
Database Deception using Large Language Models
Jason Landsborough

NIWC Pacific
San Diego, USA

0009-0003-5455-7293

Neil C. Rowe
Naval Postgraduate School

Monterey, USA
0000-0003-2612-0062

Thuy D. Nguyen
Naval Postgraduate School

Monterey, USA
0009-0009-1785-7776

Abstract—Cyberattackers often try to steal data in a cyberat-
tack. Cyberdeception techniques such as supplying attackers with
fake data (honeytokens) instead can interfere with their collection
and exfiltration goals. This paper describes a design using a
large language model to generate synthetic data from which
defenders can create fictitious database records. We evaluated
several models for this design using four SQLite databases, and
tested the effectiveness of AI systems in identifying new data with
two use cases: replacement of real records by fake records and
shuffling fake and real records.

Index Terms—cyberdeception, honeytoken, cyber security, ar-
tificial intelligence, synthetic data

I. INTRODUCTION

Data breaches are a common result of a cyber attack. A well
known incident was the 2020 U.S. government data breach by
the Russian advanced persistent threat group APT29 [1]. This
attack targeted multiple government agencies using vulnerabil-
ities in commercial software from Microsoft, SolarWinds, and
VMware. Detection began when FireEye discovered someone
targeting them to steal their tools [2]. In 2019, LinkedIn
had 92% of their userbase’s information stolen [3]. In 2024,
2.9 billion records including personal information were stolen
from the data broker National Public Data [4]. Data theft is a
primary impetus for attackers motivated by financial gain or
competitive advantages.

Generative artificial intelligence tools, and large language
models in particular, can generate realistic data. We explored
their use for generating database records, enabling defenders
to offer attackers fake data that will make their data thefts
worthless. Our threat model focused on data breach since
protecting data is critical to many organizations. Data breaches
can be damaging when they contain confidential information,
details providing a competitive advantage, data requiring care-
ful handling policies such as health records. Deception with
false data can disrupt data breaches. An example is the tainting
of data obtained in a breach during the 2017 French election,
which made it difficult to identify true content [5]. Attackers
typically seek various types of data, often from databases. It
is therefore useful to create fake data for databases.

Our research makes the following contributions:
• A design for using large language models to generate

synthetic database records based on an arbitrary existing
database, given sample records and a schema.

• Qualitative and quantitative assessments of synthetic data
generated by several large language models.

• An assessment of how well large language models them-
selves can detect synthetic database records.

II. BACKGROUND

A. Defensive Cyberdeception.

There is an asymmetry in the favor of attackers over
defenders often called the “defender’s dilemma” [6]. One
way to help defenders is influencing the attacker’s decision
process with cyberdeception [7]. Deception in cyberspace
can exploit the long history of deception in other types of
conflict [8]. Deception can either discourage attacks to protect
important systems, or encourage attacks to learn information
about their methods. An example of discouragement is wasting
an attacker’s time by providing too much data or deliberately
causing long delays [9], [10]. The best known type of en-
couragement is a honeypot, a system to lure an attacker and
observe what they do. Honeytokens are another useful tool
for cyberdeception, which are fake objects or data that an
attacker may interact with. Honeytokens can either encourage
an attack or discourage them based on the defender’s goals.
Honeytokens for tabular data such as databases were studied
by extracting the rules that describe a database constraint and
turning them into a specification of a constraint-satisfaction
problem [11].

B. Generative AI

Generative artificial intelligence (AI) has become popular.
Using AI techniques to generate synthetic data has been done
for some time, such as using Hidden Markov Models to
generate speech data in the 1950’s [12], and statisticians have
long generated synthetic data from known distributions. Gen-
erative adversarial networks (GANs) can create “deepfakes”
of realistic pictures, audio, and video, which can be used for
pranks and fraud [13]. In late 2022, ChatGPT was launched
publicly and has become the most popular generative artificial-
intelligence tool. Since then, ChatGPT and other large lan-
guage models have been used in many workflows, even taking
the role of the cyberattacker to test cyberdefenses [14]. Some
attackers use these tools to design attacks [15]. Generative
AI based on large language models avoids the traditional
statistical requirement of assuming independence of the data
properties, by exploiting complex correlations observed in
real data using neural networks called “transformers” [16].
However, these models have limitations, including vulnera-
bilities to bypass guardrails and obtain malicious responses

from a model [17]. Another limitation is that models generate
incorrect data called “hallucinations.” It has been argued that
these hallucinations are not lies because AI systems cannot
intend to lie. They are a an over-extrapolation from their data
[18]. Humans, however can use these systems to lie.

