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Conditional Entropy for Deception Analysis

Abstract

This paper describes how basic concepts from information theory
can be used to analyze deception. We show how a general definition
of deception can be mapped to a simple communication model known
as a Z-channel, and we show that any deception has associated with it
a closely related deception we call it’s symmetric complement. These
ideas allow computation of a specific form of conditional entropy which
indicates the average uncertainty, in bits, that a deception imposes on
a deception target. This uncertainty provides unique and general in-
sight into a deceptions performance, and also indicates the general
counter-deception potential available to a deception target. We then
describe two deception-based mechanisms for computer security: the
fake honeypot serves to inoculate a computer against intrusions; and
the spoofing channel provides a safe and effective means for respond-
ing to in-progress computer intrusions. The spoofing channel is of
fundamental interest because it is a deception equal to its symmetric
complement.

Introduction

One of the most powerful and cost-effective ways of countering an adversary
is through deception. Intuition suggests that deception and communication
are ‘opposites’ or ‘duals’ in some sense, but any relationship that may exist
has never been explored carefully. This is unfortunate because the past few
decades have seen sophisticated mathematical tools developed to characterize
communication systems ([1], [2], [3]), yet few if any techniques currently exist
for the mathematical analysis of deception [4].

In this paper elementary concepts from information theory are used to
explore the relationship between communication and deception. Our work is
based on the idea that deception is, most generally, an attempt to convince
a deception target that some specific incorrect version of reality holds. For
a deception to succeed, one bit of valid information about the environment,
or ‘reality,’ must be incorrectly inferred by the target. A specific form of
conditional entropy quantifies the average uncertainty a target has about the
state of their environment, and this uncertainty, together with the deception’s
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probability of success, form a useful measure of a deception’s performance.
Fundamentally, these results are due to communication and deception models
that differ only in how the various participants are mapped onto components
of an underlying channel model; the channel model itself is the same for both
deception and communication.

It is important to note that our approach gives information only about
the average effectiveness of a deception, and not about the outcome of any
particular deception encounter. In a similar way, analysis of a communica-
tion system will usually not reveal whether a specific symbol transmitted at
a specific instant will be received correctly. Rather, in both cases perfor-
mance is characterized only in terms of averages, and our model is thus most
useful for describing the average performance of deceptions that are applied
repeatedly.

This paper is structured as follows. We begin by briefly summarizing some
basic concepts and terms regarding communication systems. A definition for
deception is then given, and we show how this definition allows deception to
be mapped to a communication channel model known as a Z-channel. Several
common deceptions are used to illustrate this mapping. With this mapping
in place, the conditional entropy of an environment with respect to a target’s
inferences can be computed. This conditional entropy is a measure of the
average uncertainty about the environment imposed on a deception target
by the deception. We then describe two software tools, the fake honeypot
and the spoofing channel, that use deception to support computer security.
We close with a summary and brief description of our current work.

Background on Communication Systems

In this section we give an overview of some basic concepts associated with
communication systems, with special emphasis on abstract models of binary
communication systems like those shown in Figure 1. Models of this sort are
commonly used to describe the types and quantities of random errors that
binary communication channels introduce as they transfer symbols from one
location to another [2].

The two channel models shown in Figure 1 differ in the types of random
errors they introduce as they convey a stream of binary symbols from input
to output. On the left is a Z-channel, which can cause an error in only
one of the two symbol types. In general, the input stream ABAB might be
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Figure 1: Abstract representations of two different types of discrete binary com-
munication channel. On the left is a Z-channel, and on the right is a Bow-Tie
Channel.

delivered as B̃B̃B̃B̃, but could not be delivered as ÃÃÃÃ. In other words,
reception of an Ã can only be caused by transmission of an A, but reception
of a B̃ can be caused by transmission of either an A or B.

It should be recognized that the specific symbols used to represent inputs
and outputs are unimportant, because the phenomena of interest for com-
munication is the statistical relationship between the input and output. Two
strongly correlated random variables, for example, convey information about
each other regardless of how their values are labeled.

