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ABSTRACT 

Creating an embedded system that meets its functional, performance, cost, and schedule 

goals is a software-and-hardware codesign problem, since the design of the software and 

hardware components influence each other. The traditional design methodology is 

sequential, with hardware designed first and then software. The lack of a unified and 

unbiased approach can lead to suboptimal design and incompatibilities across the 

software and hardware boundary.  

To solve these problems, we propose a new software/firmware/hardware codesign 

methodology to systematically build correct designs efficiently. This codesign 

methodology includes requirements development, architecture forming, software/ 

firmware/hardware partitioning, design-pattern mapping, new-design pattern synthesis, 

integration, and testing.  

We tested our methods on three application areas. One was a digitizer-filter 

architecture for ultra-high frequency signals for which we synthesized design patterns in 

firmware to meet high-frequency requirements. Another was a digitizer-filter architecture 

for low-frequency signals. A third was a hidden Markov model using dynamic 

programming. We implemented and tested the first application on a Tektronix/Synopsys 

embedded system and the second on a Pentek embedded system based on the 

requirements provided by the stakeholders.  



 6 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 7 

TABLE OF CONTENTS 

I. INTRODUCTION AND PROBLEM ADDRESSED .............................................27 
A. ADDRESSED PROBLEM ............................................................................27 
B. MOTIVATION ..............................................................................................28 
C. CLAIM ............................................................................................................29 

D. TRADITIONAL METHODOLOGY FOR DSP DESIGN ........................29 
E. OUR SOFTWARE ENGINEERING METHODOLOGY .........................29 
F. TOPICS COVERED FROM CHAPTERS II TO VIII ..............................30 

II. PREVIOUS WORK ...................................................................................................33 
A. REQUIREMENTS ENGINEERING ...........................................................33 

1. Requirements Development ..............................................................33 
2. Rational Unified Process ...................................................................34 

3. Design-Based Requirements .............................................................35 
4. Test-Based Requirements ..................................................................35 

5. Agile Software Development .............................................................35 
6. Model-Driven Requirements Engineering .......................................36 

7. Model-Driven Development ..............................................................36 
8. Domain-Specific Modeling and Language .......................................37 

B. SOFTWARE ENGINEERING OF EMBEDDED SYSTEMS ..................37 

C. CONCURRENT SOFTWARE ENGINEERING OF EMBEDDED 

SYSTEMS .......................................................................................................38 

1. A Top-down Concurrent Design Process for an Embedded 

System .................................................................................................38 

2. POLIS..................................................................................................41 
3. Orthogonalization of Concerns and Platform-Based Design .........43 

4. The Double Roof Model of Codesign, a System Level Design .......45 
5. Integrated Chip Codesign .................................................................47 

D. FPGA DESIGN METHODOLOGY ............................................................48 

1. FPGA and Central Processing Unit .................................................48 
2. FPGA and Hardware Description Language ..................................48 

3. FPGA Programming ..........................................................................49 
4. HDL is Object-Based not Object-Oriented .....................................50 
5. Two Primary Hardware Description Languages—VHDL and 

Verilog .................................................................................................51 

6. FPGA Design Methodology—HDL Approach ................................54 
E. DESIGN PATTERNS ....................................................................................56 

1. Software Design Patterns ..................................................................57 

2. Embedded Software Design Patterns ...............................................58 
a. CPU-Based Firmware Design Patterns .................................58 
b. Reconfigurable Computing Based Design Patterns ..............58 

3. Hardware Components Selection .....................................................62 
F. A* AND AO* ALGORITHMS .....................................................................63 



 8 

III. METHODOLOGY ....................................................................................................65 
A. SW/FW/HW PARTITIONING METHODOLOGY ..................................65 

1. Develop Requirements .......................................................................65 

2. Define Constraints .............................................................................65 
3. Form an Architecture ........................................................................65 

a. Consider Design Options ........................................................65 
b. Form an Architecture for the Optimal Option .......................66 
c. Simplify Architecture for Partitioning Analysis ....................66 

4. Build a Tree to Assign Modalities to Functional Components ......66 
a. Software, Firmware and Hardware Partitioning ..................66 
b. Design Patterns Mapping .......................................................68 
c. Rate the Cost............................................................................68 

5. Repeat Steps 3 through 5 ...................................................................69 
6. Repeat Steps 4 through 6 ...................................................................69 
7. Repeat Steps 1 through 7 ...................................................................69 

B. EXAMPLE—FILTERING FOR ULTRA-HIGH FREQUENCY 

SIGNALS ........................................................................................................70 
1. Develop Requirements .......................................................................70 
2. Define Constraints .............................................................................71 

3. Form an Architecture ........................................................................71 
a. Consider Design Options ........................................................71 

b. Form an Architecture for the Optimal Option .......................73 
c. Simplify Architecture for Partitioning Analysis ....................73 

4. Build a Tree to Map Functions to Modalities ..................................73 

a. Map to Software/Firmware/Hardware ...................................73 
b. Map to Design Patterns...........................................................77 

C. EXAMPLE—FILTERING FOR LOW FREQUENCY SIGNALS ..........88 
D. EXAMPLE—AIR DATA TEST SET ..........................................................91 

1. Option 1 (A1-1) ...................................................................................95 
2. Option 2 (A1-3) ...................................................................................95 
3. Option 3 (A2-1) ...................................................................................96 

4. Option 4 (A2-3) ...................................................................................96 
E. A TOOL FOR SW/FW/HW CODESIGN ...................................................96 

IV. RECONFIGURABLE COMPUTING DESIGN PATTERNS ..............................99 
A. POLYPHASE DFT FILTER BANKS .........................................................99 

1. Name and Classification ....................................................................99 

2. Intent ...................................................................................................99 
3. Motivation .........................................................................................100 
4. Applicability .....................................................................................100 
5. Participants .......................................................................................100 

6. Collaborations ..................................................................................100 
7. Consequences (Benefits) ..................................................................101 
8. Implementation ................................................................................102 
9. Algorithm ..........................................................................................102 
10. Known Uses (Examples) ..................................................................102 



 9 

a. Example 1 ..............................................................................102 
b. Example 2 ..............................................................................103 

11. Related Patterns ...............................................................................104 

B. DATA ALIGNMENT DESIGN PATTERN ..............................................104 
1. Name and Classification ..................................................................104 
2. Intent .................................................................................................104 
3. Motivation .........................................................................................105 
4. Applicability .....................................................................................106 

5. Participants .......................................................................................106 
6. Collaborations ..................................................................................106 
7. Consequences....................................................................................106 
8. Implementation ................................................................................107 

9. Algorithm ..........................................................................................107 
a. Bit-Alignment ........................................................................107 
b. Byte-Alignment......................................................................108 

c. Overall Alignment .................................................................109 

10. Known Uses (Examples) ..................................................................110 
11. Related Patterns ...............................................................................110 

C. POST-DESERIALIZATION BITS REMAPPING DESIGN 

PATTERN ....................................................................................................110 
1. Name and Category .........................................................................111 

2. Intent .................................................................................................111 
3. Motivation .........................................................................................112 
4. Applicability .....................................................................................112 

5. Participants .......................................................................................112 
6. Collaborations ..................................................................................112 

7. Consequences....................................................................................112 
8. Implementation ................................................................................113 

9. Algorithm ..........................................................................................113 
10. Known Uses (Examples) ..................................................................113 
11. Related Patterns ...............................................................................114 

D. PRE-SERIALIZATION BITS REMAPPING DESIGN PATTERN ......114 
1. Name and Classification ..................................................................115 

2. Intent .................................................................................................115 
3. Motivation .........................................................................................116 
4. Applicability .....................................................................................116 

5. Participants .......................................................................................116 
6. Collaboration ....................................................................................116 
7. Consequences....................................................................................116 
8. Implementation ................................................................................116 

9. Algorithm ..........................................................................................116 
10. Known Uses (Examples) ..................................................................117 
11. Related patterns ...............................................................................118 

E. SWITCH-AND-FILTER ARCHITECTURE ...........................................118 
1. Name and Classification ..................................................................118 



 10 

2. Intent .................................................................................................119 
3. Motivation .........................................................................................119 
4. Applicability .....................................................................................119 

5. Participants .......................................................................................119 
6. Collaborations ..................................................................................119 
7. Consequences....................................................................................121 
8. Implementation ................................................................................121 
9. Known Uses (Examples) ..................................................................122 

10. Related Patterns ...............................................................................123 

V. CASE STUDY ONE .................................................................................................125 
A. METHODOLOGY ......................................................................................125 

1. Develop Requirements and Define Constraints ............................125 

2. Form an Architecture ......................................................................126 
3. Build a Tree to Map Functions to Modalities ................................126 

4. Implementation ................................................................................127 
B. FPGA SOFTWARE TEST METHODOLOGY .......................................127 

C. TEST RESULTS ..........................................................................................130 
1. Setup ..................................................................................................130 

a. ADC/FPGA/DAC Specifications ..........................................130 

b. Equipment .............................................................................132 
2. Test Specifications ............................................................................132 

a. Alignment Tests .....................................................................132 
b. Harmonics Tests ....................................................................132 
c. Flatness Tests ........................................................................132 

d. Linearity Tests .......................................................................133 
e. Noise Floor Tests ..................................................................133 

f. Sensitivity Tests .....................................................................133 
g. Test with JEWEL RF Jamming Device ...............................134 

3. Functional Tests ...............................................................................134 
a. Data in the FPGA .................................................................134 
b. Comparison between Analog-to-digital Converter and 

FPGA Data ............................................................................134 
c. Tests without Proper Alignment Software ...........................135 

d. Tests with Proper Alignment Software .................................136 
4. Performance Tests ...........................................................................137 

a. Flatness Test ..........................................................................137 

b. Linearity Test (500 MHz, RBW=3 MHz) .............................138 
c. Noise Floor Test ....................................................................139 
d. Sensitivity Test .......................................................................139 

5. Validate with an Existing JEWEL RF Jamming Device ..............140 

D. TESTS CONCLUSION ...............................................................................141 

VI. CASE STUDY TWO................................................................................................143 
A. METHODOLOGY ......................................................................................143 

1. Develop Requirements and Define Constraints ............................143 
2. Form an Architecture ......................................................................144 



 11 

3. Build a Tree to Map Functions to Modalities ................................145 
4. Reusable Assets ................................................................................148 

B. TESTS ...........................................................................................................153 

1. Purpose of Our Tests .......................................................................153 
2. Test Specifications ............................................................................153 
3. Pentek Software IP Cores ...............................................................154 
4. Tests Configurations, Methodology and Results...........................154 

a. Signals and IP Cores Configurations ..................................154 

b. Methodology (Software Program in C Programming 

Language)..............................................................................156 
c. Test Results ............................................................................157 

C. TESTS CONCLUSION ...............................................................................159 

VII. CASE STUDY THREE—HIDDEN MARKOV MODEL ...................................161 
A. INTRODUCTION........................................................................................161 

B. FORWARD ALGORITHM CASE STUDY .............................................162 
1. Develop Requirements and Define Constraints ............................162 

2. Form an Architecture ......................................................................162 
3. Build a Tree to Map Functions to Modalities ................................163 
4. Discussion..........................................................................................167 

C. METHODOLOGY FOR VITERBI ALGORITHM ................................168 

VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH .169 

A. OUR CLAIM ................................................................................................169 
B. OUR CONTRIBUTIONS ............................................................................169 
C. FUTURE RESEARCH DIRECTIONS .....................................................170 

APPENDIX A. CASE STUDY ONE BACKGROUND ..........................................173 
A. CHALLENGES WE ARE FACING ..........................................................173 

1. Background (Two-Ray Segment Propagation Model) .................173 
2. Using an Example to Illustrate the Challenges in Signal 

Simulation .........................................................................................174 
B. HOW DO ADC/FPGA/DAC SYSTEMS SOLVE OUR PROBLEMS ...178 

APPENDIX B. TEKTRONIX ADC/FPGA/DAC DEMO SYSTEM .....................181 

A. TADC-1000 DIGITIZER ............................................................................182 
B. TIPA-3100 ADC INTERPOSER ................................................................183 
C. HAPS-62-1 FPGA ........................................................................................184 
D. TIPD-3200 DAC INTERPOSER ................................................................185 

E. TDAC-2000 DAC .........................................................................................185 

APPENDIX C. POLYPHASE DFT FILTER BANKS EXAMPLES ....................187 
A. POLYPHASE DFT FILTER BANKS EXAMPLE 1 ...............................187 
B. POLYPHASE DFT FILTER BANKS EXAMPLE 2 ...............................188 

APPENDIX D. BACKGROUND KNOWLEDGE ..................................................191 

A. SETUP TIME AND HOLD TIME REQUIREMENTS ...........................191 
B. INHERENT TIMING WINDOW ..............................................................191 
C. DEMULTIPLEXER ....................................................................................192 



 12 

D. MULTIPLEXER ..........................................................................................193 

APPENDIX E. DERIVATION OF POLYPHASE DFT FILTER BANKS ..........195 
A. POLYPHASE DFT FILTER BANKS REPRESENTATION IN Z-

DOMAIN ......................................................................................................195 
B. POLYPHASE DECOMPOSITION ...........................................................197 
C. ANALYSIS POLYPHASE DFT FILTER BANKS WITH M 

FILTERS ......................................................................................................197 
D. SYNTHESIS POLYPHASE DFT FILTER BANKS WITH M 

CHANNELS .................................................................................................200 

LIST OF REFERENCES ....................................................................................................201 

 

  



 13 

LIST OF FIGURES 

Figure 1 Rational unified process lifecycle phases, milestones and iterations ..............35 
Figure 2 A top-down concurrent design process for an embedded system ....................40 
Figure 3 POLIS process .................................................................................................42 
Figure 4 Platform-based design process .........................................................................44 
Figure 5 Platform-based design (PBD) is iterative ........................................................45 

Figure 6 Double-roof model of codesign .......................................................................46 
Figure 7 FPGA programming process............................................................................49 
Figure 8 HDL hierarchy .................................................................................................54 
Figure 9 Hierarchic flow of the top–down design method. ............................................55 

Figure 10 Software/firmware/hardware codesign methodology process flow .................70 
Figure 11 Five options for filtering ..................................................................................72 

Figure 12 An architecture satisfying our requirements and constraints ...........................73 
Figure 13 Exclude ADC and DAC from analysis ............................................................73 
Figure 14 Four possible branches from the root...............................................................75 

Figure 15 Four possible branches from the root  in a simplified form .............................75 
Figure 16 An OR tree for filtering of ultra-high frequency signals .................................76 

Figure 17 Firmware components ......................................................................................77 
Figure 18 Only ATT and C are possible mappings ..........................................................81 
Figure 19 Only P is a possible mapping. ..........................................................................83 

Figure 20 Only DF, SD, and DP are possible mappings ..................................................86 
Figure 21 An architecture without parallelism .................................................................88 

Figure 22 OR tree for low frequency signals ...................................................................89 
Figure 23 Optimal design pattern mapping ......................................................................91 

Figure 24 Air data test set architecture .............................................................................92 
Figure 25 A simplified architecture for analysis ..............................................................93 

Figure 26 Four possible mappings ...................................................................................94 
Figure 27 Tool design flowchart ......................................................................................98 
Figure 28 Typical components interfacing with polyphase DFT filter banks ................100 
Figure 29 Polyphase DFT filter banks ...........................................................................101 

Figure 30 16 magnitude responses of a polyphase DFT filter banks for real inputs ......103 
Figure 31 Signal before and after polyphase DFT filter banks ......................................104 
Figure 32 Shrinking of data window at higher data rate ................................................105 
Figure 33 Three timing cases .........................................................................................105 

Figure 34 Bit-alignment flowchart .................................................................................108 
Figure 35 Byte-alignment flowchart ..............................................................................109 
Figure 36 Overall-alignment flowchart ..........................................................................110 

Figure 37 Level one demultiplexing ..............................................................................111 
Figure 38 Level two demultiplexing ..............................................................................112 
Figure 39 Level one multiplexing ..................................................................................115 
Figure 40 Level two multiplexing ..................................................................................115 
Figure 41 A switch-and-filter architecture .....................................................................120 
Figure 42 An instantiation of switch-and-filter architecture ..........................................122 



 14 

Figure 43 Architecture  for ultra-wide instantaneous bandwidth signal processing ......126 
Figure 44 FPGA test methodology .................................................................................128 
Figure 45 ADC input limits ............................................................................................131 
Figure 46 Digitized sinewave in the FPGA....................................................................134 

Figure 47 Tests without proper alignment software (in frequency domain) ..................136 
Figure 48 Signals at 500 MHz and 1 GHz; RBW=3 MHz .............................................136 
Figure 49 Signals at 3 GHz and 6 GHz, RBW=1 MHz .................................................137 
Figure 50 Sweeping, RBW=3 MHz; increment=10 MHz ..............................................138 
Figure 51 At bandwidths of 6 GHz and 1.8 GHz ...........................................................140 

Figure 52 At bandwidths of 1 GHz and 200 MHz .........................................................140 
Figure 53 At bandwidth of 1 MHz .................................................................................141 
Figure 54 An architecture ...............................................................................................145 

Figure 55 Node A2 (A4) is the only solution .................................................................147 
Figure 56 Reusable assets mappings ..............................................................................152 
Figure 57 Two detected pseudo pulse Doppler target returns in a 2-D plot ..................157 

Figure 58 Two detected pseudo pulse Doppler target returns in a 3-D plot ..................158 
Figure 59 Two input signals before detection ................................................................159 

Figure 60 Hidden Markov model architecture ...............................................................163 
Figure 61 Two possible options .....................................................................................167 
Figure 62 Distance is simulated by path loss .................................................................175 

Figure 63 Simulation by using programmable attenuators ............................................176 
Figure 64 N=4, N(analog)=12, N(digital)=8 ..................................................................177 

Figure 65 N=8, N(analog)=56, N(digital)=16 ................................................................177 
Figure 66 Simulation by using an ADC/FPGA/DAC system ........................................178 

Figure 67 ADC/FPGA/DAC demo system ....................................................................181 
Figure 68 A simplified overall architecture for our case study ......................................181 

Figure 69 A detailed overall architecture for our case study .........................................182 
Figure 70 TADC-1000 architecture ...............................................................................183 
Figure 71 TIPA-3100 architecture .................................................................................184 

Figure 72 TIPD-3200 architecture .................................................................................185 
Figure 73 TDAC-2000 architecture ...............................................................................186 

Figure 74 A one-to-four demultiplexer ..........................................................................192 
Figure 75 A four-to-one multiplexer ..............................................................................193 

Figure 76 A single filter in frequency domain ...............................................................195 
Figure 77 A filter bank of M filters spaced at 2π/M in the frequency domain ..............196 
Figure 78 M-filter polyphase representation ..................................................................199 

Figure 79 Apply Noble identity to polyphase representation.........................................199 
Figure 80 Synthesis network ..........................................................................................200 



 15 

LIST OF TABLES 

Table 1. Hardware description language features ..........................................................51 
Table 2. Some VHDL and Verilog construct differences ..............................................52 
Table 3. Data flow method in Verilog ...........................................................................52 
Table 4. Behavior method in Verilog.............................................................................53 
Table 5. FPGA design tools survey ...............................................................................56 

Table 6. Software design patterns ..................................................................................57 
Table 7. Design patterns for embedded systems ............................................................59 
Table 8. Design patterns for reconfigurable computing ................................................61 
Table 9. Electronics component selection......................................................................62 

Table 10. A* algorithm ....................................................................................................64 
Table 11. Least and most numbers of mappings ..............................................................68 

Table 12. Functional requirements...................................................................................71 
Table 13. Non-functional constraints ...............................................................................71 
Table 14. Five options for filtering ..................................................................................72 

Table 15. Filter cost rating ...............................................................................................74 
Table 16. Nine options from the root ...............................................................................74 

Table 17. Six mappings under A3 ....................................................................................76 
Table 18. Three mappings under A32 ..............................................................................76 
Table 19. Five classes ......................................................................................................79 

Table 20. Only ATT and C are possible mappings ..........................................................80 
Table 21. Four subclasses ................................................................................................81 

Table 22. Only P is a possible mapping ...........................................................................82 
Table 23. Eight purposes ..................................................................................................84 

Table 24. Only DF, SD and DP are possible mappings ...................................................86 
Table 25. Possible optimal leaf-nodes .............................................................................87 

Table 26. New design patterns descriptions.....................................................................88 
Table 27. Eliminate A3 from analysis .............................................................................88 
Table 28. Cost association ...............................................................................................89 
Table 29. Six major groups for CPU-based embedded system design patterns ..............90 

Table 30. Four subclasses design patterns for hardware interface ...................................90 
Table 31. Components descriptions .................................................................................92 
Table 32. A simplified table for analysis .........................................................................93 
Table 33. Possible mappings for 2 components ...............................................................94 

Table 34. Expand nodes A1 and A2 ................................................................................94 
Table 35. Expand nodes A4 and A6 ................................................................................94 
Table 36. Option 1 ...........................................................................................................95 

Table 37. Option 2 ...........................................................................................................95 
Table 38. Option 3 ...........................................................................................................96 
Table 39. Option 4 ...........................................................................................................96 
Table 40. VB6 program: post-deserialization bits remapping algorithm.......................113 
Table 41. VB6 program: post-deserialization bits remap algorithm ..............................114 
Table 42. VB6 program: pre-serialization bits remapping algorithm ............................117 



 16 

Table 43. VB6 program: pre-serialization bits remap algorithm ...................................118 
Table 44. Data rate, throughput, and width calculation .................................................121 
Table 45. Throughputs calculations ...............................................................................123 
Table 46. FPGA process definitions ..............................................................................129 

Table 47. Equipment models and serial numbers ..........................................................132 
Table 48. Harmonics test specifications ........................................................................132 
Table 49. Flatness test specifications .............................................................................133 
Table 50. Noise floor test specifications ........................................................................133 
Table 51. Sensitivity test specifications .........................................................................133 

Table 52. The first 20 LFSR patterns .............................................................................135 
Table 53. Harmonics test specifications ........................................................................137 
Table 54. Flatness test specifications .............................................................................138 

Table 55. Linearity test ..................................................................................................139 
Table 56. Noise floor test ...............................................................................................139 
Table 57. Sensitivity test ................................................................................................139 

Table 58. Architectural components ..............................................................................145 
Table 59. Node A ...........................................................................................................146 

Table 60. Node A2 .........................................................................................................146 
Table 61. Node A4 .........................................................................................................146 
Table 62. Vendors analysis ............................................................................................147 

Table 63. Expanding node A2-1 ....................................................................................149 
Table 64. Expanding node B1 ........................................................................................150 

Table 65. Expanding node B1-2 ....................................................................................150 
Table 66. Expanding node B1-2-2 .................................................................................151 

Table 67. Expanding node B1-2-2-2 ..............................................................................151 
Table 68. Expanding node B1-2-2-2-6 ..........................................................................151 

Table 69. Map requirements to IP cores ........................................................................153 
Table 70. Map requirements to IP cores ........................................................................153 
Table 71. Pentek intellectual property cores ..................................................................154 

Table 72. Input signal #1 characteristics ........................................................................155 
Table 73. Input signal #2 characteristics ........................................................................155 

Table 74. External trigger characteristics ......................................................................155 
Table 75. DDC IP core configurations...........................................................................156 

Table 76. ADC IP core configurations...........................................................................156 
Table 77. Generated and captured Doppler shifts ..........................................................159 
Table 78. Comparisons between with and without the SW/FW/HW methodology ......160 

Table 79. Forward algorithm and Viterbi algorithm ......................................................162 
Table 80. Nodes A and A3 .............................................................................................164 
Table 81. Nodes A3-1, A3-1-1, A3-1-1-1 and A3-1-1-1-1 ............................................165 
Table 82. Nodes A3-2, A3-2-2, A3-2-2-2 and A3-2-2-2-2 ............................................166 

Table 83. Two options ...................................................................................................168 
Table 84. Purpose and limitation of attenuators, combiners, splitters ...........................175 
Table 85. Analog and digital interconnections ..............................................................176 
Table 86. Analog and digital power budget ...................................................................179 
Table 87. Analog and digital time delays ......................................................................179 



 17 

Table 88. XC6VLX760-1 resource ................................................................................184 
Table 89. MATLAB program: polyphase DFT analysis filter banks ............................188 
Table 90. MATLAB program: polyphase DFT analysis and synthesis filter banks ......189 
Table 91. Filter banks expressions .................................................................................197 

 



 18 

THIS PAGE INTENTIONALLY LEFT BLANK 



 19 

LIST OF ACRONYMS AND ABBREVIATIONS 

A*   A star 

ADC  analog-to-digital converter 

ADTS  air data test set 

AIRL  Airborne Interceptor Research Laboratory 

AO*  AO star 

ASIC  application-specific integrated circuit 

CAD  computer aided design 

CFSM  Codesign Finite-State Machine 

COTS  Commercial off-the-shelf 

CPLD  complex programmable logic device 

DAC  digital to analog converter 

DCM  data converter module 

DFT  discrete Fourier transform 

DOD  Department of Defense 

DSL  domain specific language 

DSM  domain specific modeling 

DSP  digital signal processing 

EMI  electromagnetic interference 

ENOB  effective number of bits 

EP   extreme programming 

EW  electronic warfare 

FCC  Federal Communications Commission 

FFT  fast Fourier transform 

FIR  finite impulse response 

FPGA  field programmable gate array 

FSM  finite state machine 

GPU  graphical processing unit 

GSPS  giga samples per second 
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GUI  graphical user interface 

HDL  hardware description language 

HMM  hidden Markov model 

HWIL  hardware in the loop 

IBW  instantaneous bandwidth 

IC   integrated circuit 

IF   intermediate frequency 

IQ   in-phase quadrature  

ISE  Integrated Software Environment 

JEWEL  Joint Electronic Warfare Effects Laboratory  

LOC  logic of constraints 

LTL  linear temporal logic 

MBD  model-based design 

MDA  model-driven architecture 

MDD  model-driven development 

MDRE  model-driven requirements engineering 

MMM  METROPOLIS meta-model 

MoC  model of computation 

MSPS  mega samples per second 

OBP  object based programming 

OJT  on-the-job-training 

OMG  Object Management Group 

OOP  object oriented programming 

PBD  platform-based design 

PIM  platform-independent model 

PRF  pulse repetition frequency 

PSM  platform-specific model 

PSoC  programmable system on a chip 

RA   requirements analysis 

RAM  random access memory 
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RE   requirements engineering 

RTL  register transfer language 

RUP  rational unified process 

SDRF  software defined radiofrequency 

SIS   a system for sequential circuit synthesis  

SLD  system level design 

SoC  system on a chip 

SoPC  system on a programmable chip 

SRAM  serial random access memory 

SWAP  size weight and power 

UAV  unmanned aerial vehicle 

UHF  ultra-high frequency 

UML  universal modeling language 

Verilog  verify logic 

VHDL  VHSIC hardware description language 

VHSIC  very high speed integrated circuit 

VIS  verification interacting with synthesis 
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EXECUTIVE SUMMARY 

Creating an embedded system which meets its functional, performance, cost, and 

schedule goals is a software-and-hardware codesign problem, since the design of the 

software and hardware components influence each other. The traditional design 

methodology is sequential, with hardware designed first and then software. The lack of a 

unified and unbiased approach can lead to suboptimal design and incompatibilities across 

the software and hardware boundary.  

To solve these problems, we develop a new codesign methodology to partition 

software/firmware/hardware, and then map functional components to design patterns if 

existing. This methodology includes first building a tree with conjunctions and 

disjunctions of possible mappings from functional components to the options of software, 

firmware, and hardware following requirements and constraints; second, rating the cost 

of each mapping; third, searching the tree to find a minimum weighted sum of the costs; 

and fourth, identifying existing design patterns once design is selected, and otherwise 

synthesizing new design patterns. 

We tested our methods on three application areas. The first was a digitizer-filter 

architecture for ultra-high frequency signals. The major challenge was how to move 

ultra-fast data from a faster sensor (including a digitizer) to a slower processor and then 

perform useful tasks. We implemented and tested this application on a 

Tektronix/Synopsys demo embedded system based on the test specifications established 

by the vendor and Joint Electronic Warfare Effects Laboratory (JEWEL) at Point Mugu, 

California. 

The second application was a digitizer-filter architecture for low-frequency 

requirements. The challenge was how to partition software/firmware/hardware and then 

map design to the existing vendor products to save development time and cost. We 

implemented and tested this application on a Pentek embedded system based on the test 

specifications established by the vendor and Airborne Interceptor Research Laboratory 

(AIRL) at Point Mugu, California. By way of contrast, for a period of more than 12 
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months from 2011 to 2012, with 10 engineers, we spent $3.16M on an airborne 

interceptor project (including software, firmware and hardware designs) but failed to 

produce any software deliverable. In 2013, for a period of five months, starting from 

ground zero, with two engineers, we only spent $90K on the same project with the help 

of our new software/firmware/hardware codesign methodology; we were able to map 86 

percent of our project unto vendor’s existing products and delivered Doppler range gating 

software successfully.   

The third application was a hidden Markov model using dynamic programming. 

The challenge was how to partition software/firmware/hardware for better processing 

speed performance. We discussed the advantages and disadvantages of mapping hidden 

Markov models unto software and firmware in terms of cost, speed and design 

complexity 
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I. INTRODUCTION AND PROBLEM ADDRESSED 

A. ADDRESSED PROBLEM 

Creating an embedded system which meets its functional, performance, cost, and 

schedule goals is a software-and-hardware codesign problem, since the design of the 

software and hardware components influence each other [1]. Traditionally, when 

designing an embedded system, hardware is designed first by a group of hardware 

engineers, and then software is designed by a group of software engineers. Once a design 

is completed, both software and hardware engineers strive to make every effort to 

implement changes in software to avoid expensive hardware redesign. The problems with 

this approach are: 

 A presumptive definition of software-and-hardware partitions can cause 

suboptimal designs. 

 Lack of a unified software-and-hardware design methodology can cause 

incompatibilities across the software and hardware boundary.  