C. Related Work

Several projects have used large language models to create
a shell honeypot. One tool used OpenAI’s GPT-4o model
[19]. Overall, the honeypot was found to be slower, more
frustrating, and more difficult to use than the control machine.
This experiment cost $2.97, or about $0.05 per user-minute.
That sounds cheap, but for a large deployment or a long
attack campaign, costs could add up. One participant saw
an OpenAI API Python error, which led them to correctly
identify that they were interacting with a large language model.
Several common shell features were missing at the time of the
experiment such as tab auto completion, reverse search, and
real-time interactive tools.

Another group created a similar large language model shell
honeypot [20]. They used the model Llama3 with 8 billion
parameters. They found larger models were too slow, and
models designed for coding were ineffective for honeypot
simulation. They tuned this model with a supervised fine-
tuning approach on their own dataset of Linux commands.
They found that their fine-tuned model’s output had a small
improvement compared with Cowrie, a popular shell honeypot,
results as ground truth data over the Llama3 model.

One group focused on using large language models to create
honeytokens rather than a honeypot. The honeytokens they
investigated included the contents of robots.txt, honeywords,
services, an invoice file, a configuration file, a log file,
and a database [21]. Their work focused mainly on data in
the robots.txt and honeywords. The robots.txt file tells Web
crawlers which directories it can traverse; the honeywords are
username-password pairs. They found the generated robots.txt
files were acceptable with some minor issues with GPT4 and
Llama; the honeywords produced were acceptable, although
Gemini claimed they were “not possible to execute.” They did
try to use an LLM to produce a database of user information,
but found that the large language models struggled to generate
acceptable content, with GPT4 and Gemini in the “not possible
to execute” category.

III. CHOOSING LARGE LANGUAGE MODELS

Honeypots are a good place to centralize fake records.
Automation can reduce the overhead in generating it. Large
language models are efficient for many text generation tasks,
so we designed and implemented a way to use them to generate
fake database data. Fake data can interfere with an adversary’s
data collection techniques and impede exfiltration [22].

We used a lightly coupled design where the large language
models were treated as interchangeable black boxes. Fine-
tuning models was out of scope for this work. This enables
defenders to generate a variety of data, and no specific model
dependency is required other than a prompt and response

mechanism. It also enables comparison of behavior of different
models. We used the following criteria when selecting models
for this work:

Uses an Application Programming Interface (API). In-
stead of using a browser-based chat interface, we prompted the
large language models with details about the data it should
generate. This works for models using the Ollama platform
(Table I in Appendix A), which share a common interface.

Output looks reasonable to human reviewers. We chose
models that could produce database rows that looked reason-
able. We did not do any statistical analysis at this stage.

Runs locally. We chose to run the model locally to maintain
privacy and reduce cost. Organizations that choose to create
fake data with a large language model may have legal non-
disclosure constraints that prevent them from using models
run by organizations such as OpenAI, Google, and so on.
Running artificial intelligence models locally can also be
cheaper because users can avoid API fees.

Runs on our graphics card. We used the Nvidia Geforce
RTX 4080 card which has 16 gigabytes of video memory.
By choosing smaller models that run on this card, we got
acceptable response times. The “:#” convention in model
names describes the number of parameters of the model, ‘m’
for millions and ‘b’ for billions which factor into model size.

Avoids unnecessary output. Some models such as phi4:14b
produced commentary in the output despite our request for
only database rows. Smaller models such as llama3.2:1b
would often repeat the creation schema and provide an in-
sertion SQL command, causing only a few good rows of data
to be generated if at all.

Inadequate output. We ruled out the smollm2:135m model
because it rarely produced rows and often had type errors such
as text data for an integer column when it did. The larger
smollm2:360m did not generate new data, often repeating the
example data as new rows or generating repeated SQL queries.
We ruled out starcoder2:15b because it seemed to struggle,
despite our assumption that it might do well with databases
because they are used in many programs for managing data.
Occasionally it would just repeat the input prompt as a
response. When it did return new row data, it repeated the
example data and did not offer many results, some of which
were just filled with placeholder data such as “<NAME>.”

IV. DATABASE DECEPTION DESIGN

Traditionally, statisticians generate synthetic data by assign-
ing probability distributions for each column based on sample
data, then generating new data randomly and independently
from those distributions [16]. If the distribution is of words or
phrases, the simplest estimate of probability is proportional to
the frequency in a histogram. The weakness of this approach
is that in most real data the values in different columns
not independent. An advantage of generative AI is that it is
based on more complex “transformation” models that include
a deeper representation of context affecting a column value.
Thus they could in principle do a better job.

The general architecture of our system is shown in Figure
1 (in Appendix A). The goal is to put synthetic (fake) data
onto systems in the business operational environment (either
real systems or honeypots) to interfere with the attacker if they
compromise any of the systems. We tested a synthetic SQL
database with all fake records, and a real SQL database with
fake records.