On the right of Figure 1 is a Bow-Tie Channel, or BTC, which is capable
of introducing an error into either of the two symbol types it conveys. In
general—that is, as long as the transition probabilities pAB and pBA are both
away from zero and one—the input stream ABAB might be delivered as
B̃B̃B̃B̃ or as ÃÃÃÃ. Stated differently, reception of an Ã can be caused by
transmission of either an A or B, and reception of a B̃ can likewise be caused
by transmission of either an A or B.

The special case of the BTC with pAB = pBA = 0 is known as the noiseless
channel, and the special case with pAB = pB and pBA = pA is known as the
useless channel. The Z-channel is simply a special case of the BTC with
pBA = 0, and the BTC can be viewed as a combination of two ‘flipped’
Z-channels operating on the same input symbol stream.

The probability of a successful transmission—that is, the probability that
a given input symbol will be delivered as a specific output symbol—can easily
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be computed for either of the channel models shown in Figure 1. For the
Z-channel, the probability of a successful transmission is

ps = pA(1− pAB) + (1− pA)

= 1− pApAB, (1)

and the corresponding expression for the BTC is

ps = pA(1− pAB) + (1− pA)(1− pBA)

= 1− pApAB + pApBA − pBA. (2)

Surprisingly, however, the probability of successful transmission is not
a useful indicator of communication performance. To see this, note that a
noiseless BTC has ps = 1, and all transmissions are successful. A channel that
causes an error in every transmission, that is, a BTC with pAB = pBA = 1,
has ps = 0, which indicates that no transmissions are successful. However,
we need only invert the symbols at the output of the channel to achieve
perfect communication. Even more troubling is that when pAB = pBA = 1/2,
about half of the transmissions are received without error, yielding ps = 1/2.
However, in this case we do not know which transmissions are correct and
which are incorrect. A BTC with pAB = pBA = 1/2 is of no value for
communication despite it’s ps = 1/2.

A measure of communication performance can be obtained by, in essence,
feeding a long input sequence to a channel and counting the number of output
sequences that could result based on the probabilistic constraints imposed
by the channel. When this count is low, communication performance is
good, and when this count is high, communication performance is bad. To
clarify this idea, consider the number of binary sequences, using symbols
A and B, consisting of a single B and nine A’s: there are

(
10
1

)
= 10 such

sequences. Similarly, there are
(
10
2

)
= 45 sequences consisting of two B’s

within a sequence of eight A’s, and there are
(
10
5

)
= 252 sequences consisting

of five B’s and five A’s. As the number of B’s increases beyond five, the
number of possible sequences decreases.

Counts of this sort can be made for sequences of any finite length, and
probabilities can be introduced by specifying the number of symbols of dif-
ferent types as fractions of the entire sequence length. Thus the number of
ordered sequences of length N consisting of pN copies of the symbol A’s and
(1 − p)N copies of the symbol B’s is

(
N
pN

)
. Stirling’s approximation implies
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that this count increases exponentially with N , and this rate of increase,
expressed on a per symbol basis, is denoted entropy [3]. The entropy of a
binary sequence composed of symbols with probabilities p and 1− p is

H(p) ≡ lim
N→∞

log

(
N

pN

)
/N

= −p log(p)− (1− p) log(1− p). (3)

In concrete terms, Equation 3 states that for large N , there are about
2N ·H(p) binary sequences of length N consisting of pN copies of the symbol A
and (1−p)N copies of the symbolB. An important characteristic of this set of
2N ·H(p) binary sequences is that all members have the same probability: each
sequence is composed of the same numbers of underlying symbol types (i.e.,
A’s and B’s), with sequences differing only in the arrangement of symbols.
There are no distinguished or preferred sequences.

The reader should be aware that the terminology used to denote entropy
in different fields is a potential source of confusion. Entropy is often denoted
by S in thermodynamics [5], and by H in information theory ([2], [3]). In this
paper we will follow the convention used in information theory and denote
entropy by H.

To see how communication performance can be described for channels
like those shown in Figure 1, imagine a long sequence of symbols received
at the output of a BTC. The number of input sequences that could have
generated this output sequence can be computed as follows. Each Ã in the
output stream could have been caused by input of an A or B, and more
specifically each Ã observed at the output was generated by input of an A
with probability

p(A|Ã) =
pA(1− pAB)

pA(1− pAB) + pBpBA

or by input of a B with probability

p(B|Ã) =
pBpBA

pA(1− pAB) + pBpBA

.