To solve these problems, the codesign group at U.C. Berkeley in 1997 developed 

a framework, POLIS, with a unified software-and-hardware representation for unbiased 

specification, automatic synthesis, and validation of the embedded systems. The most 

difficult challenge in POLIS according to the group is software-and-hardware partitioning 

because the partitioning decisions are heavily based on designer’s expertise and are very 

difficult to automate [2].  

For embedded systems, software can be divided into three categories: computer-

based software, central-processing-unit (CPU) firmware, and reconfigurable computing 

firmware. Software and firmware both contain programming instructions and necessary 

documentations, except that software runs on a computer and firmware runs on a 

hardware device. As a result, it is helpful to replace the term software/hardware codesign 

with software/firmware/hardware codesign. 

Our goal for this dissertation is to provide a new software/firmware/hardware 

codesign methodology for seamless integration and design of embedded systems.  There 

are several problems to resolve, in particular functional decomposition, what should be 
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classified as software or firmware or hardware, design-pattern mapping, and new design-

pattern synthesis. 

B. MOTIVATION  

A motivating problem is how to push the upper limit of the capability in moving 

very fast digitized data from a sensor and digitizer to a slower processor, and then 

usefully process it in real-time. The conventional data rate for a sensor is in the range of 

megasamples-per-second; the data rate for our research is in the range of gigasamples-

per-second and above. This is too fast for an all-software design.  

The solution to this problem is in software-and-hardware codesign because the 

final system must be flexible enough to accommodate different data rates and perform 

various useful tasks, and must not only function properly but also meet critical timing 

constraints due to its ultra-high data speed [1,3]. There are many details we need to keep 

straight; a software/firmware/hardware codesign methodology will help us build designs 

correctly and efficiently.  

There are many similar problems in design of systems for use in electronic 

warfare, in which proper design decisions are critical because of the signal frequencies 

involved and the processing time required. Electronic warfare tries to dominate the 

electromagnetic spectrum, or to protect our use of the electromagnetic spectrum and to 

exploit the enemy’s spectrum. This involves minimizing mutual interference among 

friendly systems, minimizing detection by enemy sensors, and minimizing enemy 

interference with the ability to execute a military deception plan. Techniques often used 

to prevent or reduce an enemy’s effective use of the electromagnetic spectrum are 

jamming and electromagnetic deception [4].  An advantage can be gained in the domain 

of the electromagnetic spectrum by being able to handle higher frequencies than an 

adversary can handle. 

A wide variety of equipment has been designed and used in electronic warfare, 

such as Northrop Grumman EA-6B Prowlers, Boeing EA-18G Growlers, unmanned 

aerial vehicle systems, and ground jamming vehicles. To ensure the readiness of this 

equipment, tests and evaluations are required. The environment for tests and evaluations 
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is simulated in software (that is, the aircraft, vehicles, terrain and weather), but the 

hardware is real. 

C. CLAIM 

Our claim is that rather than the trial-and-error approach being currently practiced 

for embedded system design, a new software/firmware/hardware codesign methodology 

based in software engineering has the potential to systematically build correct designs 

efficiently to satisfy the requirements provided by the stakeholders. 

D. TRADITIONAL METHODOLOGY FOR DSP DESIGN 

For many real-time applications, a specialized field-programmable gate array 

(FPGA) embedded system, instead of a general-purpose computer, should be used [5]. 

The reason is that an FPGA can process hundreds of times more operations per clock 

cycle than a processor. The speed of a state-of-the-art multicore processor is in gigahertz 

and the speed of a state-of-the-art FPGA is in hundreds of megahertz. Also, a typical 

high-end FPGA has thousands of times more parallel channels than a multicore 

processor. 

Traditional FPGA-based embedded software is written manually from text-based 

specification and requirements. This approach is time-consuming and error-prone, and 

there is little tracking to ensure that changes are correctly implemented [6]. A more 

systematic approach provided by software engineering could reduce these problems. 

E. OUR SOFTWARE ENGINEERING METHODOLOGY 

To develop specifications, we start with gathering high-level requirements in the 

form of novel ideas and questions. With proper domain knowledge, we can derive 

subrequirements from them. In requirements analysis, we use feature models and 

decision trees to explore design concepts and possible implementation technologies for 

the feasibility check. These design concepts and implementation technologies are in the 

form of models, and they can also be used for fine-tuning the requirements in the next 

requirements development iteration. During this phase, we treat software, firmware, and 

hardware together, since a software component and a (reconfigurable) hardware 
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component can often both achieve a design, although software tends to be more flexible 

and hardware tends to be faster [7]. The final products at the end of this stage should 

include requirements and design models as well as dataflow and control-flow 

architectures.  

We can generate models by using specialized FPGA embedded software design 

tools. Non-specialized tools such as documentation, reports, tables, diagrams, and 

algorithms can also assist model building without the benefits of automatic code 

generation [8].  

Next, we must decide what should be classified as software, what should be 

classified as firmware, and what should be classified as hardware. Software-and-

hardware partitioning involves a diversity of applications, design styles and 

implementation technologies; ultimately it depends on human expert knowledge [7].  In 

this dissertation we propose using a tree of options to find possible mappings from 

functional components to the set of modalities {software, firmware, hardware}. When an 

optimal node (solution) is chosen, we can expand any component within a node into 

subcomponents, and then use the same methods to assign the subcomponents. When we 

have found the best assignment for the subcomponent search, we embed it in the original 

tree.  

During the construction phase, we apply software and FPGA programming 

methodology, and perhaps additional hardware design, to implement the design. The 

process flow includes designing (using a hardware description language or a high-level 

graphical modeling tool), functional and timing simulations, doing synthesis, 

implementation and programming.  

F. TOPICS COVERED FROM CHAPTERS II TO VIII 

In Chapter II, we survey some important software-engineering methodologies in 

the fields of requirements engineering, embedded-system design, and concurrent-system 

design. We also discuss FPGA programming languages and FPGA design methodology. 

In Chapter III, we use an OR tree with embedded ANDs to partition 

software/firmware/hardware, and then use the same methodology to map the optimal 
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leaf-node to a design pattern if existing; otherwise, we synthesize a new design pattern. In 

Chapter IV, we present five example design patterns for reconfigurable computing based 

embedded systems: data alignment, post-de-serialization bits remapping, pre-serialization 

bits remapping, polyphase DFT filter banks and switch-and-filter. These patterns were 

used in implementing our case studies. In Chapter V, we present a case study using a 

Tektronix Digitizer/FPGA/DAC demo unit to digitize and process radiofrequency signals 

up to 6 gigahertz and then discuss the test results for this case study. In Chapter VI, we 

present a case study fora conventional Doppler radar receiver. In Chapter VII, we present 

a case study involving a Hidden Markov model (HMM). In Chapter VIII, we conclude 

the dissertation by stating our major contributions and suggest directions for future 

research.   
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II. PREVIOUS WORK 

In this chapter we will survey current software engineering methodologies related 

to requirements engineering (RE), embedded-system design, hardware-and-software 

codesign (or concurrent system design), and field-programmable gate array (FPGA) 

design to lay the foundation for our research. 

A. REQUIREMENTS ENGINEERING 

1. Requirements Development  

Requirements development includes six key activities—elicitation, analysis, 

validation, negotiation, documentation and management [9]. Elicitation is to discover 

system requirements through consultation with stakeholders, and to establish a scope and 

boundary for the project. Analysis is to analyze requirements in detail and to identify 

possible conflicts and overlaps. Validation is to review or validate requirements for 

clarity, consistency, and completeness with stakeholders. Negotiation with stakeholders 

establishes which requirements are to be considered. Documentation is to write down 

agreed requirements at a certain level of detail for review, evaluation, and approval. 

Requirements management is an ongoing activity that starts from the moment the first 

requirement is elicited and ends only when the system is finally decommissioned [10]. 

Requirements management includes software-baseline definition, change control, and 

approval and status tracking. The baseline can be defined as a set of features agreed to be 

delivered to customers in a specific software version [11].  

Some requirements engineering researchers use the term “specification” for 

“documentation” [12], combine analysis and negotiation into analysis activity, and treat 

management as a different topic.  Based on this, requirements development includes four 

key activities—elicitation, analysis, specification and validation [10]. 

The scheduling for requirements engineering should not be less than one third of 

the entire project time, since much time is required to include research or exploration of 

new techniques [13]. 
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2. Rational Unified Process 

To manage requirements effectively, we must have a well-defined software 

lifecycle development process. The waterfall model, introduced by Winston Royce in 

1970 [14], requires complete and fully elaborated requirements before design, coding, 

testing, operation and maintenance. This is not practical since requirements change 

throughout the entire software lifecycle. The spiral model, introduced by Barry Boehm in 

1988 [15], requires multiple risk analyses, validations and prototypes before a rigorous 

waterfall methodology is followed, and also has proven to be expensive and time-

consuming.  

In 1995, Philippe Kruchten [16] introduced the iterative approach. This divides a 

software project into multiple time-boxed iterations. An iteration is a sequence of 

activities, such as requirements, design, implementation, test, and integration, resulting in 

an executable of some type. Each iteration is based on prior iterations. Some benefits of 

the iterative process are early risk mitigation, early feedback, and analysis-paralysis 

avoidance. 

In 2003, Rational Software Corporation (a division of IBM) proposed the 

“rational unified process” for software lifecycle development. It is a sequence of 

inception, elaboration, construction, and transition. Each phase consists of one or more 

executable iterations of the software at that stage of development. Inception is to define 

the scope of project, and its milestone is the identification of actors and use cases. 

Elaboration is to plan project and specify features, and its milestone is the establishment 

of baseline architecture. Construction is to build the product, and its milestone is the 

building of initial operational capability. Transition is to deliver products to customers, 

and its milestone is the release of product. Each phase has multiple iterations. The 

number of iterations depends on the project size and agreement among stakeholders. The 

relationship between lifecycle phases, milestones and iterations are shown in Figure 1 

[17].  
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Figure 1 Rational unified process lifecycle phases, milestones and iterations 

3. Design-Based Requirements 

The requirements and design activities must be iterative. Gestalt round-trip 

design, introduced by Grady Booch [18] in 1994, emphasizes the human characteristic of 

learning by completing [19]. In other words, the requirements at one iteration cause us to 

select certain design options, and the selected design options may in turn initiate new 

requirements. This is due to the fact that requirements are always changing and cannot be 

correctly defined until some design work is developed. 

4. Test-Based Requirements 

In 2008, Martin and Melnik proposed a Möebius strip approach for requirements-

development [20]. A Möebius strip means that writing requirements and testing are 

closely interrelated. Writing requirements in the form of acceptance tests can reduce the 

number of pointless features and code and handle changes more efficiently.  Every 

requirement must be testable with this approach. 

5. Agile Software Development 

In 2001, the Agile Alliance stated that software development should be focusing 

on (1) individuals and interactions over processes and tools, (2) working software over 

comprehensive documentation, (3) customer collaboration over contract negotiation, and 

(4) responding to change over following a plan [21]. With this approach, emphasis is 
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placed on the end result of working software rather than comprehensive documentation. 

In addition, the client is taken on-board as a member of the development team, so that 

missing requirements are discovered in the early software development stage.  

6. Model-Driven Requirements Engineering  

A model is a representation of a system that allows for investigation of the 

properties of the system and, in some cases, prediction of future outcomes. Software 

models come in many forms, such as use cases, diagrams, and statecharts [22]. 

Requirements can also be modeled, and the benefits of requirements modeling 

are: (1) allowing us to understand the product requirements precisely, (2) showing 

generalizations, (3) simplifying complex relationships between requirements, and (4) 

describing the context and background in which the product will be used.  

There are different types of requirements models, such as business models, 

feature/goal models, analysis (use case) models, design models, implementation models 

and test models.  A business model describes why a product is needed. A feature model 

describes the features of a product. A requirements analysis model explains the features 

in sufficient detail to define product specifications. A design model illustrates the 

architecture for the product.  An implementation model describes the construction of the 

product. A test model describes how the product would be tested [23]. 

7. Model-Driven Development  

Model-driven development (MDD) is a software engineering approach which 

uses models of high-level abstraction to create and evolve software. The goals of model-

driven development are to simplify and formalize the various activities in software 

lifecycle [24]. According to Object Management Group (OMG), model-driven design can 

be realized by using model-driven architecture (MDA). Model-driven architecture 

specification consists of a definitive platform-independent model (PIM), plus one or more 

platform-specific models (PSMs) and sets of interface definitions, each describing how 

the base model is implemented on a different middleware platform.  
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8. Domain-Specific Modeling and Language  

Domain-specific modeling (DSM) is a software engineering methodology for 

designing and developing software systems by using domain-specific modeling 

languages (DSL) to represent various features of the system [25]. Domain-specific 

languages support higher-level abstraction than general-purpose modeling languages, so 

they require less effort and fewer low-level details to specify a given system. Most 

domain-specific models and languages are created for a particular domain by a particular 

vendor with domain expertise; as a result, automatic quality code generation is made 

possible. As Booch pointed out in 2004, to achieve the full value of model-driven 

architecture, modeling concepts must map directly to domain concepts rather than 

computer technology concepts [26].  

One example is hidden Markov model "toolbox" for MATLAB from MathWorks 

that supports inference and learning for hidden Markov models. This toolbox is designed 

for a specific domain (statistical inference) and the language is domain-specific with a 

higher-level of abstraction (e.g., TRANS representing transmission matrix and EMIS 

representing emission matrix); this model cannot be easily described by using a general-

purpose Universal Modeling Language (UML).  

The best practices put forth by the rational unified process (incremental and 

iterative), extreme programming (test-driven), agile development (client-oriented and 

design-based), and model-driven and domain-specific methodologies are used throughout 

the software-development lifecycle of our three case studies. 

B. SOFTWARE ENGINEERING OF EMBEDDED SYSTEMS 

An embedded system is hardware and software which forms a component of some 

larger system and which is expected to function without human intervention. Firmware is 

a software program or a set of instructions programmed on a reconfigurable hardware 

device. Software is associated with a computer system, firmware is associated with an 

embedded system, and both of them contain programming instructions and necessary 

documentation. 
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Microprocessors and FPGAs are two major kinds of programmable integrated 

circuits (ICs) in an embedded system. In this research, our embedded system contains 

FPGAs instead of microprocessors, so we will only survey the issues with FPGAs. Our 

rationale is explained in Section D, Chapter I. 

Much embedded software is based on the traditional waterfall model, using 

“emphasis on fully elaborated documents as completion criteria for early requirements 

and design phases” [27]. Since code is written manually from text-based specifications 

and requirements, and fully elaborated documents are not possible for most projects, this 

approach is time-consuming and error-prone, and there is little tracking to ensure that 

changes are correctly implemented [6].  

Model-based design allows concise representation of behavior at a high level of 

abstraction. It is a better choice for embedded software development since the entire 

system can be visualized graphically, which leads to easy comprehension of the system; 

its models can be validated and verified; and it is easier to refine models and track model 

changes than with text-based documents. Model-based design also creates a structure 

allowing for software reuse; options and performance can be evaluated and the outcome 

can be predicted; and code can be automatically generated from the fully tested 

specification for software development and rapid prototyping [28].   

Some major specialized model-based embedded software design tools are 

Mathworks MATLAB/SIMULINK®, Synopsys Synphony Model Compiler®, Annapolis 

CoreFire®, and National Instruments LabView®. More general tools (such as 

documentations, reports, tables, diagrams, and algorithms) can also be used to assist 

model building without the benefits of automatic code generation [8]. 

C. CONCURRENT SOFTWARE ENGINEERING OF EMBEDDED 

SYSTEMS 

1. A Top-down Concurrent Design Process for an Embedded System 

Creating an embedded system which meets its functional, performance, cost, and 

schedule goals is a hardware-and-software codesign problem, since the design of the 

hardware and software components influence each other [1]. We can define hardware-
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and-software codesign as “meeting system level objectives by exploiting the synergism 

of hardware and software through their concurrent design” [29].  

An FPGA or any reconfigurable computing can be reconfigured to perform 

different functions without changing the underlying hardware. From a user perspective, 

reconfigurable computing can function equivalently to software running on a processor 

[29].  

To address hardware-and-software codesign problems, Wolf in 1994 [1] 

suggested using a top-down design process for embedded systems design as shown in 

Figure 2. A brief explanation for each step is provided below:  

 Specification: Process models are used to represent both the hardware and 

software elements without biased implementation. A requirements model 

is produced and it includes a dataflow diagram, a control -flow diagram, 

response-time specifications, and a requirements dictionary; this model 

can be tested and validated. A dataflow diagram (DFD) is a graphical 

representation of the flow of data through an information system. A 

control flow diagram (CFD) is a diagram to describe the control flow of a 

process or program.  
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Figure 2 A top-down concurrent design process for an embedded system 

 System Architecture: The architecture model includes an architecture flow 

diagram which allocates functional elements of the requirements model to 

physical units in the architecture, and an architecture interconnect diagram 

(a block diagram). The first component in a system architecture to be 

considered should be the hardware engine (a processor), since it provides 

the raw computing power for the system instruction execution and 

peripheral operations.  

 Synthesis: Once hardware and software components are partitioned and 

selected, software can be compiled and tested for a certain processor; 

hardware can be synthesized, simulated, and implemented onto a 

particular hardware device. 

 Integration: We can integrate implementations of hardware and software 

components together after they are synthesized and tested individually, 

with their interfaces.  

 System testing: After integration, we can perform system testing to verify 

and validate the entire system. 
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2. POLIS  

In 1997, the codesign group at U.C. Berkeley, California [30] developed POLIS, a 

software tool for hardware-and-software codesign. A POLIS system is represented by a 

codesign finite-state machine (CFSM), a model unbiased towards a hardware or software 

implementation. Each element of a network of codesign finite-state machines describes a 

component of the system to be modeled. A codesign finite-state machine is asynchronous 

since hardware and software exhibit different delay characteristics. It is synthesizable and 

verifiable, because many existing theories and tools for the finite-state machine model 

can be easily adapted for codesign finite-state machine [30].  

POLIS is the realization of the hardware-and-software codesign methodology 

proposed by Wolf in section C.1. It takes advantage of the existing software tools 

developed by U.C. Berkeley, such as PTOLEMY, SIS and VIS. VIS (Verification 

Interacting with Synthesis) is a system for formal verification, synthesis, and simulation 

of finite-state systems. However, in terms of hardware-and-software partitioning, POLIS 

only gives designers feedback on their design choices; it is still based on trial-and-error 

approach that largely depends on designer’s expertise and knowledge. 

The major steps are briefly described below.  

 High-level language translation: Designers write their specifications in a 

high-level language that can be translated into codesign finite-state 

machines.   

 Formal verification: POLIS translates the codesign finite-state machine 

into a formalism which can be verified by verification systems.  

 System co-simulation: POLIS uses PTOLEMY as a simulation engine. 

PTOLEMY (developed by Lee at U.C. Berkeley) focuses on assembly of 

concurrent components. 

 Design partitioning: Following Vahid [31], hardware-and-software 

partitioning is the problem of dividing an application's computations into a 

part that executes as sequential instructions on a microprocessor (the 

software) and a part that runs as parallel circuits on some integrated circuit 

(the hardware). Making system-level design decisions such as hardware 

and software partitioning, target architecture selection, and scheduler 

selection is based heavily on design experience; therefore, it is very 

difficult to automate this process.  
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 Hardware synthesis: Codesign finite-state machine subnetworks chosen 

for hardware implementation by POLIS are implemented and optimized 

using logic synthesis techniques from SIS (a system for sequential circuit 

synthesis). SIS is an interactive program for the synthesis of both 

synchronous and asynchronous sequential circuits. The input can be given 

in state -table format or as logical equations (for synchronous circuits) or 

as a signal-transition graph (for asynchronous circuits). The output is a 

netlist of gates in the target technology. A netlist represents the 

connectivity of an electronic design. Figure 3 shows the POLIS design 

flow. 

a. Formal language

a. Translator

System behavior

d. Partitioning

Partitioned specification

e. HW synthesis

c. Co-simulation

b. Formal 

verification

Interface synthesis

Un-optimized HW HW interfaces b. Verified interim formatS-graph

f. SW synthesis

OS synthesis Task synthesis Logic synthesis
HW estimation

SW estimation

Optimized HWC-code

Partitioning

Optimized HW

g. Board level prototyping Standard components

Physical prototype

Estimate

Schedule 

template  +  

timing constraints

 

Figure 3 POLIS process 
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 Software synthesis: A codesign finite-state machine subnetwork chosen 

for software implementation is mapped into a software structure that 

includes a procedure for each codesign finite-state machine and a simple 

real-time operating system.  

 Interfacing domains: Interfaces between different implementation domains 

(hardware and software) are automatically synthesized within POLIS. 

These interfaces come in the form of cooperating circuits and software 

procedures (I/O drivers) embedded in the synthesized implementation. 

Communication can be through I/O ports available on the microcontroller, 

or by general memory mapped I/O.  

3. Orthogonalization of Concerns and Platform-Based Design  

In 2004, the codesign group took a different approach for hardware-and-software 

codesign with the intention of increasing the reusability of software and hardware as well 

as applying the new methodology to heterogeneous systems (different domains) other 

than hardware and software. In this section, we briefly describe two concepts 

(orthogonalization of concerns and platform-based design) and the frameworks 

(METROPOLIS and METRO II) used for this approach.  

Orthogonalization of concerns is the separation of the various aspects of design 

allowing more effective exploration of alternative solutions. Platform-based design is a 

unified design approach for hardware-and-software codesign. It summarizes the 

important parameters of the implementation in an abstract model, and carries out the 

design as a sequence of refinement steps that go from the initial specification to the final 

implementation using platforms at various level of abstraction [32,33,34]. 

A platform is defined as a library of components that can be assembled to 

generate a design at that level of abstraction [35]. The METROPOLIS design is a meet-

in-the-middle process. A top-down process maps an instance of the functionality of the 

design into an instance of the platform; a bottom-up process builds a platform by 

choosing the components from a library (see Figure 4.) 
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Figure 4 Platform-based design process 

METROPOLIS, a platform-based design tool developed by Alessandro Pinto in 

2004, provides a recursive paradigm where the action of mapping a function onto an 

architecture generates a new function described at a lower level of abstraction and more 

detailed than the original one. A design process should start with a denotational 

description of the function to implement plus a set of constraints that the implementation 

must satisfy. Constraints specified at this level of abstraction are propagated down to all 

subsequent levels until the implementation level is reached. While constraints are 

propagated in a top-down fashion, performances (such as speed and power) are abstracted 

in a bottom-up manner (see Figure 5.) Performance abstraction is the process of hiding 

details that are not relevant for the level of abstraction under consideration. In fact, each 

level of abstraction focuses on a particular design choice on which only few quantities 

have impact; this is essential for speeding up the design space exploration [36]. 
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Figure 5 Platform-based design (PBD) is iterative 

The METRO II framework is an enhanced version of METROPOLIS. The 

improvements are:  

1. The ability to import pre-designed intellectual properties (IPs).  

2. The ability to separate cost from behavior when carrying out design.  

3. The ability to explore the design space in a structured manner.  

Platform-based design methodology provides an efficient way to map a functional 

design to an architecture in a library (top-down). At the same time, components in a 

library can be mapped to an  architecture for implementation (bottom-up). The 

disadvantage of this method is that it depends on the trial-and-error approach and the 

availability of architectures and components in the libraries. Our methodology is similar 

but it provides a systematic way to partition hardware and software, and then map 

components to design patterns. 

4. The Double Roof Model of Codesign, a System Level Design 

Another view of codesign [37, 38, 39] identifies three challenges in synthesizing 

hardware and software: 
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1. Allocation: Select a set of system resources including processors, 

hardware intellectual property blocks, and their interconnection network to 

compose the system architecture in terms of resources. The design should 

be synthesizable. 

2. Binding: Map functionality (e.g., tasks, processes, functions, or basic 

blocks) onto processing resources, variables and data structures onto 

memories, and communications to routes between corresponding 

resources. 

3. Scheduling: Determine when functions are executed on the proper 

resources including function execution, memory accesses, and 

communication.  

A feasible solution is the one satisfying the above triplets along with a certain 

number of additional nonfunctional constraints such as cost, performance, power, 

temperature, etc. To help reason about these three challenges of hardware and software 

design, a “double roof” model was proposed (see Figure 6.) 

System

Module

Block

Architecture

Logic

Behavioral view

Structural view

Software Hardware
 

Figure 6 Double-roof model of codesign 

The double-roof model defines the typical top-down design process for embedded 

hardware and software systems [37,38]. In Figure 6, the left-hand side of the roof shows a 

typical software design process, such as module (task) and block (instruction); the right-

hand side shows a typical hardware design process, such as architecture and logic. At the 

highest system level of abstraction, one cannot distinguish between hardware and 

software. 
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The upper roof describes the functional or specification view of the system at the 

abstraction level, whereas the lower roof describes its structural implementation, 

including resources allocation, scheduling, binding, and coding. The vertical arrows 

represent synthesis steps, and the horizontal arrows indicate the step of passing 

information about the implementation at a certain level directly to the next lower level of 

abstraction as additional specification or constraints [39]. There is no fully automated 

design flow for all shown abstraction levels available today. 

Comparing to the codesign process in section C.2, the double-roof model gives a 

better view of the relationship between hardware and software at different levels of 

abstraction. However, this model does not provide a systematic way to partition hardware 

and software. 

5. Integrated Chip Codesign  

To achieve efficient hardware and software integration, system-on-a-chip (SoC), 

programmable-system-on-a-chip (PSoC) and system-on-a-programmable-chip (PSoC) 

builder technologies are becoming available. An SoC is an integrated circuit that puts all 

components of a computer or other electronic system into a single chip; in essence, it is 

an advanced and powerful embedded system. A PSoC is an SoC with built-in 

programmable logic. SoPC Builder is a piece of software created by Altera that 

automates connecting reconfigurable computing (or soft-hardware) components to create 

a complete computer system that runs on any of its various FPGA chips. 

Concurrent design is not a mature discipline due to the complex nature of the 

embedded systems. This leads to a lack of available computer aided design (CAD) tools 

and support [39]. The future of concurrent design methodology probably will be shaped 

by major SoC and PSoC manufacturers (such as Altera and Xilinx) and computer-aided 

design tools providers (such as Synopsys and MathWorks.) 

We can apply software/firmware/hardware codesign methodology to system-on-a-

chip and programmable-system-on-a-chip, since component integration is a step of 

implementation after our methodology. 
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D. FPGA DESIGN METHODOLOGY 

The history of FPGA-based embedded system design goes back to 1985 when the 

first commercial FPGA was invented by Ross Freeman and Bernard Vonderschmitt, co-

founders of Xilinx incorporation. In this section, we will briefly discuss FPGA’s 

programming languages and design methodologies as well as coding examples and 

development tools. 

1. FPGA and Central Processing Unit 

The structure of an FPGA is not predefined as it can be programmed according to 

the user applications. The access to the internal resource of an FPGA is through I/O and 

clock pins; as a result, parallel processing can be easily achieved by custom 

programming. For non-timing-critical, complex, and dedicated tasks, a central processing 

unit is a better choice over an FPGA; for timing-critical, less complex, and heavily 

parallel tasks, an FPGA is a better choice over a central processing unit, even a multicore 

processor (explained in section D, Chapter I).   

2. FPGA and Hardware Description Language 

An FPGA is an integrated circuit designed to be configured by a customer or a 

designer after manufacturing in the field. A modern FPGA chip contains a combination 

of processors, embedded memory, programmable interconnects, dedicated digital signal 

processing (DSP) elements, and conventional lookup tables, multiple clock domains,  

high-speed serial I/Os connections, and a large number of pins [40]. To program the 

interconnects inside an FPGA, a programming tool is required.  

Hardware description languages (HDL) are programming tools (or languages) for 

formal description and design of electronic circuits. They describe the circuit's operation 

(behavior), organization (architecture), and tests to verify its operation by means of 

simulation.  With hardware description languages, the design can be verified before 

implementation by using simulation software tools; reuse is part of the language 

paradigm in dealing with complex designs; changes can be made easily; and hardware 

description languages can be used for documentations. 

http://www.wikipedia.org/wiki/Electronic_circuit
http://www.wikipedia.org/wiki/Computer_organization
http://www.wikipedia.org/wiki/Simulation
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Hardware-description language is a specification language, not a traditional 

programming language. There are two primary real programming languages: Very High 

Speed Integrated Circuit (VHSIC) hardware description language (VHDL) and Verilog 

(Verify Logic). The relationship between HDL and VHDL/Verilog is analogous to the 

relationship between a class (e.g., human language) and two instances (e.g., English and 

French). 

An FPGA can also be programmed by using model-based tools, such as 

Mathworks MATLAB/SIMULINK, Synopsys Synphony Model Compiler, Annapolis 

CoreFire and National Instruments LabView.  These proprietary tools are  not as widely 

used as hardware-description languages. 

3. FPGA Programming 

Figure 7 shows the process-flow in programming an FPGA. This process includes 

developing a design in hardware description language, synthesizing the design to a 

netlist, translating all designs into a single file, mapping the design to the resource in a 

targeted device, placing and routing the design on the device, creating a bit stream file 

and then programming an FPGA. 

Synthesis Map Place & routeHDL

FPGA

(SRAM)

Bit 

stream

Translate

 

Figure 7 FPGA programming process 

Each step of the process flow is further described below:  

1. Synthesize: Send the hardware-description language code through a 

synthesis engine which translates the high-level hardware-description 

language code into a low-level netlist. A netlist represents the connectivity 

of an electronic design. 

2. Translate: Merge all netlists and constraints (such as timing and area) into 

a single design file. 
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3. Map: Fit the design (generic logics) into the available resources on the 

target device. 

4. Place and route: Place and route the design to the constraints on the target 

device. 

