 2009.

[59] Xilinx Inc., Virtex-6 FPGA data sheet: DC and switching characteristics DS152

(v3.5), Xilinx Inc., San Jose, CA, May 17, 2013.

[60] R. Rinker et al., “An automated process for compiling dataflow graphs into

reconfigurable hardware,” Proc. IEEE Transactions on VLSI Systems, vol. 9, no.

1, pp. 130–139, Feb. 2001.

[61] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. IEEE, vol.

75, no. 9, pp. 1235–1245, Sep. 1987.

[62] W. D. Hillis and G. L. Steele, “Data parallel algorithms,” Proc. Communications

of the ACM, vol. 29, no. 12, pp. 1170–1183, Dec. 1986.

[63] M. Gokhale and R. Minnich, “FPGA Computing in a Data Parallel C,” in IEEE

workshop on FPGAs for Custom Computing Machines (FCCM), Napa Valley,

CA, Apr. 1993, pp. 94–101.

[64] S. Guccione and M. Gonzalez, “A data-parallel programming model for

reconfigurable architectures,” in IEEE Workshop on FPGAs for Custom

Computing Machines (FCCM), Napa Valley, CA, Apr. 1993, pp. 79–87.

[65] V. M. Bove, Jr. and J. A. Watlington, “Cheops: A reconfigurable data-flow

system for video processing,” Proc. IEEE Transactions on Circuits and Systems

for Video Technology, vol. 5, no. 2, pp. 140–149, Apr. 1995.

[66] E. Caspi et al., “Stream computations organized for reconfigurable execution

(SCORE): Introduction and tutorial,” UC Berkeley BRASS Group, Berkeley, CA,

Aug. 2000.

 206

[67] T. Callahan, J. Hauser and J. Wawrzynek, “The Garp architecture and C

compiler,” Proc. IEEE Computer, vol. 33, no. 4, pp. 62–69, Apr. 2000.

[68] C. L. Seitz, “The Cosmic Cube,” in Communications of the ACM —Special

section on computer architecture (CACM), vol. 28, no. 1, pp. 22–33 Jan. 1985.

[69] T. V. Eicken et al., “Active messages: A mechanism for integrated

communication and computation,” in The 19th Annual Symposium on Computer

Architecture, Queensland, Australia, May 1992, pp. 430–440.

[70] M. Snir and W. Gropp, MPI: The Complete Reference, 2
nd

 ed. Cambridge: MIT

Press, 1998.

[71] M. Jones et al., “Implementing an API for distributed adaptive computing

systems,” in Seventh Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), Napa Valley, CA, Apr. 1999, pp. 222.

[72] C. Seitz, “System timing,” in Introduction to VLSI Systems. Boston: Addison-

Wesley, 1980.

[73] B. Smith, “Architecture and Applications of the HEP Multiprocessor Computer

System,” Proc. the International Society for Optical Engineering, pp. 241–248,

1982.

[74] Arvind et al., “I-structures: Data structures for parallel computing,” in the

Workshop on Graph Reduction (Springer-Verlag Lecture Notes in Computer

Science 279). Santa Fe, New Mexico, Sep. 1986.

[75] P.P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood Cliffs, NJ:

Prentice Hall, 1993.

[76] D. Zhou, “A review of polyphase filter banks and their application,” Technical

report, Air Force Research Laboratory, Information Directorate, Rome Research

Site, Rome, New York, Sep. 2006.

[77] P. Schniter, “Computational savings of polyphase/DFT filterbanks.” [Online].

http://cnx.org/content/m10930/2.3/. Accessed Jun.1, 2013.

[78] Lowegian International, “FIR filter properties.” [Online].

http://www.dspguru.com/dsp/faqs/fir/properties. Accessed Sep. 20, 2013.

[79] Xilinx Inc., “16-Channel, DDR LVDS interface with per-channel alignment,

application note: Virtex-5 FPGAs, XAPP855 (v1.0), “Xilinx Inc., San Jose, CA,

Oct. 2006.

 207

[80] A. Ralston and E. Reilly, “Baudot code,” Encyclopedia of Computer Science, 3rd

ed.. New York: IEEE Press/Van Nostrand Reinhold, 1993.

[81] A. Kennelly, “Biographical Memoir of George Owen Squier 1865–1934,” in

Biographical Memoirs vol. XX-4
th

 Memoir, National Academy of Sciences of the

United States of America, annual meeting, 1938.

[82] Xilinx Inc., “ISE in-depth tutorial UG695 (v14.1),” Xilinx Inc., San Jose, CA,

Apr. 2012.

[83] T. Kihm, “Digital receiver (DSP) requirements,” Airborne Interceptor Research

Laboratory, Naval Air Warfare Center Weapons Division, Point Mugu, CA, Apr.

2013.

[84] Pentek Inc., “4-channel 200 MHz A/D with DDCs and Virtex-6 FPGA—x8 PCIe

datasheet,” Pentek Inc., Upper Saddle River, NJ, May 2013.

[85] T. Kihm, “FY13 AI Project Interim Report, “Airborne Interceptor Research

Laboratory, NAWCWD, Point Mugu, CA, Nov. 21, 2013.

[86] Pentek Inc., Model 78661 4-Channel 200 MHz A/D with DDCs and Virtex-6

FPGA-x8 PCIe [brochure]. Upper Saddle River, NJ: Pentek Inc., 2013.

[87] L. Rabiner and B. Juang, “An introduction to HMMs,” in IEEE ASSP Magazine,

vol. 3, pp. 4-16, Jan. 1986.

[88] M. Midzor, “EWP-200 Electronic Warfare Compatibility T&E Principles,”

presentation, Joint Electronic Warfare Effects Laboratory, Naval Warfare Center

Weapon Division, Point Mugu CA, Jun. 2011.

[89] Tektronix Component Solutions, HAPS Interpose Modules, TIPA-3100 and

TIPD-3200 datasheets. Tektronix Component Solutions, Beaverton, OR, Aug.

2011.

[90] Tektronix Component Solutions, “DCM-DAC Module Specification, version 2.0

(802-2914-00) datasheets,” Tektronix Component Solutions, Beaverton, OR, Nov.

2010.

[91] T. Dean, Network + Guide to Networks, Course Technology, 5th ed. Boston, MA:

Cengage Learning, 2010, pp. 82–85.

[92] D. Debashis, Basic Electronic. London, United Kingdom: Dorling Kindersley,

2010, pp. 557.

[93] R. Cristi, Modern Digital Signal Processing. Pacific Grove, CA: Thomson

Brooks/Cole, 2004.

http://books.nap.edu/html/biomems/gsquier.pdf
http://en.wikipedia.org/wiki/National_Academy_of_Sciences_of_the_United_States_of_America
http://en.wikipedia.org/wiki/National_Academy_of_Sciences_of_the_United_States_of_America

 208

THIS PAGE INTENTIONALLY LEFT BLANK

 209

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

 Ft. Belvoir, Virginia

2. Dudley Knox Library

 Naval Postgraduate School

 Monterey, California