These probabilities specify a value of entropy that we can denote H(X|Ã),
with X indicating the input to the channel. In a similar way we can compute
H(X|B̃). A weighted combination of these two entropies gives the entropy
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of the input to the channel, conditioned on the output of the channel. This
conditional entropy, denoted H(X|Y ), is

H(X|Y ) = p(Ã)H(X|Ã) + p(B̃)H(X|B̃).

An interpretation for H(X|Y ) is that an output of N symbols, with N
large, could have been caused by about 2H(X|Y )·N different input sequences.
When the conditional entropy H(X|Y ) is close to zero, communication per-
formance is good because there are few input sequences that could have
generated the given output sequence. Likewise, when H(X|Y ) is close to
one, communication performance is poor because just about any input se-
quence could have caused the output. Stated in different terms, when many
input sequences could have caused a given output, the uncertainty about the
input is large even with the channel output in hand, and conversely, when
few input sequences could have caused an output, the uncertainty about the
input is small.

Our discussion in this section has focused on the conditional entropy of
the input of a channel with respect to its output, but it should be clear
that the conditional entropy of a channel’s output with respect to its input,
H(Y |X), can be computed by similar means, and has an analogous inter-
pretation: H(Y |X) indicates the number of outputs that are consistent with
the channel’s probabilistic constraints for a given input.

A Deception Model Based on the Z-channel

Our work with deception is based on the following definition. The term
deception target, or just target, refers to anyone who has a deception applied
against them, whether or not they ‘fall’ for it. This definition is based on the
discussion in [6], page 2.

Definition 1 Deception is the presentation of a specific false version of re-
ality by a deceiver to a target for the purpose of changing the target’s actions
in a specific way that benefits the deceiver.

That is, deception is the imposition of a specific false version of reality
onto an adversary: a deceiver does not simply cloak reality in an obscur-
ing fog, but rather replaces reality with a specific and carefully created false



Conditional Entropy for Deception Analysis 7

version. Deception is thus distinct from the denial of information to an ad-
versary, and distinct also from efforts that direct an adversary in a random,
haphazard direction. As stated eloquently in [4], page 71, a successful de-
ception will make an adversary “. . . quite certain, very decisive, and wrong”
[emphasis in original].

This definition can be made precise. Any deception attempt will either
succeed, or fail. A deception fails whenever the target is able to determine
the correct state of the environment. This same outcome results when no
deception attempt is made, assuming we ignore ordinary ‘honest’ mistakes
on the part of the target. Alternately, when the evidence presented by the
deceiver is strong enough, the target decides in favor of the false environment,
and the deception succeeds.

The task carried out by the deception target is identical to that carried
out by a binary communication receiver: each uses potentially noisy evidence
to make a binary decision. This can be interpreted in terms of the Z-channel
on the left of Figure 1. Under any given deception, the actual, correct, or
valid state of the environment is represented by one symbol, say A. The false,
incorrect, or bogus version of reality advocated by the deceiver is represented
by the symbol B. In the absence of deception, the target is assumed able to
correctly infer the state of the environment, but a deception attempt acts as
noise in this sensor’s observations, and can potentially cause incorrect states
to be inferred.

With any given deception we will, to simplify terminology, associate a
partition of the set of all possible environments. That is, any given decep-
tion splits the set of all possible environments into exactly two mutually
exclusive and exhaustive subsets. In one of these subsets, the false version
of reality specified by the deception actually is false, and the deception can
be attempted within environments in this subset. This set of environments
is denoted A in Figure 1. In the other set of environments, the ‘false version
of reality’ specified by the deception is not false: it actually holds. In these
environments the deception is logically impossible to carry out. These envi-
ronments are denoted B in Figure 1. We will say that an environment is ‘in
state A’ or ‘in state B’ when it is a member of set A or B, respectively.

In slightly different words, a deception defines a predicate on the set of
possible environments, and a deception target attempts to determine, in the
presence of interference from a deceiver, the value taken by this predicate
in the actual, or realized, environment. Because A and B partition the set
of environments—that is, A and B form mutually exclusive and exhaustive
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subsets—a given deception can only be attempted when the environment is in
set A. Informally, imposing false evidence on a target that the environment
is in state B makes no sense when the environment actually is in state B.