5. Create bit stream: Turn the results from the place-and-route engine into a 

bitstream file. A bitstream file contains a series of bits for configuring 

(programming) the entire FPGA resource. This bitstream file is loaded 

into the FPGA’s internal serial random-access memory. These memory 

cells are connected to various logic entities, multiplexers, lookup tables, 

Random Access Memory (RAM) blocks, and routing matrices, and 

constitute "configuration (programming)." Once the bitstream is loaded, 

the FPGA begins to operate. The bits in the configuration-memory instruct 

each piece of FPGA how to operate. 

4. HDL is Object-Based not Object-Oriented 

A computer language is object-oriented if it supports the four specific properties 

called data abstraction, encapsulation, polymorphism, and inheritance. Data abstraction is 

the process of recognizing and focusing on important characteristics of an object and 

leaving out the un-wanted characteristics of that object. Encapsulation is achieved by 

making the attributes private while creating public methods that can be used to access 

those attributes. Inheritance allows the user to extend classes (called subclasses) from 

other classes (called superclasses). Polymorphism allows the programmer to substitute an 

object of a class in place of an object of its superclass.  

Object-based hardware description languages are similar to object-oriented 

programming languages, except that they do not have inheritance [41] and run-time 

polymorphism as shown in Table 1. 
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Object 

Oriented 

feature 

HDL 

feature Explanation 

Data abstraction Yes 

Generic 

map 

Port map 

The top-level design is a generic module in a 

hierarchical structure. Instantiations occur at the lowest 

level. The top-level design has the highest level of data 

abstraction. 

Encapsulation Yes 

Entity,  

architecture 

Entity defines external view (I/Os) of a model;  

architecture defines the function (behavior) of a model 

as a black box. Both are private and used by a 

particular module (design). 

Compile-time  

polymorphism Yes 

Operator 

overloading 

Operators are overloaded (given multiple 

functionality) by defining a function whose name is 

the same as the operator itself. This is a static compile-

time feature versus dynamic run-time feature. 

Run-time  

Polymorphism No None None 

Inheritance No None None 

Table 1. Hardware description language features 

Generic components and instantiation are typical for object-based languages. 

Generics allow the components to be customized upon instantiation. Examples of generic 

uses are customized timing and alteration of array size. The value of a generic component 

specified for an instance is constant for that instance.  

5. Two Primary Hardware Description Languages—VHDL and Verilog 

Very high speed integrated circuit (VHSIC) hardware description languages 

VHDL and Verilog (Verify Logic) are two hardware description languages for coding 

models of a digital system which possibly will be implemented on an FPGA chip. VHDL 

and Verilog are not only used for FPGA software design, but are also used for simulation, 

synthesis, documentation, and requirements. Simulation is to check the behavior of the 

design for certain input conditions before implementation; synthesis is to turn the high-

level code to a low-level gate netlist (a netlist represents the connectivity of an electronic 

design) for programming a particular chip; documentation and requirements are to guide 

the FPGA software design, and provide a common platform for communication among 

all stakeholders [42].  

Each VHDL program contains two major language constructs—entity and 

architecture. An entity section describes the interface of the component (inputs/outputs). 
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An architecture section describes the operation (behavior) of the component. The basic 

building block of Verilog is the module statement. It is somewhat analogous to defining a 

function in C language. Each module has a name, ports list (inputs/outputs), and 

components (operations). Table 2 shows some basic construct differences between 

VHDL and Verilog programming languages [43]. 

  HDL feature Explanation 

Structure entity-architecture module ( ) 

Physical interconnect  

that communicate  

between processes signal wire or register 

Variables variable wire or register 

assignment a <= b; assign a = b; 

Basic unit of 

execution 

process(sensitivity 

lists) 

always@(sensitivity 

lists) 

Table 2. Some VHDL and Verilog construct differences 

There are three methods in programming an FPGA with VHDL or Verilog: data 

flow, behavioral, and structural. The data-flow method uses statements to define the 

actual flow of data from one component (register) to another in concurrency. Table 3 

shows a data-flow method in Verilog.  

// declare and name a module (design blocks); list its ports. 

module mux_2_to_1(a, b, out,outbar, sel);  

input a, b, sel;    //Specify each port as input, output, or inout 

output out, outbar; 

// Express the module’s behavior. Each statement executes in parallel 

assign out = sel ? a : b;  // a data flow statement,                 

assign outbar = ~out; // a data flow statement,            

endmodule    // Conclude the module code. 

Table 3. Data flow method in Verilog 

“Assign out=sel? a:b” and “assign outbar = ~out” are data-flow statements to be 

executed concurrently. “Assign out=sel? a:b” means that if sel=1 then out=a, and if 
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sel=0 then out=b. Basically this is a multiplexer with two inputs and one output; signal 

sel determines which input (a or b) connects to the output (out). “Assign outbar = ~out” 

means that outbar is the inverted out. 

The behavioral method uses statements to describe a sequential algorithm if an 

event is triggered. Table 4 shows a behavioral method in Verilog. When a signal (a, b or 

sel) changes, the statements inside the “always” block will be executed sequentially. 

module mux_2_to_1(a, b, out, outbar, sel); 

input a, b, sel;   // see last example for explanation 

output out, outbar; 

reg out, outbar; 

// the always block runs once whenever a signal in the sensitivity list changes value 

always @ (a or b or sel) 

// Statements within the always block are executed sequentially. 

begin 

       if (sel) out = a;  // if sel is true, then out = a, else out = b 

      else out = b; 

      outbar = ~out;  //            

end 

endmodule 

Table 4. Behavior method in Verilog 

Structural methods express the design as an arrangement of interconnected pre-

defined components designed by data-flow and/or structural methods. Figure 8 shows the 

relationship among data-flow, behavioral and structural methodologies. 
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Figure 8 HDL hierarchy 

6. FPGA Design Methodology—HDL Approach 

FPGA design by using hardware-description languages adopts top-down 

methodology as shown in Figure 9 with a hierarchical and modular approach defined at 

different levels of abstraction [44,45].The design flow has four stages [46].Simulation 

and validation can be performed at all four. 

1. System level: Specifications are given. 

2. Behavior level: Design is described in texted algorithms. 

3. Register transfer level (RTL): Design is described in components. RTL 

stands for register transfer language, a language for describing the 

behavior of computers in terms of stepwise register contents. 

4. Physical level: Design is described in target hardware.  

Traditional standard FPGA design flows are shown on the right hand side in 

Figure 9. The most important disadvantage of this individual approach is that each stage 

is addressed separately. This often involves the use of different computer aided design 

tools, software platforms, and environments at various stages. 
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Figure 9 Hierarchic flow of the top–down design method. 

A holistic system-level approach to the FPGA design and development enables a 

top-down design methodology in a single unique environment as shown on the left hand 

side in Figure 9. It starts with modeling an idea at an abstract level, and proceeds through 

the iterative steps to refine this idea into a detailed system. A test environment is 

developed simultaneously to check if the design is in compliance with the original 

specifications. Concepts are tested before final physical implementation [46]. 

Table 5 describes the steps from design to FPGA implementation and some 

available software tools in today’s market [47]. 
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FPGA design flow Xilinx tools  

Synopsys tools 

(Synplicity 

tools) Others 

Design entry 

(create source files) 

VHDL or Verilog 

(text-based) 

Core generator  

for reuse Synphony® 

CoreFire® (model-based) by  

Annapolis Micro Systems 

Simulink®/MATLAB® 

(model-based) 

Functional 

simulation 

(test design 

functionality) ISIM® VCS 

ModelSim® by Mentor 

Graphics 

NC – Verilog by Cadence 

Synthesis 

(convert VHDL to 

netlist) XST® 

Synplify 

Synplify Pro 

Synplify 

Premier   

Timing simulation 

(check timing) ISIM® 

Synplify 

Synplify Pro 

Synplify 

Premier   

Constraint 

(provide timing and  

placement 

requirements) 

 FPGA editor 

PlanAhead 

Synplify 

Synplify Pro 

Synplify 

Premier   

Implementation 

Use netlist and 

constraints 

to create 

programming  

bit files 

FPGA editor 

ISE place-and-

route     

Implementation 

analysis 

(debugging) ChipScope 

Synplify 

Synplify Pro 

Synplify 

Premier 

Identify Debussy by Novas  

Implementation 

improvement 

(change design 

and/or constraints) 

 FPGA editor 

PlanAhead 

Synplify 

Synplify Pro 

Synplify 

Premier   

Programming 

(program design on 

a chip) iMPACT confprosh   

Table 5. FPGA design tools survey 

E. DESIGN PATTERNS 

There are design patterns for software, firmware, and hardware of embedded 

systems. In this section, we list some major patterns for each type.  Design patterns are 

more important for firmware and hardware because of the cost of making modifications. 
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1. Software Design Patterns 

To have good modularity and reusability in software design, an object-oriented 

language itself is not sufficient; higher-level building blocks (design patterns) are highly 

desirable. A design pattern is a typical solution to a recurring problem in a software 

system.  According to Gang of Four (GoF), there are 23 major software design patterns 

generally considered as the foundation for all other patterns in object-oriented design 

[48].These patterns are categorized as creational, structural, and behavioral as shown in 

Table 6.  

Groups Patterns 

Creational 

Patterns 

1 Abstract Factory 

2 Builder 

3 Factory Method 

4 Prototype 

5 Singleton 

Structural 

Patterns 

6 Adapter 

7 Bridge 

8 Composite 

9 Decorator 

10 Facade 

11 Flyweight 

12 Proxy 

Behavioral 

Patterns 

13 Chain of Resp. 

14 Command 

15 Interpreter 

16 Iterator 

17 Mediator 

18 Memento 

19 Observer 

20  State 

21 Strategy 

22 Template  

23 Visitor 

Table 6. Software design patterns 
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2. Embedded Software Design Patterns 

In general, embedded software (or firmware) is based either on a CPU or on 

reconfigurable computing. The key components in a CPU-based embedded system are 

microprocessors and microcontrollers. The key components in a reconfigurable-

computing embedded system are FPGAs and complex programmable logic devices 

(CPLDs).  

a. CPU-Based Firmware Design Patterns 

Table 7 contains 28 typical firmware design patterns for CPU-based embedded 

systems [49].  

b. Reconfigurable Computing Based Design Patterns 

Table 8 contains 89 firmware design patterns grouped into five classes and twelve 

subclasses for reconfigurable computing systems. These patterns are based on the 

existing literature collected by André DeHon et al in 2004 [50].  

One example is the coarse-grained time multiplexing design pattern, number 3 in 

Table 8 which allows a large design to be run on a smaller or fixed-capacity 

reconfigurable-computing platform. Another example is template specialization design 

pattern (number 41 in the Table 8) which implements a specialized computation instead 

of a generic computation in the reconfigurable computing to reduce space and/or time to 

meet special requirements for a task [50]. 
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Class Subclass 

Object  

1 Half call  

2 Manager 

3 Resource manager 

4 Message factory and message interface 

5 Publish-subscribe 

State  

6 Hierarchical state machine 

7 State machine inheritance 

8 Collector state pattern 

9 Parallel wait state pattern 

10 Serial wait state pattern 

Hardware 

interface 

11 Serial port  

12 High speed serial port  

13 Hardware device  

14 Synchronizer  

Protocol 

15 Transmit protocol handler 

16 Receive protocol handler  

17 Protocol packet 

18 Protocol layer 

19 Protocol stack  

Architecture 

20 Processor architecture patterns 

21 Processor architecture patterns II 

22 Feature coordination patterns 

23 Task design patterns 

24 Resource allocation patterns 

25 Timer management  

Implementation 

26 C++ header file include patterns 

27 STL design patterns 

28 STL design patterns II 

Table 7. Design patterns for embedded systems 
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Class Subclass Expression Implementation 
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1 Sequential vs. Parallel 

2 Fine-grain Time-Multiplexing 

3 Coarse-grain Time-Multiplexing 

4 Element Share Regular Graphs 

5 Operator Share General Graphs 

6 Synthesis Objective 

7 Scheduled Operator Sharing 

8 Data path Sizing and Serialization 

P
ar

al
le

l 

9 Extract Control Flow 17 If-Conversion/Predication 

10 Dataflow 18 Parallel Prefix, Reduce, Scan 

11 Synchronous Dataflow 19 SIMD 

12 Acrylic Dataflow Graph 20 Vector 

13 Functional 21 Data path Duplication 

14 Data Parallel 22 Communicating FSMDs 

15 Multithreaded 23 Direct Implementation of Graph 

16 Futures     

P
ro

ce
ss

o
r-

 

F
P

G
A

 

  

24 Interfacing/IO 

25 Co-processor 

26 Streaming Co-processor 

27 Instruction Augmentation 

28 Sequencer/Controller 

C
o

m
m

o
n

-C
as

e 

  

29 Caching 

30 Simple Hardware with Escape 

31 Exception 

32 Trace-Schedule/Exceptional Exit 

33 Prediction 

34 Speculation 

35 Parallel Verifier 

R
ed

u
ci

n
g

 a
re

a 
o

r 
ti

m
e 

R
eu

se
  

h
ar

d
w

ar
e 

  

36 Pipelining 

37 Wave Pipelining 

38 Retiming 

39 C-Slow 

40 Software Pipelining 

S
p

ec
ia

li
za

ti
o

n
 46 Constructor 41 Template 

    42 Worst-Case Footprint 

    43 Constructive Instance Generator 

    44 Instance Generator 

    45 Partial Evaluation 

P
ar

ti
al

  

re
co

n
fi

g
u

ra

ti
o

n
 

  

47 Isolate Fixed/Varying 

48 Constant Fill-in 

49 Unify Data path Variants 



 61 

Class Subclass Expression Implementation 

50 1D Function Space 

51 Fixed-Size and Std. IO Page 

52 Bus Interface 
C

o
m

m
u

n
ic

at
io

n
s 

B
as

ic
 

53 Streaming Data 67 Shared Bus 

54 Message Passing 68 Token Ring 

55 Remote-Procedure Call 69 Reconfigurable Interconnect 

56 Shared Memory 70 Pipelined Interconnect 

    71 Serialized Communications 

    72 Time-Switched Routing 

    73 Circuit-Switched Routing 

    74 Packet-Switched Routing 

L
ay

o
u

t 

62 Cellular Automata 62 Cellular Automata 

63 Systolic, Semi-systolic 63 Systolic, Semi-systolic 

    64 Fixed-Radius Communication 

    65 Folded/Interleaved Torus 

    66 Tree-of-Meshes and Fold-and-Squash 

S
y

n
ch

ro
n
iz

at
io

n
     57 Synchronization Synchronous Clock 

    58 Asynchronous Handshaking 

    59 Tagged Data Presence 

    60 Queues with Back Pressure 

    61 H-Tree 

M
em

o
ry

 

V
al

u
e-

ad
d

ed
 

    75 Address Generator 

    76 Content-Addressable Memory 

    77 Read-Modify-Write 

    78 Data Filter 

    79 Indirection/Redirection 

    80 Scan-Select-Reorganize 

    81 Data Compression/Digest 

    82 Stack, Queue 

    83 Data Structure 

N
u

m
b

er
s 

 

an
d

 f
u
n

ct
io

n
s 

R
ep

re
se

n
ta

ti
o
n
 87 Abstract operators 84 Parameterize Data path Operators 

    85 Redundant Number System 

    86 Distributed Arithmetic 

    88 Stochastic Bit-Serial Computation 

    89 Bit-Slice Data path 

Table 8. Design patterns for reconfigurable computing 
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3. Hardware Components Selection 

Component selection is a process of selecting a suitable component or a set of 

similar components from different suppliers for the designed circuit to perform its 

intended operation [51].  Some important generic factors for consideration are: 

 Availability (lifecycle)  

 Affordability (cost) 

 Traceability (component's history)  

 Reliability of the component's performance over a period of time 

The important technical parameters in selecting an electronic component can be 

categorized into electrical, mechanical, and environmental. Table 9 lists these three 

categories and their associated major parameters.  

 

Categories Parameters Example 

Electrical  

parameters 

Component category Microcontroller 

Key attribute 1 Speed 

Key attribute 2 Peripherals 

Key attribute 3 Program memory size 

…  

Key attribute N Core size 

Mechanical  

parameters 

Mounting type Surface mount 

Number of terminals or pin count 8 

Package dimensions (2.2~3.2) × (2.7~3.1) mm 

Package style SOT-23 

Pin diameter 0.2~0.51 mm 

Pin style Gull wing 

Seated height 0.9~1.45 mm 

Weight  

Terminal spacing 0.95 mm 

 Environmental  

parameters 

Standards conformance ASME Y14.5M (see below) 

Derating temperature  

Material composition Silicon 

Moisture sensitivity levels (MSL)  

Operating and storage temperature ranges 0° ~70°C 

Peak reflow temperature  

Radiation effect RoHS compliant (see below) 

Temperature grades Commercial 

Table 9. Electronics component selection 
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A gull wing device is a surface mount component that has its pins leads folded out 

from its body in the shape of an “L.” ASME Y14.5 standard is considered the 

authoritative guideline for the design language of geometric dimensioning and 

tolerancing [52]. RoHS stands for Restriction of Hazardous Substances Directive 

2002/95/EC; it was adopted in February 2003 by the European Union to restrict the use 

of certain hazardous substances in electrical and electronic equipment [53]. 

F. A* AND AO* ALGORITHMS 

Created by Peter Hart, Nils Nilsson and Bertram Raphael in 1968, the A* 

algorithm finds the least-cost path from an initial node to the goal node. This can be 

accomplished by using a best-first search using the estimated total path cost. Best-first 

always chooses the path with lowest estimate until the goal is reached. The estimated 

total path cost is defined as the sum of the actual cost from the initial node to the current 

node and the estimated (heuristic) cost from the current node to the goal node. An A* tree 

only contains OR nodes (disjunctions).  

If the heuristic cost is always less than the subsequent actual cost to the goal (that 

is, we never overestimate or we always underestimate the heuristic cost), then the 

solution is guaranteed to be optimal. This is the definition of admissibility of the heuristic 

cost. If the heuristic cost at node n is always less than the sum of the heuristic cost at 

node n’ and the actual cost from node n to n’ (suggesting the triangle inequality that the 

sum of the lengths of any two sides must be greater that the length of the remaining side 

in a triangle), then the first path found to the goal is guaranteed to be the best.. This is the 

definition of consistency. If b is the maximum branching factor (the number of children 

at each node) and d is the depth of goal (solution), an upper bound on the number of 

nodes visited by an A* search is 
db . We summarize the definition and properties of A* 

algorithm in Table 10. 

AO* is similar to A* algorithm except that it has conjunctions as well as 

disjunctions for branches. The nodes in conjunction must be all true; as a result, the 

estimated cost for a conjunction is the sum of all nodes in this conjunction, or  f(n) = f(n1) 
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+ f(n2) + … + f(nk) where n1, n2, ….. , nk are the nodes in conjunction; f(ni) is the 

estimated cost for node i in this conjunction, where i is between 1 and k. 

 Term  Expression  Definition 

A* search f(n) = g(n) + h(n) 

f(n) = estimated cost from node n to goal,  

g(n) = actual cost from root to node n,  

h(n) = heuristic cost from node n to goal 

Admissibility h(n) ≤ h*(n) 

h(n) = heuristic cost,  

h*(n) = actual cost. 

Consistency h(n) ≤ c(n,n') + h(n') 

h(n) = heuristic cost at node n,  

h(n’) = heuristic cost at node n’,  

c(n,n’) = actual cost from node n to n’ 

Worst case  

time and space  

complexity b
d
 

b = branching factor,  

d = depth of solution 

Table 10. A* algorithm 
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III. METHODOLOGY 

A. SW/FW/HW PARTITIONING METHODOLOGY 

Software/firmware/hardware partitioning is a difficult task; oftentimes it depends 

on an expert’s knowledge [7, 30]. In this chapter, we propose a procedure to 

systematically partition components into software, firmware or hardware, and then map 

partitioned components unto appropriate design patterns for implementation.  The 

procedure is: 

1. Develop Requirements 

Write down the requirements. 

2. Define Constraints 

Define constraints on components. Constraints generally come from requirements 

and they include (but are not limited to): 

 Constraints on input and output signals that cannot be changed 

 Minimum speeds of processing 

 Synchronization necessary within specified windows 

 Constraints on use of proprietary software/firmware/hardware 

 Others 

3. Form an Architecture 

This step can be divided into three sub-steps below. 

a. Consider Design Options 

First, list all design options and associated design problems; second, link design 

problems to requirements and constraints in steps one and two; third, disqualify the 

designs with problems and select the optimal design among qualified ones. Domain 

knowledge is helpful in qualifying and disqualifying design options. 
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b. Form an Architecture for the Optimal Option 

Draw a block diagram of functional components and their data connections 

without presumptive software/firmware/hardware partitioning. 

c. Simplify Architecture for Partitioning Analysis 

A component can be eliminated from further software/firmware/hardware 

partitioning analysis if it has only one feasible choice from the set of {software, 

firmware, hardware}. 

4. Build a Tree to Assign Modalities to Functional Components 

a. Software, Firmware and Hardware Partitioning 

Build a tree of possible mappings from the remaining functional components to 

the set of {software, firmware, hardware} for each mapping that fulfills the requirements 

and constraints. Note that interface components may be needed between connected 

components.   

Starting at the root, expand it into 3×n child nodes at the first level of expansion, 

where n is the number of functional components in the architecture without being 

assigned to certain modalities. At this level, (1) each node has an embedded AND of n 

functional components; (2) each component could be mapped to three modalities in the 

set of {software, firmware, hardware}; (3) only one functional component is assigned to a 

modality and others are don’t-cares.  Therefore, there are 3×n child nodes (successors) 

from the root. Only the child nodes satisfying requirements and constraints are 

considered for further expansion; unqualified nodes are terminated by being assigned 

infinite costs. Among the qualified nodes, an optimal one is selected for further 

expansion to the second level; this optimal node inherits all requirements and constraints 

from the parent node (root) [54]. But we must allow for the possibility of backtracking to 

the other choices if the expansion of the original node is disappointing. 

At the second level, since one component is already assigned to a modality, there 

are n-1 functional components must be mapped in the node selected at level one. For the 

same reason as the first level, this selected node (now a parent node) can be expanded 
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into 3×(n-1) child nodes. Use the same process as level one to select an optimal node 

among these 3×(n-1) child nodes. If the estimated cost of this selected node at level two 

is not the least estimated cost among all qualified nodes, we must move our search to the 

node with the least estimated cost anywhere in the tree, consistent with the A* algorithm. 

Repeat this process until all n components are assigned to certain modalities. Because 

there are n functional components, there are n levels of expansion from the root to the 

final solution. 

Our methodology specializes the A* algorithm in the following ways. 

 Nodes are disqualified if they violate requirements or constraints. Infinite 

costs are assigned to disqualify nodes; we do not want to revisit 

disqualified nodes. 

 Among the qualified nodes, we use cost estimation to find the least-cost 

node for further expansion. If there are ties, we will select a node for 

expansion by alphanumeric order. 

 We are interested in feasible solutions, not necessarily the best solutions. 

Feasible solutions meet our requirements and constraints at reasonable 

costs. Ultimately, the stakeholders will select the best solution among the 

feasible solutions. 

 The tree is an OR tree with embedded AND. The advantage of having an 

OR tree with embedded AND is that we can simplify the tree and use A* 

search instead of more complicated AO* search algorithm. 

 The branching factor is a constant which is the number of modalities. 

 The number of levels of expansion is the number of components in the 

architecture without being assigned to certain modalities. 

The least number of nodes in the tree using this methodology occurs when there is 

no need to backtrack. That is 3×n×(n+1)/2, because there are 3×n mappings at the first 

level, at least 3×(n-1) mappings at the second level, at least 3×(n-2) mappings at the third 

level, and so on. The sum of this arithmetic series is 3×(1+2+3+… + n). In general, 3 

can be replaced by the number of modalities in a set, so that the least number of mapping 

can be expressed as (#modalities) × (#components) × (#components+1) / 2. Using brute-

force exhaustion methodology, the most number of mappings is 3
n
, because each 

functional component has 3 possible modalities in the set of {software, firmware, 

hardware} and there are n functional components; 3×3×3×3×…×3=3
n
. Table 11 shows 
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some comparisons between these two methodologies. It is expected that many problems 

will have close to the least number of mappings since in many real-world problems the 

costs of alternatives are quite different and revisiting other qualified nodes is not 

required. 

#functional  

components 

Least number  

of mappings using 

our methodology 

when backtracking 

is unnecessary 

Most number  

of mappings 

(exhaustion methodology) 

Ratio of  

Most/Least 

1 3 3 1 

5 45 243 5 

10 165 59,049 358 

100 15,150 5.E+47 3.E+43 

Table 11. Least and most numbers of mappings 

b. Design Patterns Mapping 

Once all components are partitioned as software, firmware or hardware, we can 

map each component to a design pattern if existing, and otherwise synthesize a new one. 

The procedure of mapping design patterns is the same as step 4a; simply replace 

modalities {software, firmware and hardware} with the existing design patterns. 

c. Rate the Cost 

Rate the cost of each mapping, including costs of the interfaces, and including a 

weighted sum of the following factors: 

 Monetary costs of the equipment 

 Execution time 

 Power required 

 Space required 

 Design complexity 

 Monetary costs of necessary further development 

 Cost of debugging the implementation 

 Degree of lack of satisfaction of the ultimate user needs 

 Others 
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The cost estimation is not critical for our methodology in this dissertation since 

(1) requirements and constraints are used to qualify or disqualify options, and an infinite 

cost is assigned to a disqualified option; (2) among the qualified options, the 

implementation costs for software, firmware and hardware vary significantly and the cost 

comparisons among them are apparent. Typically, the cost for hardware implementation 

is in hundreds of thousands of dollars, a firmware implementation is in thousands of 

dollars, and a software implementation is in hundreds of dollars (explained in Table 15); 

(3) in terms of design patterns mapping, each design pattern is unique and multiple 

successful mappings are not likely. 

5. Repeat Steps 3 through 5 

If the optimal solution is not detailed enough, return to step 3 and refine it further. 

6. Repeat Steps 4 through 6 

If more feasible solutions are required, return to step 3. 

7. Repeat Steps 1 through 7 

If there are no solutions, return to step 1 and modify requirements, constraints 

and/or modalities until one or several feasible solutions are found. Ultimately, 

stakeholders will decide which solution is optimal. Figure 10 shows the process flow. 
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Step 1: develop 

requirements

Step 2: define 

constraints

Step 3: form an 

architecture

Step 4: build a tree

Step 5: detailed 

enough?

Step 6: more 

feasible 

solutions?

yes

Step 7: solutions 

found?

no

no

yesno

Decision 

making

yes

 

Figure 10 Software/firmware/hardware codesign methodology process flow 

B. EXAMPLE—FILTERING FOR ULTRA-HIGH FREQUENCY SIGNALS 

1. Develop Requirements 

As an example, consider a filtering task for ultra-high radiofrequency signals.  We 

summarize the requirements in Table 12. 
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  Description Comment 

R1 Input signal frequency range 0-6 gigahertz analog format 

R2 Output signal frequency range 0-6 gigahertz analog format 

R3 Filtering 

Apply specified filtering;  

frequency dependent  preferable; 

must be reconfigurable for future use 

Table 12. Functional requirements 

2. Define Constraints 

Non-functional constraints are summarized in Table 13. 

  Description Comment 

C1 Latency (real-time) Less than 5 microseconds for signals going through the filter. 

C2 Throughput Up to 120 gigabits-per-second. 

C3 Flexibility 
Must be adapted for various data rates (up to 12 gigabytes-per-

second). 

C4 Synchronization  

Parallel data bits must be synchronized (aligned) before digitally 

filtering the signal they represent as a whole (if digital filtering is 

used.) 

C5 Environment 

Not important since the application is in a laboratory (equipment is 

used to test electronics to be put in planes, but is not in the planes 

physically). 

C6 Development time Less than a year. 

C7 Material budget 
Depending on the availability of capital investment property 

funding ($250K typically). 

C8 Quantity One prototype for feasibility test. 

C9 Temperature Room temperature (70º±5º F). 

C10 
SWaP  

(size, weight, and power) 

Not important since the application is in a laboratory (see C5 for 

explanation). 

C11 Degree of consistency Only one data alignment per day. 

C12 Information completeness Information cannot be lost. 

Table 13. Non-functional constraints 

3. Form an Architecture 

a. Consider Design Options 

Table 14 lists five design options for filtering and their associated design 

problems. The first option, using a single analog filter, violates the third requirement and 

the third constraint, since an analog filter cannot be easily reconfigured (being not 

flexible). The second option, using only an analog-to-digital converter, a digital-to-analog 



 72 

converter and a digital filter, violates the first and second requirements, since the digital 

filter cannot handle signals in the gigasamples-per-second range. The third option, 

subsampling the digitized stream at different frequencies, violates the first constraint, 

since it takes too much time to switch from one frequency to another to cover a wide 

spectrum. The fourth option, sampling for a fixed number of samples and transferring 

them into a buffer for processing, violates the first and twelfth constraints, since 

information will be lost while processing data in the buffer; this will cause aliasing. 

Aliasing means frequency ambiguity due to insufficient sampling [55].  The fifth option, 

using an analog-to-digital converter, a digital-to-analog converter, a digital filter, a 

multiplexer and a demultiplexer, has no violations; as a result, we select option five for 

our design as shown in Figure 11  

 

  Design options for filtering Design problems  

O1 A single analog filter 

The filtering task is inflexible. It requires 

hardware redesign for certain type of filtering.  

R3, C3 

O2 

ADC, DAC, digital filter without  

demultiplexing and multiplexing 

This only works for low-frequency signals, since 

the processing speed is limited by the digital filter  

R1, R2 

O3 

subsample the digitized stream at 

different frequencies rather than 

different phases 

The overall frequency bandwidth is too narrow. 

With the help of down-converters, the switching 

time from one frequency to another might violate 

the minimum latency requirements. 