We created the Synthetic Data Generator Python program
that interacts with a local SQLite database to generate syn-
thetic data for a deception planner. It takes as input the
database, model to use, method of operation (of the two use
cases), hints to bias the model output, limit of example rows,
total number of rows to generate, and limit of rows to generate.
Ollama’s interface allowed us to easily switch between models.

For both use cases we used SQLite for our target database in
our implementation due to its ease of use and compact nature.
Changes may be needed for other database features such as
authentication connecting to a database server. In both use
cases we provided the same prompt to request new database
data:

prompt = "Here are some example rows:\n" +
str(examples) + "\nColumns must be delimeted by: "
+ delimiter + "\nWithout providing any additional
commentary or other explanatory text, provide "
+ str(nRows) + " rows on separate lines (as in
each line is delineated by a newline character)
of new data " + hints + " for the following
SQL table schema:\n" + str(schema) + "\n"

The examples list contained some rows of existing database
data to use as an example. Supplying examples gives the
models relevant context and decrease the rate of erroneous
row data, which is very useful when database table column
names are ambiguous or are not very descriptive. A delimiter
other than a comma helps with parsing. We chose example
records randomly so the model gets different examples as
context each time. The variable nRows is the number of
rows the model should generate. We optionally insert nudges
(recommendations) through hints to the model. The variable
schema is the table specification information such as the table
with names, types, constraints, keys, and so on. An example
of schema information is:

schema = "[’CREATE TABLE FinanceAccount (\n
ID INTEGER PRIMARY KEY,\n customerName TEXT
NOT NULL,\n customerAddress TEXT NOT NULL,\n
customerPhone TEXT NOT NULL,\n managedBy
INTEGER,\n accountID INTEGER NOT NULL,\n
accountBalance REAL NOT NULL,\n FOREIGN KEY
(managedBy) REFERENCES Employee(ID)\n)’]"

The prompt is given to the large language model as input.
The model should use the example rows and database table
information as context so it can generate and respond with a
user-defined number of new row data for that table.

In both use cases, fake data can help security teams. Fake
records can be tied to real-world indicators such as decoy
accounts, which serve as high-confidence tripwires that a
database has been breached. Also, these fake databases or
records could be re-generated on an interval which if found in
an external location such as the Dark Web could give incident
responders valuable intelligence on when the breach occurred.

A. Replacement of Real Records by Fake Records

The first use case creates a completely fake version of the
database using the same tables and filled with the same number
of rows per table; this can be used when defenders want no
real data to be stolen. Our method is shown in Algorithm 1.
For a given table tbl, we save the table schema to s to be
included in the prompt.

We create a new copy of the database using the real database
schema. If the original table is not empty, we start the process
for generating new row data by querying the real database for
several rows to use as example data in the prompt. We limit
the number of examples to n, a global variable supplied by
user input to the program. We request iterN (a user input)
new rows of data from the large language model and adjust
nRows if needed.

Algorithm 1 Fake replacement algorithm
function FAKECOPY(tbl, llm, hints, copyDb)

s← getSchema(tbl)
pk ← getPrimaryKey(tbl)
cols← getTableColumns(tbl)
pki← cols.index(pk)
tblRowCount← getTableCount(tbl)
createSQLTable(copyDb, s)
if tblRowCount ̸= 0 then

rList← []
count← 0
lim← n
while count < tblRowCount do

data← getRandTableData(tbl, lim)
data← filterBlobsFromRows(data)
nRows← iterN
if tblRowCount - count < nRows then

nRows = tblCount− count
rowList←
genRows(s, data, nRows, hints, llm)
for row in rList do

row[pki]← count + 1
if insertRow(copyDb, tbl, cols, row then

count← count + 1

B. Shuffled Fake and Real Records

The second use case is adding fake records into an existing
database. This helps when it is not feasible to offer an entirely
fake database for an attacker to steal. The main algorithm is
shown in Algorithm 2.

Algorithm 2 Shuffled fake and real records algorithm
function FAKECHAFF(dbName, llm, hints)

dbDict← dbToDictionary(dbName)
map← remapRecords(dbDict)
tables← getTableNames(dbName)
for tbl in tables do

shuffleRecords(dbName, tbl, dbDict,map)

saveRealKeys(dbName,map)
for tbl in tables do

addFakeRows(tbl, llm, nRows, [hints,maxIndex])

The most important function call is that to remapRecords()
which is shown in Algorithm 3. This function creates a
new mapping, saved to map, from the old primary key to
the new random primary key. We use the mapping in the
shuffleRecords() function shown in Algorithm 4 for each table
tbl. This function is much like the fakeCopy() function shown
in Algorithm 1. The main differences are that we add several

fake rows to insert instead of the same number of original rows
and we randomize the primary key values before insertion
instead of incrementing the value. Insertion also occurs in the
same database instead of a separate copy, so we do not create
a new SQL table.