The Symmetric Complement of a Deception

Before illustrating these ideas with some examples, a subtle asymmetry in
our definition of deception must be considered. In paraphrase, Definition 1
states that deception is an attempt by a deceiver to convince a target that
the environment is a member of a particular set, which we have labeled B,
when in actuality the environment is in another set, which we have labeled
A.

This definition is asymmetric in the sense that deception involves an
actual and a bogus environment, and these environments ‘participate’ in a
given deception in very different ways. We will define the deception obtained
by reversing these roles as the symmetric complement of the given deception.
The symmetric complement of a deception is formed by complementing the
defining predicate of the deception.

Like any other deception, a given symmetric complement can be repre-
sented as a Z-channel. However, a deception and its symmetric complement,
when deployed together, are represented most naturally and concisely as
two Z-channels coupled together into a BTC. We will call an ordinary, non-
symmetric deception a one-sided deception, and a deception deployed along
with its symmetric complement a two-sided deception.

Symmetric complements are nothing more than a way to complete, or
make symmetric, the Z-channel deception model, and there is no logical
reason to expect anything of practical value to result from abstract consider-
ations of this sort. As the next section will show, however, it is not difficult
to find examples in which full two-sided deceptions have been successfully
deployed.

Examples

We show in this section how one-sided and two-sided deception models are
applied to some familiar deceptions. Each example consists of a brief sum-
mary of the deception; a description of the participants and their motives; a
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statement of the actual and false versions of reality; a physical interpretation
of the prior and transition probabilities; and a description of the symmetric
complement. This information allows each ‘real-world’ deception example to
be mapped to the channel models in Figure 1.

Examples 1-3 describe one-sided deceptions, and Examples 4 and 5 involve
two-sided deceptions.

Example 1: Sale of a Low Quality Item as High Quality Consider a
vendor with a large number of items to sell. Some of the items happen to be
of low quality, and the vendor deceptively portrays these low quality items as
items of high quality. Here the relevant characteristic of the environment is
the quality of the item being sold in any given sales encounter. This can take
on the values ‘Item is of high quality,’ denoted B, and ‘Item is of low quality,’
denoted A, with probabilities pA and pB = 1− pA respectively. The relative
frequency at which this deception succeeds—that is, the relative frequency
at which low quality items appear as high quality—is given by the transition
probability pBA.

◦ Sale of a low quality item as a high quality item is a deception in which
the deceiver is the seller, and the deception target is the buyer. The
deceptive seller is motivated by the desire to obtain a high price for the
item.

◦ The actual version of reality, A is that the item for sale is of low quality.

◦ The bogus version of reality, B is that the low quality item being sold is
of high quality.

◦ The prior probability pA is the fraction of items that are low quality.

◦ The transition probability pAB is the fraction of low quality items that
are successfully sold as high quality.

◦ The symmetric complement of this deception is the deceptive portrayal
of high quality items as low quality.

Example 2: Income Tax Evasion Income tax evasion is another deception
that can be described in terms of a Z-channel. In this case, a deceptive tax-
payer presents to the taxing agency evidence (in the form of false statements,
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false documents, etc.) for an incorrectly low value of income. The environ-
mental characteristic of interest is the income of the taxpayer, which can take
on the value A, ‘high income,’ or B, ‘low income.’ The prior probability pA

is the fraction of taxpayers with high incomes, all of whom are assumed to
deceptively attempt to appear as low income. The transition probability pAB

is the rate at which high income taxpayers successfully portray themselves
as low income. Only a high income taxpayer is capable of attempting this
deception.

◦ Income tax evasion is a deception in which the deceiver is a high-income
taxpayer, and the deception target is a tax agent. The deceptive taxpayer
is motivated by the desire to pay a smaller tax.

◦ The actual version of reality A is that the taxpayer has high income.

◦ The false version of reality B is that the taxpayer has low income.

◦ The prior probability pA is the fraction of taxpayers who have high income.

◦ The transition probability pAB is the fraction of high income taxpayers
who successfully appear as low income.

◦ The symmetric complement of this deception is the deceptive portrayal
of a low income taxpayer as high income.

Example 3: Camouflage Camouflage involves an intruder within a moni-
tored spatial region. Presence of the intruder puts the environment in state
A, and absence of an intruder puts the environment in state B. This decep-
tion can only be carried out by someone who is in the spatial region.