C1 

O4 

Sampling for a fixed number of 

samples, transferring them to a 

buffer, waiting a while, then 

sampling another fixed number of 

samples 

Not real-time, data are missing while processing 

data in the buffer which could cause aliasing 

 

C1, C12 

O5 

ADC, demultiplexer, digital filter,  

multiplexer, DAC 

No   

Table 14. Five options for filtering 

Filter

A1 A2 A3 A4 O5O1 O2 O3 O4

 

Figure 11 Five options for filtering 
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b. Form an Architecture for the Optimal Option 

Option five is the only architecture meeting the requirements and constraints. For 

this architecture, we need five components, and they are an analog-to-digital converter, a 

demultiplexer, a filter, a multiplexer and a digital-to-analog converter. Based on their 

definitions, the only logical arrangement is shown in Figure 12. 

ADC Filter DAC

d
e
-

M
U

X
M

U
X.....

.....
 

Figure 12 An architecture satisfying our requirements and constraints 

c. Simplify Architecture for Partitioning Analysis 

An analog-to-digital converter is a device that converts analog signals to digital 

signals, and a digital-to-analog converter is a device that converts digital signals to analog 

signals; both of them act like bridges between physical real-world and man-made 

computer world. As a result, we can exclude the analog-to-digital converter and digital-

to-analog converter from our analysis because they must be hardware (see Figure 13.) 

ADC Filter DAC

d
e-

M
U

X
M

U
X.....

.....

HW HW

 

Figure 13 Exclude ADC and DAC from analysis 

4. Build a Tree to Map Functions to Modalities 

a. Map to Software/Firmware/Hardware 

By our methodology there are 18 (3×3×4÷2) mappings to consider. Now we will 

build an OR tree with embedded ANDs. They are 9 possible branches from the root, and 

each node is an embedded AND as listed in Table 16. In Table 16, D stands for 

demultiplexer, F stands for filter, M stands for multiplexer and * stands for don’t-care.  
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Due to non-recurring engineering (NRE) effort, the cost for hardware filtering 

(hardware implementation) is very high if the number of units used is low [56]. The unit 

cost for an 8-multicore processor (software implementation) from Texas Instruments is 

about $300 [57, 58].  The unit cost for a Xilinx Virtex-6 FPGA (firmware 

implementation) is about $3,200 [59]. The cost comparisons among software, firmware 

and hardware implementations are listed in Table 15. Node A6, filter being hardware, can 

be eliminated form our analysis due to its high cost. 

 

Modality  Cost for 5 units Rating 

Hardware (ASIC) $    350,150 High-cost 

Software (CPU) $    1,500 Low-cost 

 Firmware (FPGA) $  16,000 Medium-cost 

Table 15. Filter cost rating 

We can also eliminate A1, A2, A7 and A8 from our analysis because software and 

firmware implementations are too slow for ultra-high data rate applications and too costly 

compared to commercial-off-the-shelf hardware high-speed multiplexers and 

demultiplexers. The cost for a multiplexer or demultiplexer is less than $50. The 

estimated costs for other nodes (A3, A4, A5 and A9) are within our budget constraints 

and considered equal at this stage. 

 

Filter D F M Violation Set representation 

A1 SW * * 

A dedicated CPU is required;  

too slow for high-speed applications 

{D=SW,F=*,M=*} 

A2 FW * * Speed too slow, cost too high {D=FW,F=*,M=*} 

A3 HW * * OK {D=HW,F=*,M=*} 

A4 * SW * OK {D=*,F=SW,M=*} 

A5 * FW * OK {D=*,F=FW,M=*} 

A6 * HW * Cost is too high for a small quantity of chips {D=*,F=HW,M=*} 

A7 * * SW 

A dedicated CPU is required;  

too slow for high-speed applications 

{D=*,F=*,M=SW} 

A8 * * FW Speed too slow, cost too high {D=*,F=*,M=FW} 

A9 * * HW OK {D=*,F=*,M=HW} 

Table 16. Nine options from the root 
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We can express Table 16 in a tree structure as shown in Figure 14. 

Filter

{D=*, F=*, M=*}

A3

{D=HW, F=*, M=*}

A4

{D=*, F=SW, M=*}
A5

{D=*, F=FW, M=*}

A9

{D=*, F=*, M=HW}

 

Figure 14 Four possible branches from the root 

For the rest of this dissertation, we will simplify the tree representations without 

including the set symbols as shown in Figure 15. 

Filter

A3 A4 A5 A9

 

Figure 15 Four possible branches from the root  in a simplified form 

To satisfy ultra-high frequency, flexible processing, and reasonable cost 

requirements/constraints, the demultiplexer and multiplexer should be hardware (fast and 

low-cost), and the filter should be firmware (fast, flexible, and medium-cost) based on 

Table 15. Searching the tree in Figure 15 from left to right for an optimal solution, A3 is 

the first node satisfying the requirements/constraints, so we will expand node A3. 

Because HW is assigned to D in node A3, there are only two components (F and M) to be 

mapped; this leads to six possible mappings (3×2 = 6). Among these six mappings, 2 
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nodes, A3-2 and A3-6, meet the requirements/constraints as shown in Table 17. The 

estimated costs for A3-2 and A3-6 are within our budget constraints and considered equal 

at this stage. 

 A3 D F M Violation 

A3-1 HW SW * Too slow - violates real-time constraint 

A3-2 HW FW * OK 

A3-3 HW HW * Cost is too high 

A3-4 HW * SW Too slow - violates real-time constraint 

A3-5 HW * FW Too slow - violates real-time constraint 

A3-6 HW * HW OK 

Table 17. Six mappings under A3 

Searching the tree in Figure 16 from left to right at the second level, we expand 

node A3-2. Now there is only one component (M) to be mapped to three modalities 

because HW and FW are assigned to D and F. A3-2-3 is the only qualified node among 

these three mappings as shown in Table 18. 

 

 A3-2 D F M Violation 

A3-2-1 HW FW SW Too slow - violates real-time constraint 

A3-2-2 HW FW FW Too slow - violates real-time constraint 

A3-2-3 HW FW HW Optimal (only) mapping  

Table 18. Three mappings under A32 

Filter

A3 A4 A5 A9

A3-2 A3-6

A3-2-

3
 

Figure 16 An OR tree for filtering of ultra-high frequency signals 
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b. Map to Design Patterns 

Node A3-2-3 is the optimal solution {D=HW, F=FW, M=HW}. Now we would 

like to form an architecture for the firmware in node A3-2-3. According to the fourth 

constraint in Table 13 and the architecture in Figure 12, we need alignment firmware to 

meet synchronization constraint. Since a demultiplexer and a multiplexer are used, we 

have to have firmware to re-arrange bits after demultiplexing and before multiplexing. 

Regarding filtering, we decide to use polyphase DFT filter banks to meet the third 

requirement in Table 12. The only logical arrangement of alignment, post-

demultiplexing, filtering and pre-multiplexing is shown in Figure 17. We use the same 

methodology to match each component to an optimal existing firmware design pattern; if 

none existing, synthesize a new one. 

ADC Filter DAC
d
e-

M
U

X
M

U
X.....

.....

HWHW

Post-ADC bits 

remapping
Alignment

Pre-DAC bits 

remapping

Polyphase 

DFT filter 

banks

.....

.....

.....

.....

.....

 
 

Figure 17 Firmware components 

The parallel data bit streams from the demultiplexer must go through alignment, 

Post-ADC bits remapping, polyphase DFT filter banks and pre-DAC bits remapping 

algorithms in firmware (shown as four boxes above) to meet our requirements and 

constraints. Further details of these boxes in Figure 17 are: 

 Alignment firmware (AL): When multiple parallel bit-streams arriving at 

the reconfigurable computing from a demultiplexer, they are misaligned 

due to different propagation path delays and narrow data windows. 
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 Post-ADC bits remapping firmware (PA): Bits are not in a proper order for 

data processing after demultiplexing data from an analog-to-digital 

converter; consequently, bits must be remapped after demultiplexing. 

 Polyphase DFT filter banks (UT): This is application dependent. The 

polyphase DFT filter banks are used for our particular application. 

 Pre-DAC bits remapping firmware (PD): Bits are not in a sequential order 

after multiplexing multiple parallel data bit-streams for digital to analog 

conversion; consequently, bits must be remapped before multiplexing. 

We will build an OR tree with embedded ANDs (AL•PA•UT•PD) to find the 

optimal design patterns. According to Table 8 in section E.2.b, Chapter II, there are 89 

major design patterns for reconfigurable computing based embedded systems, and they 

are organized at three levels: (1) class, (2) subclass and (3) purpose.  

(1) Level-one (class):  After mapping the functional components to firmware 

in Figure 16 and creating firmware architecture in Figure 17, we would like to further 

map the firmware algorithms (AL, PA, UT and PD) to the existing 89 design patterns 

collected by André DeHon [50] if possible. These patterns are organized at three levels; 

the first level has five classes {ATT, RAT, C, M, NAF} as listed in Table 19. ATT stands 

for “area-time tradeoffs,” RAT stands for “reducing area or time,” C stands for 

“communications,” M stands for “memory,” and NAF stands for “numbers and 

functions.” Among these five classes, ATT and C possibly match our design 

requirements.  
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Classes Descriptions 

Area-time tradeoffs class (ATT) 

Fitting the logical design to the hardware; Parallelism 

patterns are considered a subset of ATT 

Reducing area or time class (RAT) Hardware is efficient when it can be reused rapidly. 

Communications class (C) 

Parallel implementation will be data communication between 

portions of the computation. 

Memory class (M) Memory bandwidth  

Numbers and functions class (NAF) 

Allow us to use just as little or as much precision and 

representation as necessary for the problem 

Table 19. Five classes 

After four levels of expansion as shown in Table 20 and Figure 18, the first 

possible solution is B1-1-1-1 = {ATT, ATT, ATT, ATT}. The cost estimates for all 

possible qualified nodes are within our budget constraints, and considered equal at this 

stage. 
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B AL PA UT PD 

Possible  

match 

 

B1 AL PA UT PD 

Possible  

match 

B1 ATT * * * Yes  

 

B1-1 ATT ATT * * Yes 

B2 RAT * * * No 

 

B1-2 ATT RAT * * No 

B3 C * * * Yes  

 

B1-3 ATT C * * Yes 

B4 M * * * No 

 

B1-4 ATT M * * No 

B5 NAF * * * No 

 

B1-5 ATT NAF * * No 

B6 * ATT * * Yes  

 

B1-6 ATT * ATT * Yes 

B7 * RAT * * No 

 

B1-7 ATT * RAT * No 

B8 * C * * Yes  

 

B1-8 ATT * C * Yes 

B9 * M * * No 

 

B1-9 ATT * M * No 

B10 * NAF * * No 

 

B1-10 ATT * NAF * No 

B11 * * ATT * Yes  

 

B1-11 ATT * * ATT Yes 

B12 * * RAT * No 

 

B1-12 ATT * * RAT No 

B13 * * C * Yes  

 

B1-13 ATT * * C Yes 

B14 * * M * No 

 

B1-14 ATT * * M No 

B15 * * NAF * No 

 

B1-15 ATT * * NAF No 

B16 * * * ATT Yes  

       B17 * * * RAT No 

       B18 * * * C Yes  

       B19 * * * M No 

       B20 * * * NAF No 

        

B1-1 AL PA UT PD 

Possible  

match 

 

B1-1-1 AL PA UT PD 

Possible  

match 

B1-1-1 ATT ATT ATT * Yes 

 

B1-1-1-1 ATT ATT ATT ATT Yes 

B1-1-2 ATT ATT RAT * No 

 

B1-1-1-2 ATT ATT ATT RAT No 

B1-1-3 ATT ATT C * Yes 

 

B1-1-1-3 ATT ATT ATT C Yes 

B1-1-4 ATT ATT M * No 

 

B1-1-1-4 ATT ATT ATT M No 

B1-1-5 ATT ATT NAF * No 

 

B1-1-1-5 ATT ATT ATT NAF No 

B1-1-6 ATT ATT * ATT Yes 

       B1-1-7 ATT ATT * RAT No 

       B1-1-8 ATT ATT * C Yes 

       B1-1-9 ATT ATT * M No 

       B1-1-

10 ATT ATT * NAF No 

       
Table 20. Only ATT and C are possible mappings 



 81 

A323

B1 B3 B6 B8 B11 B13

B1-1 B1-3

B1-1-1

B16 B18

B1-6 B1-8 B1-11 B1-13

B1-1-3 B1-1-6 B1-1-8

B1-1-1-

1

B1-1-1-

3

 

Figure 18 Only ATT and C are possible mappings 

(2) Level-two (subclass):  Under class area-time tradeoffs (ATT), there are 4 

subclasses {B, P, F, C}; B stands for “basic,” P stands for “parallel,” F stands for 

“processor-FPGA,” and C stands for “common-case.” Table 21 lists these four subclasses 

and their descriptions. Among these four subclasses, only P possibly matches our design 

requirements. 

Subclasses Descriptions 

Basic (B) fitting the logical design to the hardware 

Parallel (P) use parallelism to increase performance 

FPGA processor (F) use FPGAs and processors together 

Common-Case (C) 

implement the common-case spatially in minimal hardware and 

have an escape mechanism to handle the less common cases  

Table 21. Four subclasses 

After four levels of expansion as shown in Figure 19 and Table 22, the first 

possible solution is C2-2-2-2 = {P, P, P, P}. The cost estimates for all possible qualified 

nodes are within our budget constraints, and considered equal at this stage. 
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C=B1111 AL PA UT PD 

Possible  

match 

 

C2 AL PA UT PD 

Possible  

match 

C1 B * * * No 

 

C2-1 P B * * No 

C2 P * * * Yes  

 

C2-2 P P * * Yes 

C3 F * * * No 

 

C2-3 P F * * No 

C4 C * * * No 

 

C2-4 P C * * No 

C5 * B * * No 

 

C2-5 P * B * No 

C6 * P * * Yes  

 

C2-6 P * P * Yes 

C7 * F * * No 

 

C2-7 P * F * No 

C8 * C * * No 

 

C2-8 P * C * No 

C9 * * B * No 

 

C2-9 P * * B No 

C10 * * P * Yes  

 

C2-10 P * * P Yes 

C11 * * F * No 

 

C2-11 P * * F No 

C12 * * C * No 

 

C2-12 P * * C No 

C13 * * * B No 

       C14 * * * P Yes  

       C15 * * * F No 

       
C16 * * * C No 

        

C2-2 AL PA UT PD 

Possible  

match 

 

C2-2-2 AL PA UT PD 

Possible  

match 

C2-2-1 P P B * No 

 

C2-2-2-1 P P P B No 

C2-2-2 P P P * Yes 

 

C2-2-2-2 P P P P Yes 

C2-2-3 P P F * No 

 

C2-2-2-3 P P P F No 

C2-2-4 P P C * No 

 

C2-2-2-4 P P P C No 

C2-2-5 P P * B No 

       C2-2-6 P P * P Yes 

       C2-2-7 P P * F No 

       
C2-2-8 P P * C No 

       
Table 22. Only P is a possible mapping 
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B1-1-1-

1

C2 C6 C10 C12 C14

C2-2 C2-6 C2-10

C2-2-2 C2-2-6

C2-2-2-

2

 

Figure 19 Only P is a possible mapping. 

(3) Level-three (purpose): Under subclass parallel (P), there are 6 design 

patterns {EC, DF, SD, DP, MT, FU}; EC stands for “extract control flow,” DF stands for 

“dataflow,” SD stands for “synchronous dataflow,” DP stands for “data parallel,”  MT 

stands for “multithreaded,” and FU stands for “futures.” Table 23 lists these six purposes 

and their descriptions. Among these six purposes, DF, SD and DP possibly match our 

design requirements. 
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Purposes Descriptions 

Extract Implicit Parallelism from 

Control  Flow (EC) [Callahan, 2000] 
Connecting FPGAs 

Dataflow (DF) [Rinker, 2001] 

The system consists of an optimizing compiler which produces 

dataflow graphs, and a dataflow graph to VHDL translator. 

Synchronous dataflow (SD) [Lee, 

1987] 

A method of partitioning of a signal processing task into 

multiple programs that execute concurrently. 

Data parallel (DP) [Hillis et al, 1986] 

A series of algorithms appropriate for fine-grained parallel 

computers with general communications. 

Multithreaded (MT) [Caspi et al, 

2002] 

Dividing a computation up into fixed-size “pages” and time-

multiplexing the virtual pages on available physical hardware. 

Futures (FU) [Halstead, 1985] 

Multilisp is a version of the Lisp dialect Scheme extended with 

constructs for parallel execution. 

Table 23. Eight purposes 

After four levels of expansion as shown in Table 24 and Figure 20, the first 

possible solution is D2-2-2-2 = {DF, DF, DF, DF}. The cost estimates for all possible 

qualified nodes are within our budget constraints, and considered equal at this stage. 
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D AL PA UT PD 

Possible  

match 

 

D2 AL PA UT PD 

Possible  

match 

D1 EC * * * No 

 

D2-1 DF EC * * No 

D2 DF * * * Yes 

 

D2-2 DF DF * * Yes 

D3 SD * * * Yes 

 

D2-3 DF SD * * Yes 

D4 AD * * * No 

 

D2-4 DF AD * * No 

D5 FN * * * No 

 

D2-5 DF FN * * No 

D6 DP * * * Yes 

 

D2-6 DF DP * * Yes 

D7 MT * * * No 

 

D2-7 DF MT * * No 

D8 FU * * * No 

 

D2-8 DF FU * * No 

D9 * EC * * No 

 

D2-9 DF * EC * No 

D10 * DF * * Yes 

 

D2-10 DF * DF * Yes 

D11 * SD * * Yes 

 

D2-11 DF * SD * Yes 

D12 * AD * * No 

 

D2-12 DF * AD * No 

D13 * FN * * No 

 

D2-13 DF * FN * No 

D14 * DP * * Yes 

 

D2-14 DF * DP * Yes 

D15 * MT * * No 

 

D2-15 DF * MT * No 

D16 * FU * * No 

 

D2-16 DF * FU * No 

D17 * * EC * No 

 

D2-17 DF * * EC No 

D18 * * DF * Yes 

 

D2-18 DF * * DF Yes 

D19 * * SD * Yes 

 

D2-19 DF * * SD Yes 

D20 * * AD * No 

 

D2-20 DF * * AD No 

D21 * * FN * No 

 

D2-21 DF * * FN No 

D22 * * DP * Yes 

 

D2-22 DF * * DP Yes 

D23 * * MT * No 

 

D2-23 DF * * MT No 

D24 * * FU * No 

 

D2-24 DF * * FU No 

D25 * * * EC No 

       D26 * * * DF Yes 

       D27 * * * SD Yes 

       D28 * * * AD No 

       D29 * * * FN No 

       D30 * * * DP Yes 

       D31 * * * MT No 

       
D32 * * * FU No 
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D2-2 AL PA UT PD 

Possible  

match 

 

D2-2-2 AL PA UT PD 

Possible  

match 

D2-2-1 DF DF EC * No 

 

D2-2-2-1 DF DF DF EC No 

D2-2-2 DF DF DF * Yes 

 

D2-2-2-2 DF DF DF DF Yes 

D2-2-3 DF DF SD * Yes 

 

D2-2-2-3 DF DF DF SD Yes 

D2-2-4 DF DF AD * No 

 

D2-2-2-4 DF DF DF AD No 

D2-2-5 DF DF FN * No 

 

D2-2-2-5 DF DF DF FN No 

D2-2-6 DF DF DP * Yes 

 

D2-2-2-6 DF DF DF DP Yes 

D2-2-7 DF DF MT * No 

 

D2-2-2-7 DF DF DF MT No 

D2-2-8 DF DF FU * No 

 

D2-2-2-8 DF DF DF FU No 

D2-2-9 DF DF * EC No 

       D2-2-10 DF DF * DF Yes 

       D2-2-11 DF DF * SD Yes 

       D2-2-12 DF DF * AD No 

       D2-2-13 DF DF * FN No 

       D2-2-14 DF DF * DP Yes 

       D2-2-15 DF DF * MT No 

       
D2-2-16 DF DF * FU No 

       
Table 24. Only DF, SD and DP are possible mappings 

C2222

D2 ... D30

D2-2 D2-3 D2-6 D2-10 D2-11 D2-14 D2-18 D2-19 D2-22

D2-2-

2

D2-2-

3

D2-2-

6

D2-2-

10

D2-2-

11

D2-2-

14

D2-2-2-2 D2-2-2-3 D2-2-2-6

 

Figure 20 Only DF, SD, and DP are possible mappings 
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Once a possible optimal leaf-node D2-2-2-2 is identified, we study the design 

pattern in the published literature carefully [60], and find out that it does not meet our 

requirements/constraints (see the purpose of dataflow in Table 25.) We will have to use 

A* algorithm to search all other possible matches. In summary, after exhausting all 

possible searches, there are only seven patterns which might meet our requirements as 

listed in Table 25.  

 

 Design pattern 
 Published  

literature  Purpose 

 Dataflow (DF) [60] 

The system consists of an optimizing compiler 

which produces dataflow graphs and a dataflow 

graph to VHDL translator. 

 Synchronous Dataflow 

(SD) 
[61] A method of partitioning of a signal processing task 

into multiple programs that execute concurrently. 

 Data parallel (DP) [62, 63, 64] 
A series of algorithms appropriate for fine-grained 

parallel computers with general communications. 

 Streaming data (SD) 

[65, 66, 67] 
Cheops abstracts out a set of basic, computationally 

intensive stream operations that may be performed 

in parallel and embodies them in specialized 

hardware. 

 Message passing (MP) 

[68, 69, 70, 71] 
This “Cosmic Cube” computer is a hardware 

simulation of a future VLSI implementation that 

will consist of single-chip nodes. 

 Synchronous clocking 

(SC) 
[72] 

VLSI system timing 

 Tagged Data Presence 

(TDP) 
[73, 74] The processors are pipelined to support many 

concurrent processes. 

Table 25. Possible optimal leaf-nodes 

After reading these seven papers carefully, we conclude that none of the patterns 

in Table 25 matches our requirements. As a result, we have to synthesize new design 

patterns; these new design patterns are briefly described in Table 26 (detailed 

descriptions are in Chapter IV.) We use the term “new design patterns” because they are 

not among the 89 reconfigurable computing design patterns collected by André DeHon in 

Table 8 [50]; however, it does not mean that we are the first group invented these 

patterns.  
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Design patterns Description 

Among 

89 

patterns 

Application specific: 

polyphase Discrete Fourier 

transform filter banks  

[Vaidyanathan, 1993] 

Separate an ultra-wide bandwidth input signal into multiple 

subbands, process each subband independently and 

differently, and then combine all subbands into one serial 

output in an efficient way (Chapter IV) 

No 

Data bit-streams alignment 

Multiple parallel data bit-streams must be aligned with 

respect to the source-synchronous sampling clocks to ensure 

correct data sampling at the filter (Chapter IV) 

No 

Switch-and-filter 

architecture 

Bring an ultra-fast signal from an ADC to a slower device 

(filter) through a demultiplexer, process the signal, and then 

output the processed signal to a DAC through a multiplexer 

(Chapter IV) 

No 

Post-ADC bits remapping 
Data bits must be remapped after demultiplexing for proper 

data processing (Chapter IV) 

No 

Pre-DAC bits remapping 
Data bits must be remapped before multiplexing for digital 

to analog conversion (Chapter IV) 

No 

Table 26. New design patterns descriptions 

C. EXAMPLE—FILTERING FOR LOW FREQUENCY SIGNALS 

This example is the continuation of the prior example except that the input 

frequency is low (in megahertz range). To satisfy low-frequency, flexible-processing, and 

reasonable-cost requirements/constraints, the demultiplexer and multiplexer are most 

likely unnecessary (parallelism is not required), and filtering can be implemented either 

by software or firmware. There are two solutions as shown in Figure 21, Figure 22 and 

Table 27. 

ADC Filter DAC

d
e-

M
U

X
M

U
X.....

.....

HW HW

 

Figure 21 An architecture without parallelism 

Filter F Violation Solution 

A1 SW Low-cost Optimal 

A2 FW Medium-cost Yes 

A3 HW Cost is too high No 

Table 27. Eliminate A3 from analysis 
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Filter

A1 A2

 

Figure 22 OR tree for low frequency signals 

In average, the cost for a Texas Instruments multi-core processor is $300, and the 

cost for a Xilinx Virtex-6 FPGA is $3,200 with the assumption of using the same analog-

to-digital converter and digital-to-analog converter for both solutions.  Following 

decision analysis, a software filter is the optimal solution as shown in Table 28. 

 

ADC Filter DAC 
Solution 

 

HW SW FW HW Characteristics Cost HW 

A1 HW SW     
1s cores, 1s GHz 

$300  HW Optimal 
$300  

A2 HW   FW   

100s cores, 100s 

MHz  
$3,200  HW 

Yes 

$3,200      

Table 28. Cost association 

Apply the same methodology to find an optimal CPU-based embedded system 

design pattern in Table 7 (section E.2.a, Chapter II) for the problem. We can expand node 

A1 into one of the six groups {object, state, hardware interface, protocol, architecture, 

implementation} as shown in Table 29, and then further expand the selected group into a 

particular subclass as shown in Table 30. The leaf-node B3-1 is the optimal possible 

solution as shown in Figure 23. 
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B=A1 Class Intent 

B1 Object  Similar to object oriented language (no match) 

B2 State  State machine (no match) 

B3 Hardware interface Hardware device (possible match) 

B3 Protocol Protocol layers management (no match) 

B4 Architecture Processor, timer, resource and task management (no match) 

B6 implementation Standard template library (STL) and header files (no match) 

Table 29. Six major groups for CPU-based embedded system design patterns 

B3 Subclass Intent 
Possible  

Match 

B3-1 Serial port  

The Serial Port design pattern defines a generic interface with a 

serial port device. The main intention here is to completely 

encapsulate the interface with the serial port hardware device. 

All classes interfacing with the serial port will not be impacted 

by change in the hardware device. (possible match) 

Yes 

B3-2 
High speed  

serial port  

This design pattern covers interfacing techniques with high 

speed serial communication devices. The main objective is to 

encapsulate the interface with the device and provide a hardware 

independent interface to the high speed serial port. (no match) 

No 

B3-3 
Hardware  

device  

The Hardware Device Design Pattern encapsulates the actual 

hardware device being programmed. The main idea is to 

encapsulate device register programming and bit manipulation 

into a single class dealing with the device. (no match) 

No 

B3-4 Synchronizer  

The Synchronizer Design Pattern is used to look at the raw 

incoming bit or byte stream and detect and align to the frame 

structure. The frame structure is detected by searching for a sync 

pattern in the frame. Once the synchronization is achieved, the 

Synchronizer confirms the presence of the sync pattern in every 

frame. If the sync pattern in missed a certain number of times, 

loss of sync is declared. (no match) 

No 

Table 30. Four subclasses design patterns for hardware interface 
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Filter

A1 A2

B3

B3-1

 

Figure 23 Optimal design pattern mapping 

D. EXAMPLE—AIR DATA TEST SET  

Consider implementing an air data test set (ADTS) to monitor and simulate air 

data for altitude and air speed.  In each aircraft, there is a static tube and a Pitot tube. The 

static tube reads the static air pressure (PS), and then translates it into altitude. The Pitot 

tube reads the moving air pressure (PT), and then calculate the air speed by using the 

equation: QC = PT–PS. To simulate air data, a PS valve is used to generate static air 

pressure, and a PT valve (along with the PS valve) is used to generate air speed.  

The functional components are listed in Figure 24 and Table 31. There are 16 

components, and the number of possible mappings to {SW, FW, HW} is 3
16

=43,046,721 

if we use the brute-force (exhaustion) methodology. 
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HIHI C M

 

Figure 24 Air data test set architecture 

We can reduce the number of possible mappings by imposing requirements and 

constraints as listed in Table 31. 

 

Component Symbol HW FW SW Reasoning 

PS transducer   HW     must be hardware 

PS ADC   HW     must be hardware 

PS unit converter S1   FW SW not hardware due to high cost 

PS pressure control S2   FW SW not hardware due to high cost 

PS DAC   HW     must be hardware 

PS valve   HW     must be hardware 

Human interface HI HW     Keyboard, display, etc. 

Interface I   FW SW not hardware due to high cost 

Air data calculator C   FW SW not hardware due to high cost 

Math co-processor M HW   SW too complex for FW 

PT transducer   HW     must be hardware 

PT ADC         must be hardware 

PT unit converter T1   FW SW not hardware due to high cost 

PT pressure control T2   FW SW not hardware due to high cost 

PT DAC   HW     must be hardware 

PT valve   HW     must be hardware 

Table 31. Components descriptions  

For software/hardware/firmware partitioning analysis, we can first assign the 

components that can be only mapped to a single modality without other options. 
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Furthermore, we can group S1 and S2 into a single component (S1-S2) to reduce the 

number of components for analysis. Similarly, we can group T1 and T2 into (T1-T2), and 

I and C into (I-C). We redraw Figure 24 as Figure 25. 

PS 

ADC

PS 

ADC
S1

PT 

ADC

PT 

ADC
T1 T2

PT 

DAC

PT 

DAC

PS 

XDR

PS 

XDR

PT 

XDR

PT 

XDR

H1

PT 

valve

PT 

valve

S2
PS 

DAC

PS 

DAC
PS 

valve

PS 

valve

HIHI H2

S1 S2

T1 T2

S1 S2I C M

HW HW HW HW

HW HW HW HW

HW

 

Figure 25 A simplified architecture for analysis 

Based on Figure 25 and Table 32, the number of possible mappings is reduced 

from 3
16

=43,046,721 to 3×4×5÷2=30 (from 16 to 4 components). 

Component Symbol HW FW SW Reasoning 

PS unit converter 
(S1-S2)   FW SW not hardware due to high cost 

PS pressure control 

Interface 
(I-C)   FW SW not hardware due to high cost 

Air data calculator 

Math co-processor M HW   SW too complex for FW 

PT unit converter 
(T1-T2)   FW SW not hardware due to high cost 

PT pressure control 

Table 32. A simplified table for analysis 

An air data calculator involves with complex mathematical calculations, and the 

timing for component (I-C) is not critical, so that {SW} is a better mapping than {FW}; 

as a result, the number of possible mappings is further reduced to 3×3×4÷2=18 (from 4 to 

3 components). The modalities for (S1-S2) and (T1-T2) should be identical, since they 
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are similar in functionality. Now, 18 mappings are reduced to 9 (from 3 to 2 components) 

as shown in Table 33, Table 34, Table 35 and Figure 26. 

 

ADTS  (S1-S2), (T1-T2) M   

A1 SW *   

A2 FW *   

A3 HW * No, cost is too high 

A4 * SW   

A5 * FW No, too complicated 

A6 * HW   

Table 33. Possible mappings for 2 components 

A1 

(S1-S2),  

(T1-T2) M   

 

A2 

(S1-S2),  

(T1-T2) M   

A1-1 SW SW Option 1 

 

A2-1 FW SW Option 3 

A1-2 SW FW No, too complicated 

 

A2-2 FW FW No, too complicated 

A1-3 SW HW Option 2 

 

A2-3 FW HW Option 4 

Table 34. Expand nodes A1 and A2 

Expanding nodes A4 and A6 does not provide any additional benefits as shown in 

Table 35, so that they are terminated from the tree. 

A4 

(S1-S2),  

(T1-T2) M   

 

A6 

(S1-S2), 

(T1-T2) M   

A4-1 SW SW Same as A1-1 

 

A6-1 SW HW Same as A1-3 

A4-2 FW SW No, too complicated 

 

A6-2 FW HW No, too complicated 

A4-3 HW SW No, cost is too high 

 

A6-3 HW HW No, cost is too high 

Table 35. Expand nodes A4 and A6 

ADTS

A1 A2

A2-1 A2-3A1-1 A1-3

 

Figure 26 Four possible mappings 
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After reducing the possible components mappings to four as shown in Figure 26, 

we are able to propose reasonable options for design decision-making in Table 36, Table 

37, Table 38 and Table 39. 

1. Option 1 (A1-1)  

A1-1 Symbol 

Partition/ 

Implementation Description 

Interface and air  

data calculator (I-C) SW/CPU 

Altitude and air -speed 

calculations 

PS unit converter and  

valve control (S1-S2) SW/CPU 

(1) Convert frequency to in-hg;  

(2) Pressure control 

PT unit converter and  

valve control (T1-T2) SW/CPU 

(1) Convert frequency to in-hg;  

(2) Pressure control 

Mathematical coprocessor M SW/CPU Mathematics library 

Advantages Low-cost; simple programming and design 

Disadvantages Slow in valve control; slow in display 

Table 36. Option 1 

2. Option 2 (A1-3)  

A1-3 Symbol 

Partition/ 

Implementation Description 

Interface and air  

data calculator (I-C) SW/CPU Altitude and air-speed calculations 

PS unit converter and  

valve control (S1-S2) SW/CPU 

(1) Convert frequency to in-hg;  

(2) Pressure control 

PT unit converter and  

valve control (T1-T2) SW/CPU 

(1) Convert frequency to in-hg;  

(2) Pressure control 

Mathematical coprocessor M HW/chip Mathematics library 

Advantages Low-cost; simple programming and design; fast in display 

Disadvantages Slow in valve control 

Table 37. Option 2 
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3. Option 3 (A2-1) 

A2-1 Symbol 

Partition/ 

Implementation Description 

Interface and air  

data calculator (I-C) SW/CPU Altitude and air-speed calculations 

PS unit converter and  

valve control (S1-S2) FW/FPGA 

(1) Convert frequency to in-hg;  

(2) Pressure control 

PT unit converter and  

valve control (T1-T2) FW/FPGA 

(1) Convert frequency to in-hg;  

(2) Pressure control 

Mathematical coprocessor M SW/CPU Mathematics library 

Advantages Fast in valve control 

Disadvantages Medium cost; complex programming and design; slow in display 

Table 38. Option 3 

4. Option 4 (A2-3)  

A2-3 Symbol 

Partition/ 

Implementation Description 

Interface and air  

data calculator (I-C) SW/CPU Altitude and air-speed calculations 

PS unit converter and  

valve control (S1-S2) FW/FPGA 

(1) Convert frequency to in-hg;  

(2) Pressure control 

PT unit converter and  

valve control (T1-T2) FW/FPGA 

(1) Convert frequency to in-hg;  

(2) Pressure control 

Mathematical coprocessor M HW/chip mathematics library 

Advantages Fast in valve control; fast in display 

Disadvantages Medium-cost; complex programming and design 

Table 39. Option 4 

E. A TOOL FOR SW/FW/HW CODESIGN 

Though we did not build a tool for our software/firmware/hardware codesign 

methodology in this dissertation, we present a procedure for building this tool. This 

procedure is similar to Figure 10 in section A but with more details. 

1. List and enumerate design requirements in a table. 

2. List and enumerate design constraints in a table. 

3. List and enumerate design options in a table. 
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4. Disqualify design options which cost too much or violate requirements/ 

constraints. Link disqualified design options to the requirements/ 

constraints for traceability. 

5. Select the best design from the qualified options by cost estimation, and 

then form an architecture from this option. The architectural components 

are described in the selected design option; the connections among these 

components can be easily constructed if inputs and outputs are clearly 

defined in each component. 

6. Define modalities in a set {modality #1, modality #2…modality #L}. The 

number of modalities is L=|{modality #1, modality #2… modality #L}|. 

7. Simplify the analysis by excluding the components which must be 

assigned to certain modalities. 

8. Form an N×M table. N is the number of columns; each column represents 

an unassigned component in the architecture. M is the number of rows; 

each row represents a condition with one component being assigned to a 

modality in the set of modalities and other components being don’t cares 

(unassigned). There are N×L rows with N being the number of 

components and L being the number of modalities. 

9. Disqualify the condition (row) if it costs too much or violates any 

requirement/constraint by tagging it with “FALSE,” and then link it to the 

requirements/constraints for traceability. Qualify the condition if it 

satisfies all requirements/constraints by tagging it with “TRUE.” 

10. Use A* algorithm to find a feasible solution. For tie-breaker nodes, 

expand the node in an alphanumerical order. 

11. Continue to step 12 if we have enough design details; otherwise, return to 

step 5. 

12. If the leaf-node is not a solution or more leaf-nodes are required, return to 

step 10; otherwise, continue to step 13. 

13. If no solutions are found, return to step 1 to modify requirements, 

constraints or modalities; otherwise, present solutions to decision makers. 

Figure 27 shows this procedure in a diagram. 
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1. List and enumerate design 

requirements in a table

2. List and enumerate design 

constraints in a table

6. Simplify the architecture

8. form a table

11. detailed 

enough?

12. is the leaf-node 

a solution or more 

leaf-nodes needed?

yes

13. solution 

found?

no

no

yes

no

Decision 

making

yes

3. List and enumerate design 

options in a table

7. Define modalities

4. Apply requirements and 

constraints 

5. Select the best design option 

and form an architecture

9. Apply requirements and 

constraints

10. Perform A* search

 

Figure 27 Tool design flowchart 
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IV. RECONFIGURABLE COMPUTING DESIGN PATTERNS 

This chapter describes some example design patterns.  The ones described here 

were used in the implementation of the filtering example for ultra-high frequency signals 

in Section B, Chapter III and the case study in Chapter V.  They follow the standardized 

format and set of contents suggested by Gang of Four (GoF) [48]. These five 

reconfigurable computing based firmware design patterns are not in the 89 collected by 

André DeHon et al [50]. 

A. POLYPHASE DFT FILTER BANKS 

Polyphase DFT filter banks were first proposed by Vaidyanathan in 1993 [75]. 

They are one of the most important applications of multirate digital signal processing. A 

multirate system processes digital signals at different sampling rates in various parts of 

the system. The DFT, which stands for discrete Fourier transform, is used to convert the 

polyphase inputs to multiple frequency subbands.  Polyphase inputs are generated by the 

split sequences of the input digital signal being going through polyphase filters. A 

subband is a specific range of frequencies in the frequency spectrum [76]. See the 

collaborations in section A.6 for further explanation. 

We do not claim that we invented this design pattern; rather, our focus is on signal 

decomposition into subbands for high computational efficiency. This decomposition 

provides a way to process input wideband signals in different frequency bands; this 

makes frequency-dependent applications possible. High computational efficiency is 

critical for reconfigurable computing based firmware due to its limited resource. 

1. Name and Classification 

 Name: polyphase DFT filter banks design pattern 

 Classification: digital signal processing class, filter banks subclass  

2. Intent 

The intent of Polyphase DFT filter banks is for multirate digital signal processing, 

analysis and reconstruction. Polyphase DFT filter banks can separate a wide bandwidth 



 100 

serial input signal at a high data sampling rate into multiple parallel subsequences so that 

they can be processed at a lower data sampling rate.  The analysis stage converts 

polyphase input signals into multiple subbands for frequency-dependent applications. In 

the reconstruction we recombine parallel data channels into a single output for 

transmission.  

3. Motivation 

The motivation is the popular applications of subband coding to speech, audio and 

video and multiple-carrier data transmission [76]. 

4. Applicability 

For single-frequency signals, an analog filter is a better choice than this design 

pattern.  

5. Participants 

There are five components in this design pattern: (1) polyphase filters, (2) an 

inverse discrete Fourier transform (IDFT) operator, (3) processors, (4) a discrete Fourier 

transform (DFT) operator, and (5) conjugated polyphase filters. These five components 

reside in the square box (polyphase DFT filter banks) in Figure 28; typically there is an 

analog-to-digital converter and a demultiplexer before, and a multiplexer and a digital-to-

analog converter after these components. 
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DAC
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Figure 28 Typical components interfacing with polyphase DFT filter banks 

6. Collaborations 

Based on [76], these five components collaborate in the following way.  



 101 

1. All split sequence digital signals {x[i], x[M+i], …} , for i=1 to M, M = 

number of channels go through polyphase filters {Hi(z), for i=0 to M, and 

become polyphase input signals.  

2. The polyphase input signals are converted to M subbands by going 

through an M×M inverse discrete Fourier transform operator (IDFT). 

3. All M subbands are processed in parallel independently. 

4. The processed M subbands go through an M×M discrete Fourier transform 

operator (DFT) and ready to be converted to M polyphase outputs. 

5. All M output signals from the discrete Fourier transform operator are 

converted to M polyphase outputs {y[i], y[M+i],…}, for i=1 to M, by 

going through conjugated polyphase filters {Ĥi(z)}, for i=0 to M. 

Figure 29 shows these five steps. 
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Figure 29 Polyphase DFT filter banks 

The mathematical proof can be found in Appendix E. 

7. Consequences (Benefits) 

According to Schniter [77], the number of multiplications required for computing 

the DFT can be estimated as 
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where N = order of finite impulse response (FIR) filter, and M = number of 

polyphase components. According to [78], the propagation delay is determined by the 

order of polyphase finite impulse response filter (N). For linear phase (symmetrical 

coefficients), the propagation delay can be estimated as: 

                     
     

                    
  

8. Implementation 

A finite impulse response filter, an inverse discrete Fourier transform operator, 

and a discrete Fourier transform operator consume much reconfigurable computing 

resources, so the number of parallel channels is limited. This design pattern can be 

implemented on a general-purposed computer, but our focus is on reconfigurable 

computing based embedded systems. 

9. Algorithm 

Refer to [75] for established algorithm. 

10. Known Uses (Examples) 

a. Example 1 

The program in Table 89 (Appendix C) written in MATLAB demonstrates how to 

divide an input signal into 32 subbands as the analysis filter banks. In this example, we 

apply a set of unit sinusoids at different frequencies for the incoming data. Only 16 

channels of filters in the magnitude response of the filter banks are shown in Figure 30, 

because fast Fourier transforms (FFTs) produce conjugate signals for real-valued inputs. 

Each color in Figure 30 represents a frequency subband. Signals within this subband are 

passed through with slight attenuation; however, signals outside this subband are greatly 

attenuated (blocked). Same effect is applied to other subbands. 
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Figure 30 16 magnitude responses of a polyphase DFT filter banks for real inputs 

b. Example 2 

This example shows the entire operation of discrete Fourier transform filter banks 

which are composed of analysis and synthesis filter banks. Synthesis filter banks are used 

to combine multiple parallel subbands into a single output signal; its algorithm is the 

mirror image of analysis filter banks.  

The configurations for this example are (1) the input signal is a 3-second voice 

recording, (2) the number of channels is 32 and the order for each polyphase FIR filter is 

8, and (3) there are no changes between the polyphase inputs and outputs (a straight-

through condition). We conclude that this example is successful since the input and 

output signals are nearly identical as shown in Figure 31. For a complete and detailed 

program in MATLAB, see Table 90 in Appendix C. 
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Figure 31 Signal before and after polyphase DFT filter banks 

11. Related Patterns 

The post-deserialization bits remapping design pattern provides inputs for the 

polyphase filters before the IDFT operator; the polyphase filters after the DFT operator 

provides inputs for the pre-serialization bits remapping design pattern. 

B. DATA ALIGNMENT DESIGN PATTERN 

Even though data-alignment problems have been widely addressed in 

telecommunication applications to produce error-free transmissions, they are unusual for 

reconfigurable-computing embedded systems, and only arise when dealing with ultra-fast 

data. In this section, we will describe a new data-alignment design pattern of ours at a 

high level of abstraction without bias for any type of implementation. See appendix D for 

background information. 

1. Name and Classification 

 Name: data-alignment design pattern 

 Classification: ultra-fast communication class, synchronization subclass 

2. Intent 

When moving multiple parallel bit streams and forwarding source-synchronous 

sampling clocks to a device at an ultra-high data rate, we are facing two problems. One 
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problem is caused by the shrinking of the data window. The data window is the time 

period when the data is stable. As shown in Figure 32, when the data rate gets faster (or 

data window shrinks), the sampling clock could arrive when data is in transition, or even 

a few bits late. Another problem is caused by different data and clock path delays; each 

data bit-stream arrives at the destination device at a different time. Figure 33 shows three 

timing cases: (1) data is sampled correctly, (2) data is sampled near transition, and (3) 

data is sampled at a wrong bit.  

timing window
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data is stable

data is in transition

data is a bit late
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data at a medium rate

data at a faster rate

Case (1)
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Sampling window: sampling clock is 

guaranteed to appear within this window
Time

V(high)

V(low)

 

Figure 32 Shrinking of data window at higher data rate 
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Figure 33 Three timing cases 

3. Motivation 

A data source sends data and clocks to a data receiver; the receiver must decide 

where the middle of the data bit is, and find the beginning and the end of incoming bits. 
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This is important to sample the data correctly because the rising and falling edges of the 

data bits are distorted.  

4. Applicability 

For embedded systems, data-alignment design patterns only apply to ultra-fast 

(gigahertz) parallel data communication. At a lower rate, data communication typically is 

conducted in serial instead of parallel and data alignment is not required. In addition, at a 

lower rate, even the data communication is parallel; the data windows are probably wide 

enough to be sampled correctly by the source synchronized clocks without any 

calibration.  

5. Participants 

There are three components involved in this design pattern: a bit-alignment 

algorithm, a byte-alignment algorithm, and a memory device. See Figure 36 for their 

relationship. 

6. Collaborations 

These three components collaborate in the following way. 

1. The bit-alignment algorithm inserts a delay to each data channel so that 

each bit is sampled at the middle of its data window, not at the edges. 

2. The byte-alignment machine rotates the bits in a data byte until the byte 

matches the predefined pattern from the data source. 

3. The memory device reads bit- and byte-aligned data from all input bit-

streams with their local clocks, and then writes this data to a processor 

with a global clock for data synchronization.  This is called overall 

alignment. 

7. Consequences 

The data-alignment design pattern fails to function if data windows are too 

narrow. The data window size at the receiver must be greater than zero to operate 

correctly. The shrinking of data window is caused by clock jitter, duty-cycle distortion, 

receiver input capacitance, power supply, and temperature, etc. [79] 
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8. Implementation 

The bit-alignment algorithm, the byte-alignment algorithm and the memory 

device are typically built in the ISerDes which is in the fabric of reconfigurable 

computing. ISerDes stands for Input Serializer/Deserializer, which converts input data 

from serial to parallel format, and can be considered as a demultiplexer.  

9. Algorithm 

a. Bit-Alignment 

Even though the precisely predetermined synchronization relationship between 

the data and clocks is degraded by path delays, we can align the data bits by shifting the 

sampling edge of the clock to the center of the data window (where data is stable) by 

adding delay to the data paths. A single bit-alignment procedure is described below.  

Figure 34 is the flowchart of this algorithm. 

1. A data source sends a predefined serial data pattern to a data receiver. It 

initializes a timer to zero. 

2. The data receiver samples the incoming serial data bits by using the 

synchronous sampling clock from the data source. 

3. If the read data bit is stable, add delay to a timer. Being stable means that 

multiple consecutive reads have the same value; otherwise, data bit is 

unstable. Repeat steps (2) and (3) until data is unstable.  

4. If the read data bit is unstable the first time, save the timer value which is 

the total amount of delay, Ta, from a stable state to an unstable state. Start 

a new timer and add delay to the new timer. Repeat steps (2) to (4). 

5. If the read data bit is unstable the second time, save the timer value which 

is the total amount of delay, Tb, from an unstable state to another unstable 

state. 

6. The calibration factor can be calculated as Ta + Tb/2.7. If this algorithm 

fails to complete after a certain amount of time, it will reset to step (1). 
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Figure 34 Bit-alignment flowchart 

b. Byte-Alignment 

If the data rate increases, the sampled data (after bit-alignment) will be possibly 

one or few bits late. This error can be removed if we know exactly how many bits late. 

The algorithm below shows the mechanism of calculating the number of bits being late 

for a single data bit-stream. Figure 35 is the flowchart of this algorithm. 

1. A data source sends a predefined data pattern to a data receiver. 

2. The data receiver aligns bit-stream according to the bit-alignment 

algorithm in the prior section. 

3. Initialize a counter to zero. 

4. The aligned bit-stream is demultiplexed into a byte (in parallel form). 

5. Compare the demultiplexed byte with the predefined data byte. If they are 

the same, save the counter as the calibration factor; otherwise, increment 

the counter by one, rotate the byte by one bit left, and repeat step (5). 
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6. If this algorithm fails to complete after a certain amount of time, it will 

reset to step (1). 

Aligned serial data 

after bit-alignment

Save counter 

for calibration

Same as pre-

defined data?yes no

Rotate byte

counter++

demultiplexer

counter = 0

 

Figure 35 Byte-alignment flowchart 

c. Overall Alignment  

Once all input bit-streams are aligned according to the bit-alignment and byte-

alignment algorithms, we will perform an overall alignment below. Figure 36 is the 

flowchart of this algorithm. 

1. The data source sends a predefined data pattern to the data receiver. 

2. Bit alignment and byte alignment are performed on each bit stream. 

3. When all bit streams are aligned, the data receiver sends a signal to the 

data source indicating that all bit-streams are aligned. 

4. The data source sends a new predefined data pattern to the data receiver. 

5. The data receiver detects the data pattern change. 

6. The data receiver writes this data into the WRITE side of a memory 

device with individual local clocks. 

7. The READ side of the memory device is accessed with a global clock.  
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Figure 36 Overall-alignment flowchart 

10. Known Uses (Examples) 

The ChipSync™ features in the input of Xilinx Virtex-6 devices are able to 

dynamically adjust the delay of the data paths in the receiver with 75 picoseconds 

resolution. The BIT_ALIGN_MACHINE is similar to the bit-alignment algorithm; the 

BITSLIP_MACHINE is similar to the byte-alignment algorithm; and first-in first-out 

stacks can be used for the memory device [79]. An application example is in the first case 

study in Chapter V. 

11. Related Patterns 

There are no related design patterns. 

C. POST-DESERIALIZATION BITS REMAPPING DESIGN PATTERN 

Originated in telegraphy in the 1870s [80] and telephony in 1910 [81], 

multiplexing/demultiplexing has been widely used in telecommunications and computer 

networks. Multiplexing/demultiplexing technologies may be divided into space, 

frequency, time and code divisions. A typical application is that multiple low data rate 
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signals are multiplexed over a single high data rate link, then demultiplexed at the other 

end [80].  

For our application, post-deserialization means to demultiplex (split) serial data 

from an analog-to-digital converter into multiple parallel channels. Since the serial data 

from the analog-to-digital converter is in sequential order, bits must be remapped for 

proper digital signal processing after demultiplexing. See detailed explanation in section 

C.2. 

1. Name and Category 

 Name: post-deserialization bits remapping design pattern 

 Category: communication class, serial-to-parallel subclass 

2. Intent 

To reduce the data rate from one device to another device, oftentimes multiple 

levels of demultiplexing are required. The problem is that the multiple parallel data bit-

streams after demultiplexing (deserializing) are no longer in proper order for data 

processing. For example, a stream of ordered serial data bits from a faster device is 

demultiplexed into four data bit-streams at level one as shown in Figure 37, and then each 

data bit-stream is further demultiplexed into four data bit-streams at level two as shown 

in Figure 38. The 16 parallel data bit-streams (1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 

12, 16) after 2 levels of demultiplexing are not usable for digital signal processing. It was 

necessary for us to develop a new design pattern. 
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2= 2nd bit,
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Figure 37 Level one demultiplexing 
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Figure 38 Level two demultiplexing 

3. Motivation 

Demultiplexing is used to convert serial data at a higher data rate from a faster 

device to parallel data at a lower data rate to a slower device. 

4. Applicability 

This design pattern only applies to two-level demultiplexing. 

5. Participants 

Simple memory addresses manipulation. 

6. Collaborations 

Simple memory addresses manipulation. 

7. Consequences 

None. 
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8. Implementation 

This algorithm can be implemented by manipulating reconfigurable computing 

block RAM addresses and data byte widths with the array feature built in hardware 

description language. 

9. Algorithm 

If the overall input data width is N (N bit streams), and each bit stream is 

demultiplexed by an input port (such as an ISerDes) into M bit streams, then the total 

number of bit streams in the reconfigurable computing is N × M. Due to demultiplexing, 

these N × M bit-streams are not in a proper order which digital signal processing can be 

performed; therefore, they must be remapped. The post-deserialization bits remapping 

algorithm is listed in Table 40. 

 ‘N_Channel = number of subbands 

‘N_ISerDes = 1 to N_ISerDes demultiplexer 

Dim bits(1 To N_Channel * N_ISerDes) As Single 

Dim bits_Post_ADC(1 To N_Channel * N_ISerDes) As Single 

Private Sub Post_ADC_Remap() 

For i = 1 To N_Channel Step 1 

    For j = 1 To N_ISerDes 

        bits_Post_ADC(i + N_Channel * (j - 1)) = bits(i * N_ISerDes - (N_ISerDes - j)) 

    Next j 

Next i 

End Sub 

Table 40. VB6 program: post-deserialization bits remapping algorithm 

10. Known Uses (Examples) 

The following algorithm (written in Visual Basic 6.0) is an instantiation of the 

post-ADC data bits remapping algorithm in Table 40. The terms “post-ADC” and “post-

deserialization” are used interchangeably in this chapter. Bits() is an array of 256 cells 
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which contains the scattered data bits from demultiplexing, and bits_Post_ADC() is an 

array of 256 cells which contains the remapped data bits. The remapping algorithm is in 

Table 41. 

Stage A: 128 data bit-streams coming from a data source to the reconfigurable computing 

Stage B: 2: each bit-stream is demultiplexed into 2 data bit-streams. At this stage, data bits  

are scattered in different memory locations in the reconfigurable computing 

Stage C: put data bits in the proper order for digital signal processing 

Private Sub Post_ADC_Remap() 

For i = 1 To 128 Step 1 

For j = 1 To 2 

 bits_Post_ADC(i + 128 * (j - 1)) =  bits(i * 2 - (2 - j)) 

Next j 

Next i 

End Sub 

Stage D: digital signal processing 

Table 41. VB6 program: post-deserialization bits remap algorithm 

11. Related Patterns 

The Pre-serialization bits remapping design pattern is the counterpart of post-

deserialization bits remapping design pattern. 

D. PRE-SERIALIZATION BITS REMAPPING DESIGN PATTERN 

References are the same as section C. For our application, pre-serialization means 

to multiplex (combine) parallel data from a processor into serial data for digital to analog 

conversion. Since the parallel data from the processor is in sequential order, bits must be 

remapped for proper digital to analog conversion before multiplexing (serialization). See 

detailed explanation in section D.2. 
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1. Name and Classification 

 Name:  pre-serialization bits remapping design pattern 

 Classification: communication class, parallel-to-serial subclass 

2. Intent 

In Figure 39 and Figure 40, 16 parallel data bit-streams are combined 

(multiplexed) into a single serial output, resulting in a bit order at output 

(…14,10,6,2,13,9,5,1) that is not sequential. 
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Figure 39 Level one multiplexing 
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Figure 40 Level two multiplexing 
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3. Motivation 

Multiplexing is used to convert parallel data at a lower data rate from a slower 

device to serial data at a higher data rate to a faster device. 

4. Applicability 

This design pattern only applies to 2-level multiplexing. 

5. Participants 

Simple memory addresses manipulation. 

6. Collaboration 

Simple memory addresses manipulation. 

7. Consequences 

None. 

8. Implementation 

This algorithm can be implemented by manipulating reconfigurable computing 

block RAM addresses and data byte widths with the array feature built in hardware 

description language. 

9. Algorithm 

Before multiplexing N parallel channels into a single output data bit stream, we 

must rearrange the data bits addresses for proper digital to analog conversion. The pre-

serialization bits remapping algorithm is listed in Table 42. 
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For i = 1 To N_DAC_bytes 

bits2 (1 + 2 * (i - 1)) = bits1 (1 + N_DAC_RES * (i - 1)) 

bits2 (2 + 2 * (i - 1)) = bits1 (2 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*2+1) + 2 * (i - 1)) = bits1 (3 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*2+2) + 2 * (i - 1)) = bits1 (4 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*4+1) + 2 * (i - 1)) = bits1 (5 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*4+2) + 2 * (i - 1)) = bits1 (6 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*6+1) + 2 * (i - 1)) = bits1 (7 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*6+2) + 2 * (i - 1)) = bits1 (8 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*8+1) + 2 * (i - 1)) = bits1 (9 + N_DAC_RES * (i - 1)) 

bits2 ((N_DAC_bytes*8+2) + 2 * (i - 1)) = bits1 (10 + N_DAC_RES * (i - 1)) 

Next i 

Table 42. VB6 program: pre-serialization bits remapping algorithm 

10. Known Uses (Examples) 

The algorithm (written in Visual Basic 6.0) in Table 43 is an instantiation of the 

pre-DAC data bits remapping algorithm in Table 42. The terms “pre-DAC” and “pre-

serialization” are used interchangeably in this chapter. N_DAC_bytes (number of digital-

to-analog converter bytes) is 32, and N_DAC_RES (digital-to-analog converter 

resolution) is 10-bit. Bits1() is an array of 320 cells which contain data bits after digital 

signal processing operations, and bits2() is an array of 320 cells which contain the 

remapped bits. 
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Private Sub Pre_DAC() 

For i = 1 To N_DAC_bytes 

    bits2 (1 + 2 * (i - 1)) = bits1 (1 + N_DAC_RES * (i - 1)) 

    bits2 (2 + 2 * (i - 1)) = bits1 (2 + N_DAC_RES * (i - 1)) 

    bits2 (65 + 2 * (i - 1)) = bits1 (3 + N_DAC_RES * (i - 1)) 

    bits2 (66 + 2 * (i - 1)) = bits1 (4 + N_DAC_RES * (i - 1)) 

    bits2 (129 + 2 * (i - 1)) = bits1 (5 + N_DAC_RES * (i - 1)) 

    bits2 (130 + 2 * (i - 1)) = bits1 (6 + N_DAC_RES * (i - 1)) 

    bits2 (193 + 2 * (i - 1)) = bits1 (7 + N_DAC_RES * (i - 1)) 

    bits2 (194 + 2 * (i - 1)) = bits1 (8 + N_DAC_RES * (i - 1)) 

    bits2 (257 + 2 * (i - 1)) = bits1 (9 + N_DAC_RES * (i - 1)) 

    bits2 (258 + 2 * (i - 1)) = bits1 (10 + N_DAC_RES * (i - 1)) 

Next i 

End Sub 

Table 43. VB6 program: pre-serialization bits remap algorithm 

11. Related patterns 

The post-deserialization bits remapping design pattern is the counterpart of pre-

serialization bits remapping design pattern. 

E. SWITCH-AND-FILTER ARCHITECTURE 

References are the same as section C.  The switch-and-filter architecture is the 

reverse of the typical architecture used in telephony [80] with an additional analog-to-

digital converter being the data pump and another additional digital-to-analog converter 

being the data consumer.  

1. Name and Classification 

 Name:  switch-and-filter architecture 

 Classification: ultra-fast communication class, architecture subclass 
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2. Intent 

As technologies advance, the data sampling rates of analog-to-digital converters 

and digital-to-analog converters are getting faster, and the number of logic cells in an 

FPGA is getting higher. To accommodate these rapid changes, a generic scalable 

dataflow architecture is highly desirable. In addition, since the processing speed of an 

analog-to-digital converter (or digital-to-analog converter) is higher than that of an FPGA 

(the routing paths for an FPGA are programmable so are not optimized), it is necessary to 

have a mechanism to deserialize a single data stream at a higher data rate from an analog-

to-digital converter into multiple parallel data streams at a lower data rate to an FPGA. 

Similarly, a mechanism to serialize multiple parallel data streams at a lower data rate 

from an FPGA into a single data stream to a digital-to-analog converter at a higher data 

rate is also required. 

3. Motivation 

The goal is to move ultra-fast serial data from a faster data source to a slower 

filter for processing by deserializing it into parallel channels, process the data, and then 

combine into a single serial data stream for output. 

4. Applicability 

This design pattern is not practical for low data rate applications, since they can 

transmit and receive data in serial instead of parallel. 