◦ Camouflage is a deception in which the deceiver is the intruder, and the
deception target is a sentry. The deceptive intruder is motivated by the
desire to prevent their intrusion from being detected.

◦ The actual version of reality A is that an intruder is present within the
surveilled region.

◦ The false version of reality B is that no intruder is present within the
surveilled region.

◦ The prior probability pA is the fraction of times that an intruder is present
in the surveilled region.
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◦ The transition probability pAB is is the fraction of times that an intruder
within the surveilled region is not detected by a sentry.

◦ The symmetric complement of this deception is to cause an intruder to
appear within a surveilled region when they are not.

Example 5: Feints An excellent example of a deception with a useful sym-
metric complement is the feint. In military conflicts, as well as in sports such
as fencing and boxing, one party will give a false strike, which requires an
opponent to defend or prepare to defend. The symmetric complement of a
feint is a ‘false feint,’ or an actual strike.

◦ Feints are a deception in which the deceiver is a potential attacker, and
the deception target is a potential attack victim. The deceptive attacker
is motivated by the desire to make their attack, when it occurs, as effective
as possible, and also to cause the opponent to expend effort preparing to
defend against an attack that does not occur.

◦ The actual version of reality A is that an attack will not occur.

◦ The false version of reality B is that an attack is about to occur.

◦ The prior probability pA is rate at which preparations for attack appear.

◦ The transition probability pAB is the fraction of apparent attack prepa-
rations on the part of the deceiver that do not result in a real attack.

◦ The symmetric complement is an apparent false attack that becomes a
real attack. The transition probability pBA is the fraction of apparent
attack preparations on the part of the deceiver that do result in a real attack.

Example 6: Dummy Aircraft in WWII Another deception with a useful
symmetric complement is described in the following exchange regarding the
use of ‘dummy’ aircraft to divert attacks away from real aircraft [7].

Sometime around mid-1942, Major Oliver Thynne was a novice
planner with Colonel Dudley Clarke’s ‘A’ Force, the Cairo-based British
deception team. From intelligence, Thynne had just discovered that
the Germans had learned to distinguish the dummy British aircraft
from the real ones because the flimsy dummies were supported by
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struts under their wings. When Major Thynne reported this to his
boss, Brigadier Clarke, the ‘master of deception,’ fired back

“Well, what have you done about it?”
“Done about it, Dudley? What could I do about it?”
“Tell them to put struts under the wings of all the real ones, of

course!”

Here worthless dummies stand in place of valuable real aircraft. When the
deception target learns to identify the dummies, the symmetric complement
of the original deception is deployed.

◦ The dummy aircraft deception is a deception in which the deceiver is a
group defending aircraft on a runway, and the deception target is a group
attempting to surveil or attack the aircraft. This deception is motivated by
the desire of the defenders to reduce the effectiveness of attacks or surveil-
lance on their aircraft.

◦ The actual version of reality A, is that the dummy aircraft are worthless.

◦ The false version of reality B is that the dummy aircraft are valuable,
real aircraft.

◦ The prior probability pA is the fraction of all aircraft on a given runway
that are dummies.

◦ The transition probability pAB is the fraction of dummy aircraft that are
believed to be real.

◦ The symmetric complement is the deception in which real aircraft are
made to appear false. The transition probability pBA is the fraction of real
aircraft that are believed to be dummies.

A variant of this deception involves the use of appropriately painted can-
vas sheets to make bombed runways appear undamaged, and undamaged
runways appear bombed.

Conditional Entropy and Deception

We have seen how the Z-channel and BTC describe one-sided and two-sided
deceptions, respectively. These channel models are useful because they allow



Conditional Entropy for Deception Analysis 13

Probability of Success

0
0.25

0.75
1

pAB
0

0.25

0.75
1

pA
0

1
ps

CE of Environment given Inference

0
0.25

0.75
1

pAB
0

0.25

0.75
1

pA
0

1
CE

Figure 2: Probability of Success (Left) and Conditional Entropy of the Environ-
ment given Inference (Right) for One-Sided Deceptions.

us to systematically evaluate the probability of success, or effectiveness, of
a deception. Of much greater significance, these channel models also allow
evaluation of the uncertainty about the environment imposed on a deception
target by a deceiver. As the following two subsections show, both the effec-
tiveness and the uncertainty associated with a deception are important for
understanding the benefits and risks incurred by a deceiver.