5. Participants 

There are five components involved in this design pattern, and they are a data 

pump, a demultiplexer, a filter, a multiplexer, and a data consumer. Figure 41 shows the 

relationship among these five components. 

6. Collaborations 

These five components collaborate in the following way. 

1. A data pump produces serial data at an ultra-fast rate. 

2. A demultiplexer converts serial data to parallel data at a slower rate. 
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3. A filter processes the parallel data. 

4. A multiplexer combines all parallel data into serial data. 

5. A data consumer consumes the serial data. 

Data pump Filter
Data 

consumer

d
e-

M
U

X

M
U

X.....

.....

 

Figure 41 A switch-and-filter architecture 

The data sampling rate, clock, throughput, and bit width at each stage are 

calculated in Table 44. In this table, we instantiate a data pump with an analog-to-digital 

converter (ADC), a filter with an FPGA, and a data consumer with a digital-to-analog 

converter (DAC). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

1 A B C D E 

2 

A
D

C
 

#Interleaved     Defined by users 

3 system clock   GHz Defined by users 

4 ADC clock =D3/D2 GHz System clock / #interleaved 

5 #bytes =D2   Same as #interleaved 

6 sampling rate =D4*D5 bytes/sec ADC clock * #bytes 

7 resolution_ADC 8 bits Defined by users 

8 #bits =D5*D7 bits #Bytes * resolution 

9 throughput =D8*D4 gigabits/sec ADC clock * #bits 

10 

     11 

D
E

M
U

X
 

#demux     defined by users 

12 clock_DEMUX =D4/D11 GHz ADC clock / #demux 

13 #bytes_DEMUX =D5*D11 bytes #bytes * #demux 

14 sampling rate =D13*D12 Gbytes/sec clock * #bytes 

15 #bits =D13*D7 bits #bytes * ADC resolution 

16 throughput =D15*D12 Gbits/sec #bits * clock 

17  

    18 

F
P

G
A

 

#demux_FPGA     defined by users 

19 #bits_DSP =D15*D18 bits #bits_DEMUX * #demux_FPGA 

20 sampling rate_FPGA =D12/D18 GHz clock_DEMUX / #demux_FPGA 

21 #bytes_DSP =D19/D7 bytes #bits_DSP / resolution 

22 #bits_DAC =D19*D30/D7 bits 

#bits_DSP * resolution_DAC / 

resolution_ADC 

23  

    24 

M
U

X
 #mux     deinfed by users 

25 #bits mux =D22/D24 bits #bits_DAC / #mux 

26 clock_mux =D20*D24 GHz sampling rate_FPGA * #mux 

27 throughput =D25*D26 Gbits/sec #bits_mux * clock_mux 

28  

    29 

D
A

C
 

#mux_DAC     deinfed by users 

30 resolution_DAC   bits defined by users 

31 clock_DAC =D3 GHz same as system clock 

32 throughput =D30*D31 Gbits/sec resolution_DAC * clock_DAC 

Table 44. Data rate, throughput, and width calculation 

7. Consequences 

For this architecture to function correctly, data alignment, post-deserialization bits 

remapping, and pre-serialization bits remapping design patterns are required as 

subpatterns. 

8. Implementation 

The most critical components in this architecture are ultra-fast analog-to-digital 

converter and digital-to-analog converter. The best way to implement this architecture is 
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to use commercial-off-the-shelf (COTS) products (such as demo boards) from the 

ADC/DAC manufacturers, and only work with the reconfigurable computing 

programming.  

9. Known Uses (Examples) 

Figure 42 exemplifies a real system with TADC-1000 being the data pump, 

TDAC-2000 being the data consumer, and HAPS-62 being the filter. TADC-1000 and 

TDAC-2000 are from Tektronix, and HAPS-62 is a Xilinx Virtex-6 based FPGA from 

Synopsys. The clock, sampling rates, throughputs and bit width are calculated in Table 

45. 

TADC-
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Figure 42 An instantiation of switch-and-filter architecture 

 

 

 

 

 

 

 

 

 

 

 



 123 

A
D

C
 

#interleaved 4   defined by users 

system clock 12 GHz defined by users 

ADC clock 3 GHz system clock / #interleaved 

#bytes 4   same as #interleaved 

sampling rate 12 Gbytes/sec ADC clock * #bytes 

resolution_ADC 8 bits defined by users 

#bits 32 bits #bytes * resolution 

throughput 96 Gbits/sec ADC clock * #bits 

     

D
E

M
U

X
 

#demux 4   defined by users 

clock_DEMUX 0.75 GHz ADC clock / #demux 

#bytes_DEMUX 16 bytes #bytes * #demux 

sampling rate 12 Gbytes/sec clock * #bytes 

#bits 128 bits #bytes * ADC resolution 

throughput 96 Gbits/sec #bits * clock 

 

    

F
P

G
A

 

#demux_FPGA 2   defined by users 

#bits_DSP 256 bits #bits_DEMUX * #demux_FPGA 

sampling rate_FPGA 0.375 GHz clock_DEMUX / #demux_FPGA 

#bytes_DSP 32 bytes #bits_DSP / resolution 

#bits_DAC 320 bits #bits_DSP * resolution_DAC / resolution_ADC 

     

M
U

X
 

#mux 8   deinfed by users 

#bits mux 40 bits #bits_DAC / #mux 

clock_mux 3.000 GHz sampling rate_FPGA * #mux 

throughput 120 Gbits/sec #bits_mux * clock_mux 

     

D
A

C
 

#mux_DAC 4   deinfed by users 

resolution_DAC 10 bits defined by users 

clock_DAC 12 GHz same as system clock 

throughput 120 Gbits/sec resolution_DAC * clock_DAC 

Table 45. Throughputs calculations 

10. Related Patterns 

The data alignment, post-deserialization bits remapping, and pre-serialization bits 

remapping design patterns are the basic building components for this architecture.  
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V. CASE STUDY ONE 

For detailed background and test setup for this case study, refer to Appendices A 

and B. 

A. METHODOLOGY 

1. Develop Requirements and Define Constraints 

The goal of this case study is to test the feasibility of digitizing radio-frequency 

signals up to 6 gigahertz by programming an FPGA-based embedded system. Some 

additional requirements are listed below. 

1. Signal simulation must be frequency dependent to increase simulation 

accuracy based on free-space path loss equation. Free-space path loss is 

proportional to the square of the distance between the transmitter and 

receiver, and also proportional to the square of the frequency of the radio 

signal.  

      (
    

 
)
 

  

c is the speed of light, d is distance, f is frequency 

2. When the number of radiofrequency sources to be simulated (N) increases 

scalably, the hardware complexity (cable connections) must not grow 

unscalably (meaning N
i
, i ≥ 2). In other words, the number of connections 

among N signal sources is O(N*N)=N(N-1)÷2 which is not acceptable. 

3. The system must not have power division problem. If the power loss in a 

transmitter is proportional to the number of receivers to be simulated, it 

has power division problem. This limits the number of signal sources 

which can be simulated. These transmitters and receivers are real physical 

devices, not simulated. 

4. Signal simulation must be in real-time. 

5. The project duration is one-year due to funding availability. 

6. The instantaneous bandwidth must be in the gigahertz range instead of the 

conventional megahertz for our research. 

7. If there are new technical challenges, it is preferable to overcome these 

challenges in the software domain at research and development phase to 

avoid expensive hardware redesign. 
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We group these requirements into four categories to reduce the number of 

conditions we have to analyze. 

 Category A: items (1), (2), (3), and (7) lead to the use of a digitizer  

 Category B: items (4) and (7) lead to the use of an FPGA-based embedded 

system (explained in section B, Chapter I) 

 Category C: item (5) leads to the use of a commercial-off-the-shelf 

platform 

 Category D: item (6) leads to new innovations 

2. Form an Architecture 

We form an architecture in Figure 43 to satisfy the requirements/constraints. For 

detailed derivation of this architecture, see filtering example in Section B, Chapter III. 

Interleaved 

ADC
FPGA DAC

d
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X
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Figure 43 Architecture  for ultra-wide instantaneous bandwidth signal processing 

3. Build a Tree to Map Functions to Modalities 

Applying the A* search with embedded ANDs methodology, we mapped 

functional components {ADC, de-MUX, FPGA, MUX, DAC} to modalities {HW, HW, 

FW, HW, HW}. For detailed mapping process, see filtering example in section B, 

Chapter III. 

We synthesized five design patterns to meet our requirements and constraints.  

For detailed description of these design patterns, see the filtering example in Section B, 

Chapter III and Chapter IV. 

When implementing the design, the discrete Fourier transform filter banks were 

not used. The first reason was that our primary goal for this project was to prove or 

disprove the concept that ultra-high instantaneous bandwidth signals can be digitized at 6 

gigahertz with acceptable performance, so a simple pass-through finite impulse response 
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filter (FIR) is sufficient to serve the purpose.  The second reason was that programming 

discrete Fourier transform filter banks in an FPGA by using the Verilog language is not 

trivial; we would like to use high-level model building tools to design discrete Fourier 

transform filter banks in the future research.  The third reason was that discrete Fourier 

transform filter banks might not fit into the FPGA (Xilinx Virtex-6) due to their 

complexity.  

The pass-through finite impulse response filter has 18 taps (coefficients), h[k] 

where k=0, 1, 2, 3… 17. The convolution of h[k] and an input signal x[n] where n=0 to 

31, representing 32 parallel input data channels, is shown in the equation below: 

 [ ]   [ ]   [ ]   [ ]   [ ]  ∑ [ ] [   ]

  

   

 

If we set h[0]=1, and the rest of coefficients to zeroes, then y[n] = x[n], a pass-

through condition.  This algorithm can be implemented by programming multipliers and 

adders inside an FPGA. 

4. Implementation 

We designed various requirements models (theoretical design patterns) for ultra-

high frequency signal filtering design. However, the implementation was accomplished 

by Tektronix Component Solutions at Beaverton, Oregon. This is due to the fact that the 

demo prototype was under development in 2012, and we did not have access to the 

system until late 2012. 

B. FPGA SOFTWARE TEST METHODOLOGY 

FPGA test methodology is iterative as shown in Figure 44. A brief description for 

each process is in Table 46 [42, 47,82]. 
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Figure 44 FPGA test methodology 
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Process/test  Description 

Create design  Process Create designs by writing code in hardware description language, and 

apply reuse code as much as possible. Reuse code includes 

intellectual properties and modules, etc. 

Create test bench Process A test bench, written in hardware description language code, provides 

a set of stimuli to create function and timing simulations. 

Pre-synthesis  

functional test 

Test Verify the design is correct without considering timing and layout 

constraints. After the desired functionality is achieved, use the output 

data to create a self-checking test bench.  

Synthesis Process Transform hardware description language sources into an 

architecture-specific design netlist (connectivity of an electronic 

design) 

Post-synthesis  

functional test 

Test Differences between synthesis interpretation of language in different 

simulators 

Constraints Process Timing, I/O (Input/output) pins and layout constraints 

Mapping Process Fits the design into the available resources (such as CLBs and IOBs) 

on the target device. CLB: Configurable Logic Block, IOB: 

Input/output Block. 

Post-map static  

timing report 

Test Determine timing violations against timing constraints by estimated 

logical block delays and routing delays 

Place and route Process Places and routes the design according to device utilization and 

timing constraints 

Post-place and route  

timing report 

Test Determine timing violations against timing constraints by real logical 

block delays and routing delays 

Post-place and route  

timing test 

Test It allows you to check that the implemented design meets all 

functional and timing requirements and behaves as you expect in the 

device. 

Programming  Process Download design and configure FPGAs 

Table 46. FPGA process definitions 
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C. TEST RESULTS 

Considering the ADC/FPGA/DAC system as a black box, the function of this 

black box is to pass through a radiofrequency signal without any alteration. Under this 

condition, the input and output signals should be almost identical with some minor 

degradation caused by signal digitization and reconstruction. Based on equivalence 

partition and boundary conditions, we choose test signals at 500 MHz, 1 GHz, 3 GHz and 

6 GHz. Three test categories and their subtests are listed below.  

Functional tests (pass-through tests) include the following subtests. 

 Data in the FPGA 

 Comparison between an ADC and an FPGA 

 Test without proper alignment software 

 Test with proper alignment software 

Performance tests include the following subtests. 

 Power flatness 

 Linearity 

 Noise floor 

 Sensitivity  

Application tests include the following subtests. The system is tested with a Joint 

Electronic Warfare Effects Laboratory (JEWEL) jamming device for certain real 

applications. 

 At bandwidths of 6 and 1.8 gigahertz 

 At bandwidths of 1 gigahertz and 200 megahertz 

 At bandwidth of 1 megahertz 

1. Setup 

a. ADC/FPGA/DAC Specifications 

Digitizer specifications: 

 Bandwidth 300KHz to 8.0 GHz (-3dB) 

 Channels 1 at 12.5 GS/s, or 2 at 6.25 GS/s each 

 Physical bits 8 
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 Effective bits 6.7-7.0 to 2 GHz, 6.2-6.9 from 2-5 GHz 

 SFDR >47 dB to 5 GHz 

 Input: +/- 256 mV differential into 100 ohms 

 AC coupled, common mode noise limit 350 mV p-p 

 Input VSWR 1.3:1 @ 2 GHz, 1.6:1 @ 6 GHz 

External clock specifications: 

 Frequency range 1.6GHz to 3.2 GHz1 

 Short Term Jitter <400 fs 

DAC specifications [90]:  

 Channels 1  

 Physical bits 10  

 Sample rate 12 GS/s  

 SFDR >45 dB to 2 GHz  

 Non-Linearity 0.2% of full scale DC DNL, 0.4% of full scale DC INL  

 Analog Output 8.5 GHz 3dB bandwidth 

ADC inputs 

 CH1+ -256mV to +256mV 

 CH1- terminated with a 50-ohm load 

 

Figure 45 ADC input limits 

For single-ended input, the maximum power in dBm can be calculated as below: 
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b. Equipment 

Table 47 contains the equipment used for this case study. 

 Model # Serial # Range Manufacturer 

Signal generator E4438C  00686  250K~6G Agilent 

Spectrum analyzer 1164.4391.38   00080 9K-40G Rohde Schwarz 

Termination PE6071 N/A 50-ohm Pasternack 

Table 47. Equipment models and serial numbers 

2. Test Specifications  

a. Alignment Tests 

The digital data in the FPGA should be identical to the digital data in the analog-

to-digital converter. 

b. Harmonics Tests 

If the input signal has no harmonics, the output signal should not have any 

harmonics as shown in Table 48. 

Frequency 
Input Output 

Harmonics Power Harmonics Power 

500 MHz None 30 dB None -30 ± 2 dB 

1 GHz None 30 dB None -30 ± 3 dB 

3 GHz None 30 dB None -30 ± 5 dB 

6 GHz None 30 dB None -30 ± 8 dB 

Table 48. Harmonics test specifications  

c. Flatness Tests 

Sweeping the frequency from 0 to 6 GHz with 10 MHz increments, the flatness 

deviation should be less than the specifications in Table 49. 
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Frequency Input power Output power 

1 GHz -20 dB -20 ± 3 dB  

2 GHz -20 dB -20 ± 4 dB 

3 GHz -20 dB -20 ± 5 dB 

4 GHz -20 dB -20 ± 6 dB 

5 GHz -20 dB -20 ± 7 dB 

6 GHz -20 dB -20 ± 8 dB 

Table 49. Flatness test specifications  

d. Linearity Tests 

At 500 MHz, the linearity should be less than 2% for a dynamic range of 40 dB 

(0-40 dB). 

e. Noise Floor Tests 

The noise floor should be less than the specifications in Table 50. 

 

Frequency RBW=300 KHz RBW=1 KHz 

2.5 GHz ≤ -70 dB ≤ -60 dB 

5.5 GHz ≤ -70 dB ≤ -60 dB 

6 GHz ≤ -70 dB ≤ -60 dB 

Table 50. Noise floor test specifications  

f. Sensitivity Tests 

The sensitivity should be less than the specifications in Table 51. 

 

Frequency RBW=300 KHz RBW=1 KHz 

2.5 GHz ≤ -65 dB ≤ -65 dB 

5.5 GHz ≤ -65 dB ≤ -65 dB 

6 GHz ≤ -65 dB ≤ -65 dB 

Table 51. Sensitivity test specifications  
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g. Test with JEWEL RF Jamming Device 

The simulated signal should be able to work with JEWEL RF jamming device 

from 0 to 2 gigahertz. 

3. Functional Tests 

a. Data in the FPGA 

We validated our alignment algorithms by the following sequence: (1) apply a 

500 MHz sinewave to a Tektronix TADC-1000 digitizer; (2) transfer the digitized data to 

the memory in Synopsys HAPS-62 FPGA board; (3) download the digitized data in the 

FPGA (HAPS-62) to a host computer through an USB interface; (4) plot the waveform 

by using MATLAB. The waveform (Figure 46) was identical to the input waveform; 

therefore, we concluded that we were able to move data from TADC-1000 to HAPS-62 

FPGA successfully by using our three alignment algorithms. 

 

Figure 46 Digitized sinewave in the FPGA  

b. Comparison between Analog-to-digital Converter and FPGA Data 

We generated 16,384 pseudo-random patterns to check bit accuracy across the 

interface from TADC-1000 to the HAPS FPGA board. The data file in the analog-to-

digital converter analyzer is identical to the data file in the FPGA. Table 52 only shows 

the first 20 LFSR patterns in the analog-to-digital converter and FPGA. LFSR stands for 

linear feedback shift register, an n-bit shift register which pseudo-randomly scrolls 
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between 2
n
-1 values. Once it reaches its final state, it will traverse the sequence exactly as 

before. Again, this table proves that we were able to move data from TADC-1000 to 

HAPS-62 FPGA successfully by using our three alignment algorithms. 

 
 LFSR pattern in ADC LFSR pattern in FPGA 

File name usbcom_data_lfsr_16k_reference.txt usbcom_data_HAPS-62_lfsr_070912.txt 

The first 20 patterns  

out of 16,384  

pseudo-random  

patterns 

FFFFFEFC01 

FFFFFEFC01 

FFFFFEFC01 

FFFFFEFC01 

FCFFFFFE00 

FCFFFFFE00 

FCFFFFFE00 

FCFFFFFE00 

FEFCFFFF00 

FEFCFFFF00 

FEFCFFFF00 

FEFCFFFF00 

FFFEFCFF00 

FFFEFCFF00 

FFFEFCFF00 

FFFEFCFF00 

7FFFFFFE00 

7FFFFFFE00 

7FFFFFFE00 

7FFFFFFE00 

FFFFFEFC01 

FFFFFEFC01 

FFFFFEFC01 

FFFFFEFC01 

FCFFFFFE00 

FCFFFFFE00 

FCFFFFFE00 

FCFFFFFE00 

FEFCFFFF00 

FEFCFFFF00 

FEFCFFFF00 

FEFCFFFF00 

FFFEFCFF00 

FFFEFCFF00 

FFFEFCFF00 

FFFEFCFF00 

7FFFFFFE00 

7FFFFFFE00 

7FFFFFFE00 

7FFFFFFE00 

Table 52. The first 20 LFSR patterns 

c. Tests without Proper Alignment Software 

Without proper alignment software, the output spectrum contained numerous 

harmonics as shown in Figure 47, which would be unacceptable for any data processing. 

The picture on the left has at a unit division of 100 MHz, and the picture on the right has 

a unit division of 10 MHz. The input signal for this test is a one-gigahertz sinusoidal 

wave. Theoretically, the expected output spectrum should be a single-tone pulse (a single 

spike) without harmonics in frequency domain. 
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Output=1GHz Zoom in 10x

 

Figure 47 Tests without proper alignment software (in frequency domain) 

d. Tests with Proper Alignment Software 

With proper alignment software, input and output signals were nearly identical as 

shown in Figure 48 and Figure 49. We used a spectrum analyzer to measure all spectra in 

this section at various RBW (Resolution Bandwidth) settings. The resolution bandwidth 

is the smallest frequency that can be resolved, or the FFT bin size. 

Input at 1GHz

Output at 500MHz Output at 1GHz

  

Input at 500MHz

 

Figure 48 Signals at 500 MHz and 1 GHz; RBW=3 MHz 
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Figure 49 Signals at 3 GHz and 6 GHz, RBW=1 MHz 

Test results are recorded in Table 53. 

 

Frequency 
Input Output 

Harmonics Power Harmonics Power 

500 MHz None 30 dB None 32 dB 

1 GHz None 30 dB None 30 dB 

3 GHz None 30 dB None 27 dB 

6 GHz None 27 dB None 23 dB 

Table 53. Harmonics test specifications  

4. Performance Tests 

a. Flatness Test 

This test swept input signals from 0 to 6 GHz at a constant power level (-20 dBm) 

and a sweeping increment is 10 MHz.  The output power signal dropped to -27 dB at 6 

GHz as shown in Figure 50 and Table 54. 
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Figure 50 Sweeping, RBW=3 MHz; increment=10 MHz 

Frequency Input power Output power 

1 GHz -20 dB -20 dB 

2 GHz -20 dB -20 dB 

3 GHz -20 dB -22 dB 

4 GHz -20 dB -23 dB 

5 GHz -20 dB -25 dB 

6 GHz -20 dB -27 dB 

Table 54. Flatness test specifications  

b. Linearity Test (500 MHz, RBW=3 MHz) 

This test applied a 500 MHz sinusoidal wave at various power levels as listed in 

Table 55, and then observed the output power levels. Output power was adjusted for 

cable loss for this test. The power from -10 dBm to -40 dBm is relatively linear (about 

0.2 percent); after -40 dBm, it becomes less linear. 
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Table 55. Linearity test 

c. Noise Floor Test 

This test found the power of the noise floor in dBm at various frequencies. The 

noise floor is the measurement of the sum of all the noise sources and unwanted signals 

within a measurement system. Table 56 contains the results. 

 

  RBW=300KHz RBW=1KHz   

2.5 GHz -78 -65 dBm 

5.5 GHz -75 -65 dBm 

6 GHz -75 -63 dBm 

Table 56. Noise floor test 

d. Sensitivity Test 

This test finds the lowest signal power in dBm that a receiver can detect at various 

frequencies.  Table 57 contains the results. 

  RBW=300KHz RBW=1KHz   

2.5 GHz -73 -70 dBm 

5.5 GHz -73 -70 dBm 

6 GHz -73 -70 dBm 

Table 57. Sensitivity test 



 140 

5. Validate with an Existing JEWEL RF Jamming Device 

We tested the system with an existing RF jamming device at various frequency 

bandwidths and amplitudes (strength): 6 GHz (-50 to 10 dBm), 1,800 MHz (-50 to 10 

dBm), 1 GHz (-50 to -10 dBm), 200 MHz (-50 to -10 dBm), and 1 MHz (-50 to -40 dBm) 

as shown in Figure 51, Figure 52 and Figure 53.  The jamming device was connected to 

the digitizer through a cable inside the laboratory. 

Input: 0-1GHz

Output: 0-1GHz

Input: 0.8-1GHz

Output: 0.8-1GHz

 

 

  

 

Figure 51 At bandwidths of 6 GHz and 1.8 GHz 

Input: 0-6GHz

Output: 0-6GHz

Input: 0-1.8GHz

Output: 0-1.8GHz

 

 

  

 

Figure 52 At bandwidths of 1 GHz and 200 MHz 
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Figure 53 At bandwidth of 1 MHz 

These test results are within our expectations since the signals from 0 to 2 GHz 

are extremely linear and stable as shown in the harmonics, linearity, sensitivity and noise 

floor tests. 

D. TESTS CONCLUSION 

Based on the test results in section C.3, it appears that our design for gigahertz 

signal filtering was sound. 
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VI. CASE STUDY TWO 

In this chapter, we use software/firmware/hardware codesign methodology to 

develop requirements and design for a multi-channel radar signal digital receiver which is 

a part of a pulse Doppler radar receiver subsystem. In the near term, the digital receiver is 

intended to process conventional pulse Doppler waveforms. However, it shall be capable 

of performing analysis on other advanced waveforms as commanded. The input carrier 

frequency is at 5 megahertz.  

A. METHODOLOGY 

1. Develop Requirements and Define Constraints 

According to the requirements from our clients, the system must do the following 

[83]. 

1. Perform analog-to-digital conversion. 

2. Operate in real-time.  

3. Implement range gates. 

4. Digitally down-convert to baseband (including platform motion 

compensation).  

5. Generate in-phase/quadrature (I/Q) samples. 

6. Construct a pulse repetition frequency (PRF) line FIR filter and decimate.  

7. Implement a fast Fourier transform (FFT) with Doppler filter banks to 

span Doppler bandwidth. 

8. Form signal magnitude for each filter. 

9. Establish a detection threshold for filter banks. 

10. Declare and report target detection by filter number, and send this 

information to a data processor. 

11. These operations shall be simultaneously performed upon three radar 

channels: sum, delta and guard. 

12. It must be low-cost. 

13. It must be well supported due to lack of experience in radar signal 

processing. 

14. It must have high reusability to reduce development time. 
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We group these requirements into five categories to reduce the number of 

conditions we have to analyze.  

 Category A: Items (1) and (11) are related to analog-to-digital converters. 

 Category B: Items (2) to (10) are related to radar signal processing.  

 Category C: Item (12) is related to funding availability. 

 Category D: Item (13) is related to vendor’s technical support ability. 

 Category E: Item (14) is related to vendor’s technology reusability. 

Requirements (1) and (11) suggest the use of digitizers, and requirements (2)–(10) 

suggest the use of FPGAs. Besides the requirements and constraints from our clients, an 

additional constraint for our design is listed below: 

 Use products of a single vendor: Each intellectual property is designed and 

tested for a particular piece of hardware manufactured by a particular 

vendor; therefore, we cannot mix intellectual properties from different 

vendors. 

2. Form an Architecture 

The data bits from an analog-to-digital converter are in serial (single-channel) at 

the rate of 56 megabits-per-second which can be easily processed by a filter without 

using parallelism (multiple parallel channels); therefore demultiplexers and multiplexers 

are not required. To align input serial data bits, inside the filter, there is a built-in 

mechanism searching for the start and stop bits for each data byte for proper data 

synchronization; this is accomplished automatically by most hardware chips with serial 

communication capability. 

Even though we have sum, delta and guard channels, each channel has its own 

data source and can be processed independently without considering different 

propagation delays among them. Table 58 lists the justification for the selection of 

functional components and Figure 54 shows the architecture. For detailed derivation of 

this architecture, see filtering example in Chapter III.  
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Components Requirements references Comment 

ADC (1), (11) For sum channel  in (11) 

ADC (1), (11) For delta channel  in (11) 

ADC (1), (11) For guard channel  in (11) 

Filter (2), (3), (4), (5), (6), (8), (9) Perform basic radar signal processing 

Processor (7), (10) 

Receive detected target signals from 

the filter; perform discrete fast Fourier 

transform if required 

Table 58. Architectural components 

Processor

ADC

ADC

ADC

Filters

Data 

pumps

Data 

consummer

 

Figure 54 An architecture 

3. Build a Tree to Map Functions to Modalities 

Table 59 shows the first level of mapping. Table 60 and Table 61show the second 

level of mapping. Here, “ADC” stands for analog-to-digital converter; “F” stands for 

filter and “P” stands for processor. 
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A ADC ADC ADC F P Possible mapping 

A1 HW HW HW SW * 

Software does not work for multiple Doppler signals. For 

hundreds (thousands) of Doppler signals, parallelism must 

be used. This parallelism is not for the overall 

architecture, but for the processing inside the filter (F). 

A2 HW HW HW FW * OK 

A3 HW HW HW HW * The cost is too high and the design is not flexible. 

A4 HW HW HW * SW OK 

A5 HW HW HW * FW The cost is medium and the design is too complex. 

A6 HW HW HW * HW The cost is too high and the design is not flexible. 

Table 59. Node A 

A2 ADC ADC ADC F P Possible mapping 

A2-1 HW HW HW FW SW OK 

A2-2 HW HW HW FW FW The cost is medium and the design is too complex. 

A2-3 HW HW HW FW HW The cost is too high and the design is not flexible. 

Table 60. Node A2 

Table 61. Node A4 

A4 ADC ADC ADC F P Possible mapping 

A4-1 HW HW HW SW SW 

Software does not work for multiple Doppler signals. For 

hundreds (thousands) of Doppler signals, parallelism must 

be used. This parallelism is not for the overall architecture, 

but for the processing inside the filter (F). 

A4-2 HW HW HW FW SW OK 

A4-3 HW HW HW HW SW The cost is too high and the design is not flexible. 
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A

A2

A2-1

A4

A4-2

 

Figure 55 Node A2 (A4) is the only solution 

The functional components {ADC, ADC, ADC, filter, computer} are mapped to 

the modalities {HW, HW, HW, FW, SW}. Before assigning design patterns (reusable 

intellectual properties for this case) to the functional components, we first must select a 

qualified vendor. Table 62 lists four candidates manufacturing FPGA systems in terms of 

cost, technical support and technology reuse. Technology reuse is defined as the products 

(such as intellectual properties and example codes) from a vendor that can be reused for 

our design. Vendors A, B and C are pseudo names; but Pentek is the actual vendor 

selected for our second case study. 

 
  Vendor-A Vendor-B Pentek Vendor-C 

Model Model A Model B 78661/4995A/4953 Model C 

Cost  $17,500 $249,726 $21,925 $24,303 

Technical  

Support  

$600 per year Annual renewal 

fee of $45,000 

Free for one project Fee based 

Technology  

Reuse  

Radar, software radio, 

 electronic warfare 

(limited IPs) 

High 

performance 

DSP systems 

(limited IPs) 

Conventional Radar  

signal processing 

(basic radar function 

IPs) 

Cellular phone 

applications 

(limited IPs) 

Table 62. Vendors analysis 
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We disqualify Vendor-B and Vendor-C for the following reasons. 

 Vendor-B: the product cost is too high; the annual software license 

renewal fee is $45K. 

 Vendor-C: the focused market is cellular phone applications; therefore, it 

has low technology reusability for radar signal processing. 