One-Sided Deceptions

The surface on the left side of Figure 2 shows probability of success for a one-
sided deception, and that on the right shows the conditional entropy of the
environment based on the decisions made by the target. To interpret these
figures, note that any point in the plane region 0 ≤ pA ≤ 1, 0 ≤ pAB ≤ 1
specifies a one-sided model of deception, and that we can informally interpret
pAB as the skill of the deceiver, and pA as an indicator of how often deception
opportunities arise.

The left of Figure 2 shows that with increasing opportunities for deception
and/or increasing effectiveness of the deceiver, the probability of a success-
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ful deception also increases. The right side of Figure 2 shows that as the
effectiveness of the deceiver increases, the targets uncertainty about the en-
vironment likewise increases, regardless of the value of the prior probability;
this increase occurs monotonically as a function of pAB, but at a slower than
linear rate.

An ineffective deceiver (i.e., pAB ≈ 0), or an environment with little un-
certainty (pA near zero or one), causes conditional entropy to be close to
zero. In these cases, the target’s observations tend to be valid, or the state
of the environment can be guessed effectively even without observations. In
contrast, when the deceiver is effective (pAB close to one), the target can
be burdened with significant uncertainty: observations provide little help
in inferring the environment. When a perfectly effective deceiver operates
a one-sided deception, the target experiences a constant stream of observa-
tions implying that the environment is in state B, with no observations ever
implying that the environment is in state A. This stream of observations
provides no help in distinguishing state A from B.

The conditional entropy shown in Figure 2 is a concave function of pAB,
and a concave function of pA. That is, if we let x and y be two one-sided
deception models, and if we denote conditional entropy by f , then for any
0 ≤ α ≤ 1 we have

αf(x) + (1− α)f(y) ≤ f(αx+ (1− α)y) (4)

The concave nature of conditional entropy is of some practical signifi-
cance: it essentially implies that the average of two deceptions imposes less
uncertainty on a target than the average deception. To understand this state-
ment, consider for some fixed pA the two deceptions located at pAB = 0 and
at pAB = 1. The average of the conditional entropies associated with these
two extreme deceptions is 1/2; however, the conditional entropy of the aver-
age deception located at pAB = 1/2 will be greater than 1/2. The physical
interpretation is that observations associated with pAB = 0 are perfect, while
those associated with pAB = 1 are useless, but because they are associated
with distinct deceptions, a deception target can handle them separately. On
the other hand, the average deception at pAB = 1/2 likewise provides both
valid and useless observations, but because these observations are mixed to-
gether the deception target suffers greater uncertainty.
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Figure 3: Probability of Success (Left) and Conditional Entropy of the Environ-
ment given Inference (Right) for Two-sided Deceptions with pAB = pBA.

Two-Sided Deceptions

A general description of a two-sided deception requires, in addition to the
prior probability pA, the two independent parameters pAB and pBA, and so
complete information about effectiveness and conditional entropy is awkward
to display graphically. We will instead consider the special two-sided decep-
tion with pAB = pBA, which is representative of the general case.

As shown on the left of Figure 3, since the environment can always support
a two-sided deception, the probability of success tends to increase faster
than a one-sided deception as a function of pAB. (Note however that the
probability of success is independent of the prior probability only in the
special case of pAB = pBA). The right side of Figure 3 shows that some
characteristics of conditional entropy for two-sided deceptions are the same
as the one-sided case, for example, the low conditional entropy due to low
uncertainty in the environment (i.e., pA close to zero or one) or an ineffective
deceiver (pAB ≈ 0).

However, certain phenomena of two-sided deceptions are unlike those of
one-sided deceptions. In particular, when pAB ≥ 1/2, conditional entropy
decreases as pAB increases. That is, the target’s uncertainty about the envi-
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ronment decreases as the deceiver becomes more effective, or in other words,
the inferences made by the target (or target community) provide valid infor-
mation about the environment. This is because, in a two-sided deception,
the evidence provided by the deceiver can be used to infer the correct state
of the environment when that evidence is very strong. A target can exploit
this situation by deciding in favor of state A when observations indicate that
the environment is in state B, and vice versa.

Under these circumstances, the deception is analogous to a binary com-
munication system that delivers as output an ‘inverted’ form of the input:
strictly speaking the system is making an error on every bit, but simply
inverting the output stream provides perfect communication. Likewise, a
two-sided deception with pAB = pBA ≈ 1 is very effective, but the low condi-
tional entropy indicates that this deception is vulnerable to a general counter-
deception technique, namely, deciding against what the evidence supports.
Of course, the target must be able to recognize these circumstances. As an
example, in the two-sided form of the dummy aircraft example operating
with pAB ≈ pBA ≈ 1, attackers can assume that anything that appears to be
a real aircraft is a dummy, and anything that appears to be a dummy is a
real aircraft.

Another interesting phenomena involves high values of conditional en-
tropy. High values of conditional entropy H(X|Y ) indicate high uncertainty
about the state of the environment. This occurs in one-sided deceptions
when the deceiver is perfectly effective, in which case the deception target
observes only evidence that the environment is in state B. In a two-sided
deception, as mentioned above, when the deceiver is completely effective,
that is, when pAB ≈ 1 and pBA ≈ 1, the deception is very effective but
there is little uncertainty about the environment—the targets observations
are strongly correlated with the state of the environment, whether the target
realizes is or not. In a two-sided deception, high values of H(X|Y ) occur
when the deceiver is only about ‘half’ effective, that is when pAB ≈ 1/2 and
pBA ≈ 1/2. Under these circumstances, the target sees a mix of evidence
in favor of states A and B, but that evidence is not correlated with the ac-
tual states of the environment. These observations are of no more value for
inferring the state of the environment than are the flips of a coin.

A two-sided deception operating at pAB ≈ 1/2 and pBA ≈ 1/2 can be
viewed as the most effective risk-free deception possible for the deceiver.
Operating a two-sided deception with pAB ≥ 1/2 and pBA ≥ 1/2 can pro-
vide a higher probability of success, but also provides the target with some
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level of (negative) correlation between their inferences and the actual state
of the environment. The target may be able to recognize and exploit this
correlation.

Deception for Computer Security

The ideas discussed above are being used at the Naval Postgraduate School
for development of two deception-based techniques for computer security.
The false honeypot ‘inoculates’ a computer against intrusions, and the spoof-
ing channel provides a method for responding to successful intrusions once
they have been detected.

Honeypots and False Honeypots

One of the most effective ways of gathering information about computer in-
truders is through the use of honeypots ([8], [9]), which are computers placed
on a network for the sole purpose of being broken into. Honeypots contain
no information of value, and are highly instrumented to capture maximum
information about intruders and their activities. Most computer intruders
avoid honeypots to protect their intrusion techniques, which often require
significant time and expertise to develop. Honeypots are sometimes ‘tricked
out’ to appear as ordinary, non-honeypot computers containing valuable in-
formation.

The false honeypot deception can be summarized as follows.

◦ The deceiver is a computer administrator, and the deception target is a
computer intruder. The deceiver is motivated by the desire to protect the
computer under attack.

◦ The actual version of reality A is that the intruder has broken into a
specially instrumented computer called a honeypot.

◦ The false version of reality B is that the intruder has broken into an
ordinary computer.

◦ The prior probability pA is the fraction of all computers on a given network
that are honeypots.

◦ The transition probability pAB is the fraction of honeypots that are taken
to be ordinary.
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◦ The symmetric complement is the deception in which an ordinary com-
puter is made to appear as a honeypot.

The fake honeypot deception is simply the symmetric complement of
the honeypot deception. That is, a fake honeypot is an ordinary computer
that has the appearance, or characteristics, of a honeypot [10]. Such char-
acteristics can consist, for example, of files or daemons that are commonly
associated with honeypots, but that would normally be hidden; on a fake
honeypot they may be ‘carelessly’ hidden.

A network populated with honeypots and fake honeypots presents a com-
puter intruder with some interesting challenges. What seems to be a suc-
cessful intrusion may be nothing more than an intrusion onto a honeypot;
this is true even without fake honeypots. However, in addition, a successful
intrusion onto an ordinary computer may be dismissed as an intrusion onto
a honeypot, potentially protecting valid data from harm.