The costs for implementation and technical support are about the same for Pentek 

and Vendor-A, so the deciding factor is the technology reusability. After studying their 

published literatures and conversing with their engineers through telephone calls, we 

concluded that Pentek was the optimal vendor for our project since Pentek had more 

intellectual properties (reusable assets) than Vendor-A for radar signal processing. 

4. Reusable Assets 

We use the same methodology to map our requirements to Pentek intellectual 

properties. Pentek provides many built-in IPs which are frequently used for radar signal 

processing. Analog-to-digital Acquisition IP modules capture and move data into 

memories. Digital down converter (DDC) IP cores decimate input samples and output In-

phase/quadrature (I&Q) values. Beamformer IP core has a power meter that continuously 

measures the individual average power output, and threshold detector to automatically 

send an interrupt to the processor if the average power level of any digital down 

converter core falls below or exceeds a programmable threshold [84]. 

We will build an OR tree with embedded ANDs (RG • DC • IQ • DEC • FFT • 

FMG • THD) to find the optimal reusable assets for our requirements. Here, RG stands 

for “range gate”; DC stands for “digital down convert”; IQ stands for “I/Q samples”; 

DEC stands for “decimation“; FFT stands for “fast Fourier transform “; FMG stands for 

“form filter signal magnitude “; THD stands for “threshold detection.”  These 

components represent the requirements. 

There are 3 modalities (IP cores) {AM, DC, BF}; AM stands for “A/D acquisition 

and memory control“; DC stands for “DDC IP core “; BF stands for “Beamforming IP 

core. Table 63 shows 21 possible mappings. Table 64 shows possible 18 possible 

mappings with RG=AM; Table 65 shows 15 possible mappings with RG=AM and 

DC=DC; Table 66 shows 12 possible mappings with RG=AM, DC=DC and I/Q=DC; 
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Table 67 shows 9 possible mappings with RG=AM, DC=DC, I/Q=DC and DEC=DC; 

Table 68 shows 6 possible mappings with RG=AM, DC=DC, I/Q=DC, DEC=DC and 

FMG=BF. 

 
A2-1 RG DC I/Q DEC FFT FMG THD Possible matching 

B1 AM * * * * * * yes 

B2 DC * * * * * * no 

B3 BF * * * * * * no 

B4 * AM * * * * * no 

B5 * DC * * * * * yes 

B6 * BF * * * * * no 

B7 * * AM * * * * no 

B8 * * DC * * * * yes 

B9 * * BF * * * * no 

B10 * * * AM * * * no 

B11 * * * DC * * * yes 

B12 * * * BF * * * no 

B13 * * * * AM * * no 

B14 * * * * DC * * no 

B15 * * * * BF * * no 

B16 * * * * * AM * no 

B17 * * * * * DC * no 

B18 * * * * * BF * yes 

B19 * * * * * * AM no 

B20 * * * * * * DC no 

B21 * * * * * * BF yes 

Table 63. Expanding node A2-1 
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B1 RG DC I/Q DEC FFT FMG THD Possible matching 

B1-1 AM AM * * * * * no 

B1-2 AM DC * * * * * yes 

B1-3 AM BF * * * * * no 

B1-4 AM * AM * * * * no 

B1-5 AM * DC * * * * yes 

B1-6 AM * BF * * * * no 

B1-7 AM * * AM * * * no 

B1-8 AM * * DC * * * yes 

B1-9 AM * * BF * * * no 

B1-10 AM * * * AM * * no 

B1-11 AM * * * DC * * no 

B1-12 AM * * * BF * * no 

B1-13 AM * * * * AM * no 

B1-14 AM * * * * DC * no 

B1-15 AM * * * * BF * yes 

B1-16 AM * * * * * AM no 

B1-17 AM * * * * * DC no 

B1-18 AM * * * * * BF yes 

Table 64. Expanding node B1 

B1-2 RG DC I/Q DEC FFT FMG THD Possible matching 

B1-2-1 AM DC AM * * * * no 

B1-2-2 AM DC DC * * * * yes 

B1-2-3 AM DC BF * * * * no 

B1-2-4 AM DC * AM * * * no 

B1-2-5 AM DC * DC * * * yes 

B1-2-6 AM DC * BF * * * no 

B1-2-7 AM DC * * AM * * no 

B1-2-8 AM DC * * DC * * no 

B1-2-9 AM DC * * BF * * no 

B1-2-10 AM DC * * * AM * no 

B1-2-11 AM DC * * * DC * no 

B1-2-12 AM DC * * * BF * yes 

B1-2-13 AM DC * * * * AM no 

B1-2-14 AM DC * * * * DC no 

B1-2-15 AM DC * * * * BF yes 

Table 65. Expanding node B1-2 
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B1-2-2 RG DC I/Q DEC FFT FMG THD Possible matching 

B1-2-2-1 AM DC DC AM * * * no 

B1-2-2-2 AM DC DC DC * * * yes 

B1-2-2-3 AM DC DC BF * * * no 

B1-2-2-4 AM DC DC * AM * * no 

B1-2-2-5 AM DC DC * DC * * no 

B1-2-2-6 AM DC DC * BF * * no 

B1-2-2-7 AM DC DC * * AM * no 

B1-2-2-8 AM DC DC * * DC * no 

B1-2-2-9 AM DC DC * * BF * yes 

B1-2-2-10 AM DC DC * * * AM no 

B1-2-2-11 AM DC DC * * * DC no 

B1-2-2-12 AM DC DC * * * BF yes 

Table 66. Expanding node B1-2-2 

B1-2-2-2 RG DC I/Q DEC FFT FMG THD Possible matching 

B1-2-2-2-1 AM DC DC DC AM * * no 

B1-2-2-2-2 AM DC DC DC DC * * no 

B1-2-2-2-3 AM DC DC DC BF * * no 

B1-2-2-2-4 AM DC DC DC * AM * no 

B1-2-2-2-5 AM DC DC DC * DC * no 

B1-2-2-2-6 AM DC DC DC * BF * yes 

B1-2-2-2-7 AM DC DC DC * * AM no 

B1-2-2-2-8 AM DC DC DC * * DC no 

B1-2-2-2-9 AM DC DC DC * * BF yes 

Table 67. Expanding node B1-2-2-2 

B1-2-2-2-6 RG DC I/Q DEC FFT FMG THD Possible matching 

B1-2-2-2-6-1 AM DC DC DC AM BF * no 

B1-2-2-2-6-2 AM DC DC DC DC BF * no 

B1-2-2-2-6-3 AM DC DC DC BF BF * no 

B1-2-2-2-6-4 AM DC DC DC * BF AM no 

B1-2-2-2-6-5 AM DC DC DC * BF DC no 

B1-2-2-2-6-6 AM DC DC DC * BF BF yes 

Table 68. Expanding node B1-2-2-2-6 
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Reuse

B1 B5 B8 B11 B18 B21

B1-2 B1-5 B1-8 B1-15 B1-18

B1-2-2 B1-2-5
B1-2-

12

B1-2-

15

B1-2-

2-2

B1-2-

2-9

B1-2-

2-12

B1-2-2-2-6 B1-2-2-2-9

B1-2-2-2-

6-6

 

Figure 56 Reusable assets mappings 

The apparently best solution is B1-2-2-2-6-6 {AM, DC, DC, DC, *, BF, BF} as 

shown in Figure 56 and Table 69. Six out of seven (86 percent) requirements are mapped 

to reusable assets; only one requirement (14 percent of all requirements), the Fast Fourier 

Transform Doppler filter bank, cannot be mapped to an intellectual property module, and 

we will have to design this module. 
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Requirements Mapped IP cores  

RG (range gate) AM (ADC acquisition and memory control) 

DC (digital down convert) DC (DC IP core) 

IQ (I/Q samples) DC (DDC IP core) 

DEC (decimation) DC (DDC IP core) 

FFT (fast Fourier transform) None  

FMG (form filter signal 

magnitude) 
BF (beamforming IP core) 

THD (threshold detection) BF (beamforming IP core) 

Table 69. Map requirements to IP cores 

B. TESTS 

1. Purpose of Our Tests 

The purpose of this section is to prove that we are able to implement correct 

designs consistent with the design pattern mapping in Table 69. Filter signal magnitude 

forming (FMG) and threshold detection (THD) were not tested due to the lack of funding 

as shown in Table 70. 

 

Requirements Mapped IP cores  Tested 

RG (range gate) AM (ADC acquisition and memory control) Yes 

DC (digital down convert) DC (DDC IP core) Yes 

IQ (I/Q samples) DC (DDC IP core) Yes 

DEC (decimation) DC (DDC IP core) Yes 

FFT (fast Fourier transform) None  Yes 

FMG (form filter signal magnitude) BF (beamforming IP core) No 

THD (threshold detection) BF (beamforming IP core) No 

Table 70. Map requirements to IP cores 

2. Test Specifications 

Our overall goal is to demonstrate the capability in programing Pentek digital 

signal processing card to perform pulse Doppler processing to detect two Doppler shifts, 

one at 40 kilohertz and the other at 25 kilohertz; the carrier frequency is at 5 megahertz. 

Detailed test specifications are in Section B.4 [85]. 
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3. Pentek Software IP Cores 

There are three major IP cores built in Pentek embedded system and they are 

analog-to-digital converter acquisition and memory control, digital down-converter 

(DDC) and beamformers as described in Table 71 [86]. 

 
IP cores Description  

ADC acquisition &  

memory control 

“Each IP module can receive data from any of the four ADCs or a test signal 

generator. Each IP module has an associated memory bank for buffering data 

in FIFO mode or for storing data in transient capture mode. All memory 

banks are supported with DMA engines for easily moving ADC data through 

the PCIe interface. DMA, direct memory access, is a way to access memory 

without going through the central processing unit. PCIe (peripheral 

components interconnect express) is a high-speed serial computer expansion 

standard.” [86] 

DDC  

(digital down converter) 

“Each DDC has an independent 32-bit tuning frequency setting that ranges 

from DC to ƒs, where ƒs is the ADC sampling frequency. Each DDC can have 

its own unique decimation setting, supporting as many as four different output 

bandwidths for the board. Decimations can be programmed from 2 to 65,536 

providing a wide range to satisfy most applications. The decimating filter for 

each DDC accepts a unique set of user-supplied 18-bit coefficients. The 80% 

default filters deliver an output bandwidth of 0.8*ƒs/N, where N is the 

decimation setting. The rejection of adjacent-band components within the 

80% output bandwidth is better than 100 dB. Each DDC delivers a complex 

output stream consisting of 24-bit I + 24-bit Q or16-bit I + 16-bit Q samples at 

a rate of ƒs/N.” [86] 

Beamformer “Each DDC core contains programmable I & Q phase and gain adjustments 

followed by a power meter that continuously measures the individual average 

power output. In addition, each DDC core includes a threshold detector to 

automatically send an interrupt to the processor if the average power level of 

any DDC core falls below or exceeds a programmable threshold. A 

programmable summation block provides summing of any of the four DDC 

core outputs. A power meter and threshold detect block is provided for the 

summed output. “[86] 

Table 71. Pentek intellectual property cores 

4. Tests Configurations, Methodology and Results 

a. Signals and IP Cores Configurations 

The first input signal was a pulse radar signal at 5.04 megahertz with pulse width 

of 1.14 microseconds. This signal simulated an echo at 5 megahertz carrier frequency 

with 40 kilohertz Doppler shift frequency as shown in Table 72. 
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Input signal #1 

  Frequency Period 

Input signal 5.04E+06   

Tuning frequency 5.00E+06   

Doppler shift 4.00E+04 2.5E-05 

Pulse width 1.14E-06   

Table 72. Input signal #1 characteristics 

The second input signal was a pulse radar signal at 5.025 megahertz with pulse 

width of 1.14 microseconds. This signal simulated an echo at 5 megahertz carrier 

frequency with 25 kilohertz Doppler shift frequency as shown in Table 73. 

 

Input signal #2 

  Frequency Period 

Input signal 5.025E+06   

Tuning frequency 5.00E+06   

Doppler shift 2.50E+04 4.00E-05 

pulse width 1.14E-06   

Table 73. Input signal #2 characteristics 

The periodic frequency (PRF) is 109,375 hertz; the PRF is the number of pulses 

per second. The reciprocal of the pulse repetition frequency is the pulse repetition period 

(PRT) as shown in Table 74. 

 

Trigger (PRF) 

  Frequency (PRF) Period (PRT) 

trigger period        109,375  9.14E-06 

Table 74. External trigger characteristics 

We removed the 5 megahertz carrier frequency form the input signals with a DDC 

at a tuning frequency of 5 megahertz. DDC stands for digital down-converter which 

converts a digitized signal to a baseband signal. Baseband is the original band of 

frequencies of the signal before being modulated with 5 megahertz carrier for 

transmission. After down conversion, we decimated the baseband signal at a factor of 16; 

decimation means a reduction in the number of samples. For this case, we kept every 16
th
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sample of the input digital signal. DDC sampling rate is calculated as (ADC sampling 

rate ÷ 16) = (56 megahertz ÷ 16) = 3.5 megahertz. The configurations of DDC IP core are 

listed in Table 75. 

 

DDC 

  Frequency Period 

decimation 16   

DDC sampling rate 3.50E+06 2.86E-07 

Table 75. DDC IP core configurations 

The configurations of ADC IP core are listed in Table 76. The ADC sampling rate 

is 56 megahertz.  

 

ADC 

  Frequency Period Note  

ADC sampling rate 5.60E+07 1.79E-08   

software delay (1st) 60 1.125E-06 Delay after the trigger  

#ADC samples (1st) 80 1.429E-06 Samples after the 1
st
 delay 

software delay (2nd) 11 2.500E-07  Delay after the 1
st
 sampling 

  2.804E-06   

#ADC samples (2nd) 80 1.429E-06 Samples after the 2
nd

 delay 

  4.232E-06   

Table 76. ADC IP core configurations 

b. Methodology (Software Program in C Programming Language) 

The program for the FPGA is briefly described below: 

 Step 1: Wait for an external trigger. 

 Step 2: Once triggered, delay for 60 ADC cycles. 

 Step 3: Capture ADC samples for 80 ADC cycles. 

 Step 4: Decimate at 16 (only keep 16
th

 data sample). 

 Step 5: Filter out aliasing and noise. 

 Step 6: Store 4 DDC samples into a FIFO memory. 

 Step 7: Delay for another 11 ADC cycles. 

 Step 8: Capture ADC samples for 80 ADC cycles. 

 Step 9: Decimate at 16 (only keep 16
th

 data sample). 
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 Step 10: Filter out aliasing and noise. 

 Step 11: Store 4 DDC samples into the same FIFO memory. 

 Repeat steps 1 through 11 for 64 times. 

 Transfer FIFO data to a workstation. 

 Separate signals one and two into two different data files. 

 Apply FFT to both data files by using MATLAB. 

c. Test Results 

Figure 57 and Figure 58 show the captured two Doppler shifts in two-dimensional 

and three-dimensional plots. The frequency and power level for the first Doppler shift are 

25 kilohertz and about 90,000 raw counts. The frequency and power level for the second 

Doppler shift are 40 kilohertz and about 130,000 raw counts.  

 

Figure 57 Two detected pseudo pulse Doppler target returns in a 2-D plot 
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Figure 58 Two detected pseudo pulse Doppler target returns in a 3-D plot 

The generated source Doppler signals are shown in Figure 59. The orange square 

wave represents the trigger signals; the taller blue pulse represents the 40 kilohertz 

Doppler shift at about 4.2 volts; the shorter blue pulse represents the 25 kilohertz Doppler 

shift at about 3 volts; the green and purple pulses are used to measure timing for blue 

pulses (Doppler shifts). 
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Figure 59 Two input signals before detection 

For this case study, we are only looking for the presence of Doppler shifts and 

their frequencies; the exact power levels of these signals are not important. As a result, 

based on Table 77, we conclude that our test is successful.  

 

    Generated Captured 

  Delay 60 ADC cycles 60 ADC cycles 

1st  

Doppler 

Frequency 40 kilohertz 40 kilohertz 

Power 4.2 volts 140K raw count 

  Delay 11 ADC cycles 11 ADC cycles 

2nd 

Doppler 

Frequency 25 kilohertz 25 kilohertz 

Power 3.0 volts 90K raw count 

Table 77. Generated and captured Doppler shifts 

C. TESTS CONCLUSION 

By using our new software/firmware/hardware codesign methodology, we 

showed we can partition the embedded system into appropriate modalities and then map 

them to existing intellectual properties for design efficiently.  

We would like to point out that this is not the first time we worked on this project. 

From 2011 to 2012, we worked on the same project with ten engineers, $3.16 million and 

a period of more than 12 months, but failed to deliver any software product that worked, 
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even though all software and hardware parts were procured and partial analog hardware 

(e.g., a waveform generator and an analog microwave receiver) was designed and built. 

In 2013, with two engineers, $90K and a period of five months, we were able to 

deliver a Doppler range gating successfully without reusing any software tools and design 

from the previous work. This was because the software tool license from the first attempt 

had expired and we could not afford to pay the annual renewal fee of $45,000 in 2013 

and there were no software deliverables from the first attempt anyway. Table 78 shows 

the comparisons between these two attempts; the first attempt did not use any systematic 

methodology and the second attempt used the systematic software/firmware/hardware 

codesign methodology. 

 

SW/FW/HW 

methodology 
Duration Cost Man Software deliverables 

No 12+ months (2011-2012) $3.16M 10 None 

Yes 5 months (May-Sep, 2013) $95K 2 Doppler range gating 

Ratio 3:1 33:1 5:1   

Table 78. Comparisons between with and without the SW/FW/HW methodology 
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VII. CASE STUDY THREE—HIDDEN MARKOV MODEL 

A. INTRODUCTION 

A hidden Markov model (HMM) is a triple (Π, A, B) as described below [87]. 

Π = (πi) is the vector of the initial state probabilities, where 1 ≤ i ≤ M, M = the 

number of hidden states; each hidden state has M outgoing transitions to the other M-1 

states and back to itself. 

  (   ) is the transition matrix;    (   |      
  is the probability from a hidden 

state    at time t-1 to another hidden state    at time t. 

  (   ) is the confusion matrix;        |   ) is the probability from a hidden 

state    to an observed state    at time t. 

Two assumptions are made when calculating a hidden Markov model: one is that 

each probability in the state transition matrix and in the confusion matrix is time-

independent, and the other is that the choice of state is made entirely on the basis of the 

previous state (first order Markov model).  

Evaluation and decoding are two important applications for hidden Markov 

models. Evaluation uses a forward algorithm to calculate the probability of an 

observation sequence given a particular hidden Markov model. If a sequence of 

observations is described by multiple hidden Markov models, we can use the forward 

algorithm to select the most probable hidden Markov model. Decoding uses the Viterbi 

algorithm to determine the most probable sequence of hidden states given a sequence of 

observations for a particular hidden Markov model. 

Table 79 summarizes the calculations for initialization and recursion as well as 

the objectives for forward algorithm and Viterbi algorithm. 

 

 

 

 

 



 162 

 Forward algorithm Viterbi algorithm 

Observed states         
      

 

Hidden states                     

Initial probability      

Transition matrix     

Confusion matrix     
 

t=1 

Initialization 
              

 
              

 

t=2 to N 

Recursion 

        ∑     

 

   

       
 

         
 

               
  

Objective 

  (    )  ∑     

 

   

 
            

 
             

Table 79. Forward algorithm and Viterbi algorithm 

B. FORWARD ALGORITHM CASE STUDY 

1. Develop Requirements and Define Constraints 

The requirement is to map the functional components in the forward algorithm to 

software, firmware or hardware. The constraint is to assign all functional components to 

one single modality (software, firmware or hardware) without mixing them together to 

avoid interface design among different platforms (modalities). 

2. Form an Architecture 

The functional components are an analog-to-digital converter (ADC), a process 

for extracting initial state probabilities (I), a process for extracting probabilities from a 

transition matrix (T), a process for extracting probabilities from a confusion matrix (C), 

recursive computations (partial probabilities) (R), and the sum of all partial probabilities 

(S) as shown in Figure 60. 
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R SADC

TI C

HW

 

Figure 60 Hidden Markov model architecture 

The analog-to-digital converter (ADC) must be hardware since input signal is 

analog. The initial, transition and confusion probabilities are predefined in memory. The 

forward algorithm is based on recursive computations, i.e. obtaining the new value by 

using the old value.  

3. Build a Tree to Map Functions to Modalities 

To simplify the design, we will focus on the core computations of forward 

algorithm without considering human interface software and system configurations. In 

addition, we prefer to assign all remaining functions (I, T, C, R and S) to one single 

modality (software, firmware or hardware) without mixing them together to avoid 

interface design among different platforms (modalities). 

Table 80 and Table 81 show the first mapping solution (software) and Table 82 

shows the second mapping solution (firmware) for the two possible options shown in 

Figure 61. Here, “ADC” stands for analog-to-digital converter; “I” stands for 

initialization; “T” stands for transition matrix; “C” stands for confusion matrix; “R” 

stands for recursion; “S” stands for sum of partial probabilities. 
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A ADC I T C R S 

 Possible 

Mapping Justification 

A1 SW * * * * * NO ADC must be hardware 

A2 FW * * * * * NO ADC must be hardware 

A3 HW * * * * * OK ADC must be hardware 

A4 * SW * * * * OK   

A5 * FW * * * * OK   

A6 * HW * * * * NO too costly, not flexible 

A7 * * SW * * * OK   

A8 * * FW * * * OK   

A9 * * HW * * * NO too costly, not flexible 

A10 * * * SW * * OK   

A11 * * * FW * * OK   

A12 * * * HW * * NO too costly, not flexible 

A13 * * * * SW * OK   

A14 * * * * FW * OK   

A15 * * * * HW * NO too costly, not flexible 

A16 * * * * * SW OK   

A17 * * * * * FW OK   

A18 * * * * * HW NO too costly, not flexible 

         

A3 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-1 HW SW * * * * OK   

A3-2 HW FW * * * * OK   

A3-3 HW HW * * * * NO too costly, not flexible 

A3-4 HW * SW * * * OK   

A3-5 HW * FW * * * OK   

A3-6 HW * HW * * * NO too costly, not flexible 

A3-7 HW * * SW * * OK   

A3-8 HW * * FW * * OK   

A3-9 HW * * HW * * NO too costly, not flexible 

A3-10 HW * * * SW * OK   

A3-11 HW * * * FW * OK   

A3-12 HW * * * HW * NO too costly, not flexible 

A3-13 HW * * * * SW OK   

A3-14 HW * * * * FW OK   

A3-15 HW * * * * HW NO too costly, not flexible 

Table 80. Nodes A and A3 

Both A3-1 (I=SW) and A3-2 (I=FW) are acceptable, but first we will explore the 

branch for I=SW. 
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A3-1 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-1-1 HW SW SW * * * OK   

A3-1-2 HW SW FW * * * NO mutually exclusive 

A3-1-3 HW SW HW * * * NO too costly, not flexible 

A3-1-4 HW SW * SW * * OK   

A3-1-5 HW SW * FW * * NO mutually exclusive 

A3-1-6 HW SW * HW * * NO too costly, not flexible 

A3-1-7 HW SW * * SW * OK   

A3-1-8 HW SW * * FW * NO mutually exclusive 

A3-1-9 HW SW * * HW * NO too costly, not flexible 

A3-1-10 HW SW * * * SW OK   

A3-1-11 HW SW * * * FW NO mutually exclusive 

A3-1-12 HW SW * * * HW NO too costly, not flexible 

         

A3-1-1 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-1-1-1 HW SW SW SW * * OK   

A3-1-1-2 HW SW SW FW * * NO mutually exclusive 

A3-1-1-3 HW SW SW HW * * NO too costly, not flexible 

A3-1-1-4 HW SW SW * SW * OK   

A3-1-1-5 HW SW SW * FW * NO mutually exclusive 

A3-1-1-6 HW SW SW * HW * NO too costly, not flexible 

A3-1-1-7 HW SW SW * * SW OK   

A3-1-1-8 HW SW SW * * FW NO mutually exclusive 

A3-1-1-9 HW SW SW * * HW NO too costly, not flexible 

         

A3-1-1-1 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-1-1-1-1 HW SW SW SW SW * OK   

A3-1-1-1-2 HW SW SW SW FW * NO mutually exclusive 

A3-1-1-1-3 HW SW SW SW HW * NO too costly, not flexible 

A3-1-1-1-4 HW SW SW SW * SW OK   

A3-1-1-1-5 HW SW SW SW * FW NO mutually exclusive 

A3-1-1-1-6 HW SW SW SW * HW NO too costly, not flexible 

         

A3-1-1-1-1 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-1-1-1-1-1 HW SW SW SW SW SW OK solution  

A3-1-1-1-1-2 HW SW SW SW SW FW NO mutually exclusive 

A3-1-1-1-1-3 HW SW SW SW SW HW NO too costly, not flexible 

Table 81. Nodes A3-1, A3-1-1, A3-1-1-1 and A3-1-1-1-1 

One solution is node A3-1-1-1-1-1 = {ADC, I, T, C, R, S} = {HW, SW, SW, SW, 

SW, SW}. We can get another solution by expanding node A3-2 (I=FW). 
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A3-2 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-2-1 HW FW SW * * * NO mutually exclusive 

A3-2-2 HW FW FW * * * OK   

A3-2-3 HW FW HW * * * NO too costly, not flexible 

A3-2-4 HW FW * SW * * NO mutually exclusive 

A3-2-5 HW FW * FW * * OK   

A3-2-6 HW FW * HW * * NO too costly, not flexible 

A3-2-7 HW FW * * SW * NO mutually exclusive 

A3-2-8 HW FW * * FW * OK   

A3-2-9 HW FW * * HW * NO too costly, not flexible 

A3-2-10 HW FW * * * SW NO mutually exclusive 

A3-2-11 HW FW * * * FW OK 

 A3-2-12 HW FW * * * HW NO too costly, not flexible 

     

 

   

A3-2-2 ADC I T C R S 

Possible 

Mapping   Justification 

A3-2-2-1 HW FW FW SW * * NO mutually exclusive 

A3-2-2-2 HW FW FW FW * * OK   

A3-2-2-3 HW FW FW HW * * NO too costly, not flexible 

A3-2-2-4 HW FW FW * SW * NO mutually exclusive 

A3-2-2-5 HW FW FW * FW * OK   

A3-2-2-6 HW FW FW * HW * NO too costly, not flexible 

A3-2-2-7 HW FW FW * * SW NO mutually exclusive 

A3-2-2-8 HW FW FW * * FW OK   

A3-2-2-9 HW FW FW * * HW NO too costly, not flexible 

        

 

3-2-2-2 ADC I T C R S 

Possible 

Mapping   Justification 

A3-2-2-2-1 HW FW FW FW SW * NO mutually exclusive 

A3-2-2-2-2 HW FW FW FW FW * OK   

A3-2-2-2-3 HW FW FW FW HW * NO too costly, not flexible 

A3-2-2-2-4 HW FW FW FW * SW NO mutually exclusive 

A3-2-2-2-5 HW FW FW FW * FW OK   

A3-2-2-2-6 HW FW FW FW * HW NO too costly, not flexible 

         

A3-2-2-2-2 ADC I T C R S 

 Possible 

Mapping  Justification 

A3-2-2-2-2-1 HW FW FW FW FW SW NO mutually exclusive 

A3-2-2-2-2-2 HW FW FW FW FW FW OK solution  

A3-2-2-2-2-3 HW FW FW FW FW HW NO too costly, not flexible 

Table 82. Nodes A3-2, A3-2-2, A3-2-2-2 and A3-2-2-2-2 

Another solution is node A3-2-2-2-2-2 = {ADC, I, T, C, R, S} = {HW, FW, FW, 

FW, FW, FW}. Figure 61 shows these two options. 
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Figure 61 Two possible options 

4. Discussion 

Our methodology allows for two acceptable solutions here, so it is best to expand 

both on the design tree. The software implementation of the forward algorithm has the 

advantages of low design complexity and low cost, but its disadvantage is being slow in 

speed. The firmware implementation has the advantage of being fast in speed, but has the 

disadvantages of medium cost and high design complexity.  

If speed is critical, firmware implementation is a better choice over software for 

two reasons. First, if there are multiple hidden Markov models for a sequence of 
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observations, we can compute these models in parallel (using firmware) instead of serial 

(using software) and then select the one with the best probability for the observation. 

Second, each intermediate hidden state depends on the probabilities of all previous 

hidden states, transition probabilities, and confusion probabilities; the computations from 

all previous hidden states can be performed in parallel (using firmware) instead of serial 

(using software) for time efficiency. Table 83 summarizes the advantages and 

disadvantages of these two options. 

 

Options Option 1 Option 2 

Leaf-node A3-1-1-1-1-1 A3-2-2-2-2-2 

Partitioning Software Firmware 

Design complexity Low  High   

Speed Slow  Fast  

Cost Low  Medium  

Sequential All sequential  Sequential for recursion 

Parallel None 

Calculate partial probabilities for all M hidden states at time t 

in parallel (simultaneously) 

Multiple hidden 

Markov models 

Too slow for 

software 

When multiple hidden Markov models are used, all models can 

be calculated simultaneously and then the model with the best 

probabilities is selected for the observed sequence 

Table 83. Two options 

C. METHODOLOGY FOR VITERBI ALGORITHM 

The mapping of the Viterbi algorithm to software, firmware or hardware is similar 

to forward algorithm except that the summation (Σ) in the forward algorithm is replaced 

with max to calculate the most likely route to the current position, rather than the 

total probability. In addition, the Viterbi algorithm remembers the best route to the 

current position by maintaining a “back-pointer” through the argmax calculation.  Thus a 

design for it will have a few differences but many similarities. 
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VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

A. OUR CLAIM 

Based on the test results in Chapters V and VI, we claim that rather than the trial-

and-error approach being currently practiced for embedded system design, our new 

software/firmware/hardware codesign methodology using more software engineering has 

the potential to systematically build correct designs efficiently to satisfy the requirements 

provided by the stakeholders. 