A mix of honeypots and non-honeypots will reduce and potentially elim-
inate the value of an intruders observations for identifying the true nature
of a computer. Intruders will have to rely on prior probabilities to guide
their actions, causing honeypots to become even more valuable sources of
information.

As with any two-sided deception, a potential counter-deception opportu-
nity becomes available for high values of pAB and pBA. Under these circum-
stances, evidence that a compromised computer is a honeypot implies that
the computer is in fact ordinary, and evidence that a computer is ordinary
implies that it is a honeypot. This problem, if it were to occur, could be
remedied by using only the symmetric complement of the honeypot decep-
tion: that is, by having all computers on a network, even honeypots, appear
as honeypots.

Spoofing Channels

In a general sense, the purpose of communication is to convey the result of
a random event, experiment, or selection, from one location to another:

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point. . . . The significant aspect is that the actual message
is one selected from a set of possible messages. The system must be
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designed to operate for each possible selection, not just the one which
will actually be chosen since this is unknown at the time of design.
([1], page 31, emphasis in original.)

A communication channel resolves uncertainty at its output about a
choice or decision made at its input. This uncertainty, which is inherent
in the communication process, provides a unique opportunity for deception.
A spoofing channel exploits for deception the uncertainty that a conventional
communication channel resolves.

In general terms, a spoofing channel works by delivering as output not the
message provided to the channel as input, but rather an arbitrary message
that has the same statistical structure as the input. The intention is to deliver
another of the possible messages that could have been chosen for communi-
cation. One spoofing channel application is as an Intrusion Response System
(IRS) for use with an Intrusion Detection System (IDS) such as SNORT ([8],
[9]). Without an IRS of some sort, an alert from an IDS that an intrusion
is in progress leaves the responsible system administrator with few options
other than termination of the intruder’s connection. This prevents further
compromise of data, but also prevents information about the intruder from
being gathered. An IRS based on the spoofing channel would prevent further
compromise of data by delivering to the intruder nothing more than spoofs of
the original data, and in addition would allow the intruder to be observed and
information about them gathered as their ‘intrusion’ continued. Widespread
use of IRS’s based on spoofing channels would burden all computer intruders
with uncertainty about whether hijacked data was valid or invalid.

In discussing the relationship between deception and channel models, we
assumed that when no deception attempts are made, a potential deception
target is able to correctly infer the state of the environment. This assump-
tion is irrelevant for analysis of the spoofing channel deception because the
purpose of ordinary communication is simply to resolve uncertainty about
an environment that happens to be non-local in either space or time. If
the output of a spoofing channel is statistically consistent with its input,
no resources other than the prior probabilities are available at a channels
output for deciding whether delivered data is valid or a spoof. For this rea-
son we say that a properly operating spoofing channel is it’s own symmetric
complement.
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Conclusion

In this paper we have not developed a mathematical theory of deception, but
we have done something just about as good: we have shown how the existing
theory of information provides a mathematical model of deception. As with
any mathematical model, it’s abstractions allow statements that are very
general, and it’s mathematical nature allows precision. Thus the material
presented in this paper makes possible statements about deception that are
both general and precise.

Our focus has been on the uncertainty associated with deception. We
have shown that successful one-sided and two-sided deceptions impose very
different types of uncertainty onto deception targets. Successful one-sided
deceptions impose on a target a constant stream of evidence that the envi-
ronment is in a given state; this constant stream is of no value for distin-
guishing which of two states the environment is actually in. A two-sided
deception with both deceptions very successful provides a deception target
with evidence that is negatively correlated with the actual state of the envi-
ronment. This situation can provide the deceiver with a high level of success,
but this negative correlation also provides the deception target with a gen-
eral counter-deception method. General counter-deception techniques are
unavailable when the target’s observations are uncorrelated with the actual
state of the environment, but this requires that the effectiveness of the de-
ception be less than maximum.

A number of theoretical and practical topics remain open. We are partic-
ularly interested in development of a geometric interpretation of deception
based on signal space concepts [3]; and analysis of deception as a game [11]
with payoffs quantified by a combination of effectiveness and conditional en-
tropy. Development and evaluation of a spoofing channel for natural language
text is also part of our on-going work.
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