B. OUR CONTRIBUTIONS 

Our first contribution is to create a new software/firmware/hardware codesign 

methodology to systematically build correct designs efficiently to satisfy the 

requirements provided by the stakeholders. This codesign methodology includes 

requirements development, architecture forming, software/firmware/hardware 

partitioning, design-pattern mapping, new-design pattern synthesis, integration, and 

testing.  

Software/hardware partitioning is difficult in codesign according to the codesign 

group at U.C. Berkeley. Our codesign methodology first builds an tree with conjunctions 

and disjunctions of possible mappings from functional components to the options of 

software, firmware, and hardware following requirements and constraints; second, rates 

the cost of each mapping; third, searches the tree to find a minimum weighted sum of the 

costs; last, identifies existing design patterns once design is selected and otherwise, 

synthesizes new design patterns. 

Our second contribution is the identification of five design patterns for 

reconfigurable-computing based embedded systems; these design patterns could be added 

to the 89 patterns collected by André DeHon et al at California Institute of Technology 

[50]. The data alignment design pattern can be used to align multiple parallel data bit-

streams and forwarded source-synchronous sampling clocks to ensure correct data 

sampling. The post-deserialization bits remapping design pattern can be used to remap bit 
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addresses after demultiplexing from an analog-to-digital converter for data processing. 

The pre-serialization bits remapping design pattern can be used to remap bit addresses 

before multiplexing for serial transmission. The polyphase DFT filter banks can be used 

for dividing a wide bandwidth input signal into multiple frequency subbands, processing 

all subbands in parallel independently and differently, and then combining the processed 

subbands into a single serial output for transmission. The switch-and-filter architecture 

design pattern can be used to move ultra-fast serial data from a faster data source to a 

slower filter for processing by deserializing it into parallel channels, process the data, and 

then combine parallel data into a single serial data stream for output. We have applied our 

software/firmware/hardware codesign methodology to two projects with successful 

results. One project was for ultra-wide instantaneous bandwidth signal digitization for a 

period of 2 years from 2011 to 2012 as described in the first case study. The other was 

airborne interceptor Doppler range gating for a period of five months in 2013 as 

described in the second case study. We also applied our methodology to a third case 

study that permitted more solution options, to illustrate the flexibility of the methodology, 

but this study has not yet been implemented. 

C. FUTURE RESEARCH DIRECTIONS 

To simplify the analysis, we used an OR tree and A* search with embedded AND 

algorithm for software/firmware/hardware partitioning and design pattern mapping. To 

handle more complex design problems, a methodology of using an AND/OR tree and 

AO* search algorithm should be investigated since AO* is the appropriate generalization 

of A* then.  

Even though cost estimation was not critical for our case studies of 

software/firmware/hardware partitioning and in choosing design patterns, it could be 

important for other applications. In the future, we would like to investigate the cost 

estimation for low-level design implementation, such as identifying cost drivers, 

modelling the cost-estimating relation for each cost driver, selecting the best probability 

distribution models, and calculating weighted sum for different cost drivers. 
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More research should be conducted in identifying and cataloging design patterns 

for firmware and hardware because these patterns can drastically improve the success rate 

and efficiency of design. 
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APPENDIX A. CASE STUDY ONE BACKGROUND 

Appendix A presents more detailed background for our first case study in Chapter 

V. 

A. CHALLENGES WE ARE FACING  

1. Background (Two-Ray Segment Propagation Model) 

Joint Electronic Warfare Effect Laboratory uses two-ray segment propagation 

model to simulate the transmitter-to-receiver relationship. This model suggests that the 

transmitting and receiving antennas are close to the ground, so that there are two paths 

from a transmitter to a receiver: the direct path, and a second path due to ground 

reflection. In lab, the distance for these paths is simulated by power attenuation. When 

the range is less than RCROSS (crossover range) the path loss is approximated by “1 over R 

squared” free space model. When the range is more than RCROSS, the path loss is 

approximated by “1 over R to the 4” model [88]. 

Crossover range 

        
        

 
  

RCROSS = cross over range 

h1  = transmitting antenna height 

h2 = receiving antenna height 

λ  = wavelength of the transmitted signal 

Path loss for ranges less than crossover 

    
           

     
 

Or in dB form: 

 PR = Pt + Gt + GR – 32.4 – 20 log f – 20 log R  

Equivalent attenuation between a transmitter and a receiver: 



 174 

 AR = PR - Pt = Gt + GR – 32.4 – 20 log f – 20 log R equation (1) 

Path loss for ranges more than crossover 

    
                  

 

    

Or in dB form: 

 PR = Pt + Gt + GR + 20 log (h1 × h2) – 40 log R 

Equivalent attenuation between a transmitter and a receiver: 

 AR = PR - Pt = Gt + GR + 20 log (h1 × h2) – 40 log R equation (2) 

PR =  received power in dBm 

Pt =  transmitted power in dBm 

Gt =  transmitter antenna gain 

GR =  receiver antenna gain 

λ =  transmitted wavelength 

R =  distance between transmitter and receiver in kilometers 

f  =  frequency in MHz 

Some assumptions are made when using the two-ray model. (1) The terrain must 

be relatively flat, since only one reflection is calculated. (2) The antenna gains do not 

vary appreciably over the desired ranges. (3) The range from the antenna is long enough 

to be in the far-field (the distance must be greater than 2D
2
/ λ, where D is the largest 

dimension of the antenna, λ is the transmitted wavelength). When calculating attenuation, 

soil type and polarizations are also considered (not addressed in this dissertation). 

2. Using an Example to Illustrate the Challenges in Signal Simulation 

Figure 62 shows an example of signals interference caused by a ground-jamming 

vehicle, represented by EMI (electromagnetic interference), to the communication 

between two airplanes (a transmitter and a receiver). The power loss due to distance is 

simulated by using a two-ray segment propagation software model. 
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Figure 62 Distance is simulated by path loss 

To simulate field condition, we use path loss equations to calculate signal 

attenuation caused by distance, and apply this calculated power attenuation to a 

programmable attenuator. In addition, a combiner is used to combine signals as an 

antenna receiving multiple radiofrequency signals. A splitter is used to split signal into 

multiple equal amplitude signals so that signals can be tested and measured 

simultaneously. For example, the lab simulation for the signal interference among two 

airplanes and one ground-jamming vehicle is shown in Figure 63. The functions and 

limitations for each component used in this simulation are described in Table 84. 

 

  Purpose Limitation 

Attenuators 
In field, a received signal gets weaker with increasing 

distance. In lab, the signal is weakened with an attenuator. 

Time delay, accuracy, flat 

fading response, power 

consumption 

Combiners 
In field, signal and EMI combine in the radio receiver 

antenna. In lab, we use combiner to combine signals. 

Power loss, narrow 

bandwidth, isolation 

(sneak path). Sneak path is 

defined as a signal at one 

input of a 

combiner/splitter sneaks 

over the other input. 
Splitters 

Split the signal into two signals with equal power for test 

and measurement. 

Table 84. Purpose and limitation of attenuators, combiners, splitters 
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Figure 63 Simulation by using programmable attenuators  

Another limitation of analog approach to signals simulation is that the number of 

interconnections among signal sources increases unscalably when the number of sources 

increases as illustrated in Table 85, Figure 64 and Figure 65. 

The number of connections among N transmitters/receivers for analog and digital 

approaches can be calculated in equations (3) and (4). 

 N (analog) = N × (N-1), bidirectional equation (3) 

 N (digital) = 2 × N, bidirectional equation (4) 

 
         

          
 

      

  
 

   

 
  

A comparison between analog and digital approaches is listed in Table 85 for 1, 2, 

3, 4, 8, 16, 32, 64 and 128 signal sources. 

#sources 

Analog 

Inter-connections 

Digital 

inter-connections 

1 - 2 

2 2 4 

3 6 6 

4 12 8 

8 56 16 

16 240 32 

32 992 64 

64 4,032 128 

128 16,256 256 

Table 85. Analog and digital interconnections 
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To show the comparison in complexity graphically between analog and digital 

approaches, four signal sources are used in Figure 64 and eight signal sources are used in 

Figure 65. 

N = 4 

N (analog) = 4×3 = 12 (bi-directional) 

N (digital) = 8 (bi-directional) 

DSP

 

Figure 64 N=4, N(analog)=12, N(digital)=8 

N=8 

N (analog) = 8×7 = 56 (bi-directional) 

N (digital) = 16 (bi-directional) 

 

Figure 65 N=8, N(analog)=56, N(digital)=16 
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To reduce the limitations in Table 84 and Table 85, an ADC/FPGA/DAC system 

was used consisting of (1) an analog-to-digital converter, (2) an FPGA, and (3) a digital-

to-analog converter. An analog-to-digital converter converts input radiofrequency signals 

to digital data. An FPGA reads digital data from an analog-to-digital converter, process 

them, and then outputs the processed data to a digital-to-analog converter. The digital-to-

analog converter in terms converts the processed digital data to radiofrequency signals. 

With this approach, we can (1) simulate frequency-dependent power attenuation by using 

polyphase discrete Fourier transform filter banks inside an FPGA (attenuation factors are 

calculated by an external personal computer), (2) combine signals by superimposing 

(adding and subtracting) numerical data, (3) split signals by numerical duplications, and 

(4) replace physical interconnections with software in an FPGA as shown in Figure 66. 

EMI

FPGA

ADC

ADC

DAC

Receiver

transmitter

Spectrum 

Analyzer
Interference

 

Figure 66 Simulation by using an ADC/FPGA/DAC system 

B. HOW DO ADC/FPGA/DAC SYSTEMS SOLVE OUR PROBLEMS 

The ADC/FPGA/DAC approach solves several problems inherent to the analog 

approach. 

 Frequency-fading issue: From equations (1) and (2), we can see that the 

power attenuation is not only dependent of distance, but also frequency. 

Polyphase filter banks permit easier implementation of this. 

 Power-loss issue: There will be no power insertion loss caused by analog 

combiners and splitters, since we are dealing with pure numbers inside an 

FPGA. A total power loss budget for analog and digital approaches are 

listed in Table 86. QD4-Linker and QD8-Linker are analog attenuators for 
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4 and 8 radiofrequency sources respectively used in Joint Electronic 

Warfare Effects Laboratory (JEWEL) for signal simulation. 

 
Power Loss Analog Digital 

QD4-Linker (4 RF sources) 28dB None 

QD8-Linker (8 RF sources) 32dB None 

Table 86. Analog and digital power budget 

 Isolation Issue: A ”sneak path” is no longer an issue since we combine 

multiple signals by superimposing them together digitally (numerically) 

by addition and subtraction. 

 Time Delay Issue: The time delay for an electromechanical relay 

attenuator is replaced by software attenuation. The delay is in 

microseconds instead of hundreds-of-milliseconds. The timing budget for 

analog and digital approaches is listed in Table 87. 

 
 Analog Digital 

QD4-Linker (4 RF sources) 900 ms 3 us ± 5 ns 

QD8-Linker (8 RF sources) 300 ms 3 us ± 5 ns 

Table 87. Analog and digital time delays 

 Proximity issue: If current non-software and non-digital technologies are 

used for electronic warfare simulation, all electronic signals being tested 

must be located in proximity (most likely inside the same laboratory). 

However, once electronic signals are digitized, distributed testing can be 

achieved. For example, a remote digitized signal can be fed into a digital 

signal processing unit (an FPGA for our case) through a network. 

 Recordability issue: Due to the nature of analog signals and unavailability 

of recording media for high-speed signals, laboratory software simulation 

with hardware-in-the-loop is based on real-time measurements. By 

digitization, the signals can be stored more easily in a permanent memory 

for further processing. This implies that not all real signal sources must be 

present in a simulated electronic warfare environment, as some signal 

sources can be played back from a memory device. 
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APPENDIX B. TEKTRONIX ADC/FPGA/DAC DEMO SYSTEM 

Our first case study in Chapter V is based on a Tektronix DCM–Digitizer/DCM-

DAC/HAPS-DSP single channel demo system as shown in Figure 67. DCM stands for 

data converter module. DCM-Digitizer is an 8-bit analog-to-digital converter converting 

analog input signal to digital format. DCM-DAC is a 10-bit digital-to-analog converter 

converting digital data to analog waveform. HAPS-64 has two Xilinx Virtex-6 FPGAs 

for digital signal processing. 

 

Figure 67 ADC/FPGA/DAC demo system 

Simplified and detailed overall architecture diagrams are shown in Figure 68 and 

Figure 69. The operations of each component are described in the subsequent sections.  

 

Figure 68 A simplified overall architecture for our case study 
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Figure 69 A detailed overall architecture for our case study 

A. TADC-1000 DIGITIZER 

The digitizer converts input analog signals to digital signals at a clock rate of 3 

GHz. Inside the analog-to-digital converter, there are 4 interleaved analog-to-digital 

converters (A, B, C and D), so the output data rate at the analog-to-digital converter is 3 

GS/s × 4 (channels) = 12 GS/s, or 3 GS/s × 4 channels × 8 (bits/channel) = 96 Gb/s. 

These 4 channels (32 bits) are further demultiplexed by 4 to 128 bits, so that the sampling 

rate can be decreased from 3 GS/s to 375 Mb/s (DDR), since 375 Mb/s × 2 × 128 bits = 

96 Gb/s. 

The output samples from the analog-to-digital converter are in the following 

sequence: 

A1, B1, C1, D1, A2, B2, C2, D2, A3, B3, C3, D3, A4, B4, C4, D4 
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The GATE signal can be used to start and stop data output from the module. The 

MARK signal flags the output of each 128-bit word of the data capture triggered by the 

assertion of the GATE signal to a precision of one sample and a resolution or granularity 

of 16 samples. Figure 70 shows the internal architecture for TADC-1000 digitizer. 
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(configured as 8:32)
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Figure 70 TADC-1000 architecture 

B. TIPA-3100 ADC INTERPOSER 

The ADC interposer passes 128-bit data for maximum data integrity. A double 

data rate (DDR) reference clock from the digitizer is buffered and multiplied to provide 

10 clocks to various clock domains in the HAPS FPGA for high speed data input [89]. 

The reasons having ten clocks instead of one are (1) the way that the FPGA implements 

regional clocks requires different clock inputs to clock different I/O banks that are 

receiving the signals, and (2) it is easier to maintain alignment of 12–13 signals with one 

clock than 128 signals with one clock. Figure 71 shows the architecture for TIPA-3100 

interposer. 
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Figure 71 TIPA-3100 architecture 

C. HAPS-62-1 FPGA 

The HAPS-62-1 has two Xilinx Virtex-6 FPGAs (P/N XC6VLX760-1FF1760C). 

The resource for each XC6VLX760-1 is listed in Table 88. 

 

 

Table 88. XC6VLX760-1 resource 

Configurable logic blocks (CLBs) are the main logic resources for implementing 

digital sequential as well as combinatorial circuits. The mixed-mode clock manager 

(MMCM) is used to generate multiple clocks with defined phase and frequency 

relationships to a given input clock. GTX stands for gigabit transceiver. 

XC6VLX760-1 Amount 

Logic cells 758,784 

CLBs 
Slices 118,560 

Max Distributed RAM (Kb) 8,080 

Block RAM blocks 

18 Kb 1,440 

36 Kb 720 

Max (Kb) 25,920 

MMCMs (450MHz) 18 

DSP48E1 slices (450MHz) 864 

I/O 1,200 

GTX transceivers (Gb/s) 5 

Speed (MHz) 450 
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D. TIPD-3200 DAC INTERPOSER 

The DAC interposer passes unimpeded 320-bit data for maximum data integrity. 

A double data rate (DDR) reference clock from the digital-to-analog converter is buffered 

and distributed to provide six clocks to the FPGA for output of high speed data [89]. 

Figure 72 shows the architecture for TIPD-3200 interposer. 

HAPS-
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DAC6

Data

Ref clk (DDR)

CLK_EN

 

Figure 72 TIPD-3200 architecture 

E. TDAC-2000 DAC 

The TDAC-2000 is a single-channel waveform generation engine comprised of 

multiplexers and a digital-to-analog converter operating at 12 GS/s as shown in Figure 

73.  
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Figure 73 TDAC-2000 architecture 

Data is supplied to the multiplexers via 320 data lines at 375 Mb/s using clocks 

generated by the digital-to-analog converter and multiplexers from a 12 GHz input clock. 

MUX 1 (divided by 8): 320 to 40 channels 

Input:  3 Gb/s ÷ 8 = 375 Mb/s 

  5 × 64-bit@375 Mb/s = 120 Gb/s 

Output:  5 × 8-bit@3 Gb/s = 120 Gb/s 

MUX 2 (divided by 4, inside digital-to-analog converter): 40 to 10 channels 

Input:   5 × 8-bit@3 Gb/s = 120 Gb/s 

Output: 5 × 2-bit@12 Gb/s = 120 Gb/s 

CLK_EN is used to start and stop of the analog waveform output. 

SYNC_CLK_EN is used for multiple DACs alignment [90]. When input data is 

processed in the FPGA, the output data might have fractions. This is why the digital-to-

analog converter sampling rate (120 Gb/s) is higher than analog-to-digital converter 

sampling rate (96 Gb/s).   
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APPENDIX C. POLYPHASE DFT FILTER BANKS EXAMPLES 

A. POLYPHASE DFT FILTER BANKS EXAMPLE 1 

The program in Table 89, written in MATLAB, demonstrates how to cause an 

FPGA to divide an input signal into 32 subbands using polyphase DFT analysis filter 

banks. 

% M = number of channels (subbands), N = number of taps in each polyphase FIR filter     

M = 32;        

N = 8;              

b = fir1(M*N-2,1/M);                 % find coefficients for FIR filter 

b = [b,zeros(1,M*N-length(b))];  

% re-arrange coefficients to polyphase format 

B = flipud(reshape(b,M,N));    

Hq = cell(M,1);  

% create polyphase FIR filters 

for k=1:M 

   Hq{k} = dfilt.dffir(B(k,:));  

end 

F = qfft('length',M,'scale',0.5*ones(1,log2(M))); % set FFT length 

g = 1/prod(F.ScaleValues);  

% number of frequencies to sweep 

% sweep from 0 to pi  

Nfreq = 200;       

w = linspace(0,pi,Nfreq);      

P = 100;      

t = 1:M*N*P;  

HH = zeros(M,length(w));   

for j=1:length(w)    

  x = sin(w(j)*t);                            % input signal 

   X = [x(:);zeros(M*ceil(length(x)/M)-length(x), 1)];  

% re-arrange input to polyphase format 

   X = reshape(X,M,length(X)/M);   

   Y = zeros(size(X));    

% create FIR filter bank 
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 for k=1:M 

      Y(k,:) = filter(Hq{k},X(k,:));   

 end 

   Y = fft(F,Y);                  % create subbands 

   HH(:,j) = var(Y.')';                     % store output power    

end 

s = 1/prod(scalevalues(F)); 

HH = HH*s^2;   

% plot output power 

figure(1) 

plot(w,10*log10(HH)) 

title('Filter Bank Frequency Response') 

xlabel('Frequency (normalized to channel center)') 

ylabel('Magnitude Response (dB)') 

set(gca,'xtick',(1:M/2)*w(end)/M*2)  

set(gca, 'xticklabel',(1:M/2)) 

Table 89. MATLAB program: polyphase DFT analysis filter banks 

B. POLYPHASE DFT FILTER BANKS EXAMPLE 2 

The program in Table 90 demonstrates how to cause an FPGA to divide and 

reconstruct input signals using polyphase DFT filter analysis and synthesis filter banks.  

M=32;                             %Number of channels, (decimation factor) 

r=8;                              %number of taps in each sub filter 

N=r*M-1;                          %order of the prototype filter 

H=fir1(N, 1/M);                   %FIR filter 

%reshape the filter in matrix form (decomposition, filter bank generation) 

hh=reshape(H,M,length(H)/M);      

 y=[];        

X=y;         

y1=y; 

zi=zeros(M, r-1);        

zi1=zi; 

x=wavread('test.wav');            %reading input signal 

xx=reshape(x,M,length(x)/M);                   %reshape input sigal into matrix form  
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yy=zeros(size(xx));               %set matrix yy same size as xx 

%Analysis filter bank, filtering the parallel channel data in xx with filter bank hh 

for k=1:M      

     [yy(k,:),zi(k,:)]=filter(hh(k,:),1, xx(k,:), zi(k,:));  

end 

yy=ifft(yy); 

 %process subband signals here 

 yy=fft(yy);         

 %Synthesis filter bank processing 

for m=1:M     

     [yy(m,:),zi1(m,:)]=filter(hh(M+1-m,:),1,yy(m,:),zi1(m,:));    

End 

 %restore the output signal in a vector form and multiple the constant to overcome the loss 

y=M*M*reshape(yy,1,length(x));   

delay=length(H)-M+1;                           %Processing delay for the filter bank 

%reorder the output signal to overcome the processing delay 

y=[y(delay:end) y(1:delay-1)];    

%calculate the difference between input and output signal 

dif=x-y';                          

 %plot input, output and magnitude difference  

figure 

subplot(311) 

plot(1:length(x), real(x)) 

axis([0 length(x) -.4 .4]) 

title('Input signal') 

subplot(312) 

plot(1:length(y), real(y)) 

axis([0 length(y) -.4 .4]) 

title('Output signal') 

Table 90. MATLAB program: polyphase DFT analysis and synthesis filter banks 
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APPENDIX D. BACKGROUND KNOWLEDGE 

A. SETUP TIME AND HOLD TIME REQUIREMENTS 

A flip-flop is a circuit that has two stable output states (0 and 1) and can be used 

as a memory device to store information. The output states of a flip-flop can be changed 

by signals applied to one or more inputs. An edge triggered flip-flop is set (to state 1) or 

reset (to state 0) by inputs and a clock signal during the low-to-high or high-to-low 

transition of a clock pulse. Edge triggered flip-flops are the most important building 

blocks in a reconfigurable computing. 

The data and clock signals must be synchronized so that when a clock triggers a 

flip-flop, it reads correct data at the input. This synchronization-relationship is guaranteed 

by the source device; however, when data and source clock are forwarded to a destination 

device with a propagation delay, data and clock may no longer be in synchronization 

(alignment). This problem is especially prominent for data at an ultra-high rate, since the 

workable data window is very narrow. 

B. INHERENT TIMING WINDOW 

Every flip-flop has restrictive time regions around the active clock edge in which 

input should not change. The setup time is the interval before the clock where the data 

must be held stable. The hold time is the interval after the clock where the data must be 

held stable. To satisfy setup time and hold time requirements for a flip-flop, a clock path 

(the trace from a clock pin to the clock port of a flip-flop) must have a longer propagation 

time delay (not data rate) than a data path (the trace from an input pin to the data port of a 

flip-flop), so that data will arrive before the clock sampling edge. 

The clock path delay must be longer than the data path delay to ensure correct 

data sampling as explained earlier; so mathematically, the least amount of time that the 

clock can be behind data is “the minimum clock path delay–the maximum data path 

delay.” Similarly, the most amount of time that the clock can be behind data is “the 

maximum clock path delay–the minimum data path delay.” We define δ(least) as the least 

amount of time which data is ahead of the clock; and δ(most) as the most amount of time 
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which data is ahead of clock. We can calculate δ(least) and δ(most) in the following 

equations. 

 δ(least) = Min clock path delay–Max data path delay  

 δ(most) = Max clock path delay–Min data path delay  

The inherent timing window is defined as the time period between δ(least) and 

δ(most), expressed as (δ(least), δ(most)). The clock sampling edge is guaranteed to arrive 

within the inherent timing window after data is arrived.  

C. DEMULTIPLEXER 

To reduce the data rate from a faster device to a slower device, we need to use a 

demultiplexer. A demultiplexer is a device that takes a single input signal and selects one 

of many data-output lines connected to a single input [91]. Figure 74 shows an example 

of a one-to-four demultiplexer. 

A

D

B

C
outputs

a    b

select

input

F

 

Figure 74 A one-to-four demultiplexer 

We can express this one-to-four demultiplexer in Boolean equations as below. 

   (   ̅   ̅)  

   (     ̅)  

       ̅      
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D. MULTIPLEXER 

A multiplexer is a device that selects one of several analog or digital input signals 

and forwards the selected input into a single line [91]. A multiplexer of 2
n
 inputs has n 

select lines, which are used to select which input line to send to the output [92].Typically 

the a and b inputs are cycle regularly through the space of all possible bits. Figure 75 

shows an example of a four-to-one multiplexer. 

input

A

D

B

C
Q

outputs

a    b

select  

Figure 75 A four-to-one multiplexer 

We can express this four-to-one multiplexer as a Boolean equation: 

   (   ̅   ̅)  (     ̅)      ̅              
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APPENDIX E. DERIVATION OF POLYPHASE DFT FILTER 

BANKS 

In this Appendix, we derive the equation of DFT analysis filter banks by 

expressing filter banks in z-domain and then applying polyphase decomposition equation 

to these filter banks. This proof was developed by Professor Cristi at Naval Postgraduate 

School, Monterey, California [93] and the author. 

A. POLYPHASE DFT FILTER BANKS REPRESENTATION IN Z-DOMAIN  

In frequency domain, filter banks are expressed as a set of filters with frequency 

responses derived from a prototype filter      as: 

           
  

 
 , k = 0,…,M-1, M≥2 and k is an integer, 2π/M is spacing 

In z domain, the transfer functions are expressed as: 

             
  

    (1) 

Proof:  

A single filter in frequency domain H(ω) is expressed as: 

         { [ ]}  ∑  [ ]        
    (2) 

Figure 76 shows a single filter in frequency domain.  

)(0 H

 

Figure 76 A single filter in frequency domain 

For a bank of M filters spaced at 2π/M, the filter banks are expressed as: 

           
  

 
 , k = 0, 1… M-1, M≥1 and k is an integer 
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Figure 77 shows a filter bank of M filters spaced at 2π/M. 
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Figure 77 A filter bank of M filters spaced at 2π/M in the frequency domain 

(A) Express M filters by substituting H(ω) with Hk(ω), and h[n] with hk[n] in (2). 

       ∑   [ ] 
       

    (3) 

(B) Express M filters by substituting ω with (   
  

 
) in (2). 

      
  

 
  ∑  [ ]       

  

 
     

    ∑  [ ]   
  

 
         

    (4) 

Since            
  

 
 , (3) = (4). 

 ∑ {  [ ]} 
       

    ∑ { [ ]   
  

 
 }        

     

   [ ]   [ ]   
  

 
 
 (5) 

Transfer hk[n] to z domain. 

       ∑   [ ] 
     

     

  ∑  [ ]   
  

 
       

 , from (5)  

  ∑  [ ]    
  

 
          

     

  ∑  [ ]     
  

        
     

  ∑  [ ]       
        

    

         
  

   z)  

                    
  

    □  
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We summarize the filter banks relationship in Table 91. The basic technique in 

proving equation (1) is converting filter banks expression in frequency domain to time 

domain, and then from time domain to z domain. 

 

Domain Filter Banks Expression Transform Prototype 

Frequency 
           

  

 
    ω     { [ ]}  ∑  [ ]     

   

   

 

H(ω) 

Time 
  [ ]   [ ]   

  
 

 
 

Intermediate step to bridge frequency and 

z domains 

h[n] 

Z 
            

  
    

       {  [ ]}  ∑   [ ] 
  

   

   

 

H(z) 

Table 91. Filter banks expressions 

B. POLYPHASE DECOMPOSITION 

We decompose the input signal sequence x[n] into its periodically interleaved 

subsequences in z-domain by using general polyphase decomposition equation below: 

      ∑  [ ] 
         

We also decompose the finite impulse response filter into polyphase components 

as below. 

      ∑  [ ]    
      

  ∑        
     

    (6) 

      
          

                  
    

     
   ∑  [    ]      

     (7) 

C. ANALYSIS POLYPHASE DFT FILTER BANKS WITH M FILTERS 

The polyphase DFT filter banks with M filters are expressed as polyphase 

components: 

       ∑     
     

        
   (8) 
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  (9) 

Proof:  

      ∑        
     

    , from (6) 

      ∑      
        

  , replace Hp with Ep, and p with –p (10) 

From (1) and (9), we replace z with   
   in (10). 

             
  

           
  

 
      (  

  )  

  ∑     
     

        
   

     ∑     
     

        
  □  

   
      

    

            

We express polyphase DFT filter banks (8) in a matrix form. 

   (11) 

M-point DFT, N=M 

  [ ]     { [ ]}  ∑  [ ]    
  

 
      

     

  [ ]  ∑  [ ]   [ ]   [ ]     [   ]   
     

  [ ]  ∑  [ ]   (
  

 
)   [ ]   [ ]  (

  

 
)      [   ]  (

       

 
)   

     

   [ ]   [ ]      [   ]  
     

  [   ]  ∑  [ ]   (
  

 
     )    

     

   [ ]   [ ]  (
       

 
)     [   ] 

 (
        

 
)
  

   [ ]   [ ]  
       [   ]  

      
  

We express the matrix in equation (11) graphically as shown in Figure 78. 
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Figure 78 M-filter polyphase representation 

Each output from DFT is a polyphase component with a non-zero value only at 

every M
th

 term. We can down-sample by M without losing information. In addition, since 

     
   is polyphase, we apply the Noble Identity [75] to Figure 78 and obtain Figure 

79. 
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Figure 79 Apply Noble identity to polyphase representation 
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D. SYNTHESIS POLYPHASE DFT FILTER BANKS WITH M CHANNELS 

The analysis polyphase DFT filter banks network in Figure 79 are used to 

separate a wide-bandwidth serial input signal into M parallel subbands so that they can be 

processed by digital signal processing at lower sampling rates. Once all subband signals 

are processed, we have a nearly perfect reconstruction by applying the same principle for 

synthesis network as shown in Figure 80. There is a multiplying factor M after IDFT to 

compensate for 1/M in IDFT. 
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…
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…
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…
…
…
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…
…
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Figure 80 Synthesis network 
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