Algorithm 3 Remapping records algorithm
function REMAPRECORDS(dbDict)

map← {}
for tbl in dbDict do

pks← getPrimaryKeyNames(tbl)
if len(pks) > 1 then

skip
else if len(pks) is 1 then

cols← getTableColumns(tbl)
pki← cols.index(pk[0])
maxInt← 231 − 1
newPk ← randomInt(1,maxInt)
while newPk in map[tbl].values() do

newPk ← randomInt(1,maxInt)

return map

Algorithm 4 Shuffling records algorithm
function SHUFFLERECORDS(dbName, tbl, dbDict, map)

pks← getPrimaryKeysNames(tbl)
pki← None
cols← getTableColumns(tbl)
if len(pks) is 1 then

pk ← pks[0]
pki← cols.index(pk)

deleteAllRows(tbl)
for row in dbDict[tbl] do

if len(pks) is 1 then
row[pki]← map[tbl][row[pki]]

fks← getForeignKeyTables(tbl)
for tblName in fks do

fki← cols.index(fks[tblName]
if row[fki is not None] then

row[fki]← map[tblName][row[fki]

insertRow(dbName, tbl, cols, row)

V. TEST DATABASE SCHEMA

We tested our approach with two open-source databases and
one custom database.

Northwind Database. A small business schema that was
introduced as an example by Microsoft for Access 95-2003
that represents a company that ships grocery items [23]. We
use a SQLite version [24]. A database like this would be
interesting for attackers to disrupt or use a supply chain in a
future attack. It has tables for suppliers, categories of products,
products, orders, order details, employees, employee territo-
ries, territories, regions, shippers, customers, and customer
demographics. There are 625,896 rows in all tables.

Chinook Database. A music industry schema that is avail-
able for multiple database engines and represents a digital
media store [25]. This could be appealing to an attacker
looking to steal music before it is officially released [26]. The
schema contains the tables for artist, album, track, mediaType,
playlist, playlistTrack, genre, invoiceLine, invoice, customer,
and employee. There are 15,607 rows in all Chinook tables.

Financial Company Database. We created a small
database, that we call Breeze, representing an asset manage-
ment company shown in Figure 2 (in Appendix A). This

company manages accounts for clients. There are 24 rows
across all tables. An attacker could use this information to
target either the customer of an account or the employee that
manages a lucrative account in a future attack campaign.

Real-world Utility Database. To further validate our ap-
proach, we used a subset of the Public Utility Data Liberation
(PUDL) project data, which contains real-world data from
utility reporting in the United States [27]. The entire database
currently has 89,437,360 rows across all tables. A database of
utility data would help an attacker planning to cause a critical-
infrastructure disruption in a specific region.

VI. RESULTS

A. Model Metrics

We compared the performance metrics for several models
generating data using each database. The Northwind database
had the most complicated tables; Chinook had some com-
plicated tables; and Breeze had fairly simple tables. For a
consistent comparison, we generated 100 rows for each table
in each database with each model using at most five example
rows in each prompt. Tables II, III, and IV (in Appendix
A) show statistics on the results. Success is measured in
percentage of rows that satisfy the schema and can therefore
be inserted.

We did not disallow using example content for generated
data; we merely asked for new data. Models sometimes used
portions of the original data mixed with some new data to
create a new row. To check how often successfully inserted
LLM database data differed from the source material, we
evaluated each model’s performance using a “uniqueness”
percentage also shown in Tables II, III, and IV (in Appendix
A). We compare the new data to the original source data. We
focus on the string values because integer values can often
be repeated such as key id numbers for each table. Phone
numbers and addresses are treated as strings for our purposes
because they have non-numeric characters. We compare the
number of unique strings in both databases to get the number
of strings that are unique to the new database. Dividing this
number by the total unique strings in the new database gives
us the uniqueness percentage.

The gemma3 models did the best, although it is surprising
that gemma3:4b generated valid data as well as the 12b variant.
The llama3:8b and llama3.1:8b models did very well. It is also
interesting that the llama3.2:3b model did well despite being
less than half the size of the other two Llama models and the
smallest model we used. The llava:13b model and mistral:7b
models did poorly in our tests.

B. Exploration of the Data Generated

Effectiveness of the generated data for deception will be
tested more carefully in future work. But for now, we can
make some observations. Most models performed well.

With the smallest model, llama3.2:3b, we observed some
odd results where a small number of rows in the Chinook
database provide number instead of a date for InvoiceDate
and give the date instead under BillingAddress.

Smaller models also struggled more with generating realistic
numbers. They often repeated digits such as 7777 or used a
sequence of numbers such as in “456 Oak St.”

The most common error that led to failed inserts was a row
that looked reasonable but did not match the required number
of columns required for a full record.

The hints (“nudge”) mechanism attempts to influence the
model response. Cases exist where defenders may want to use
obvious fake data, such as in the French presidential election
[5], to instill doubt in the attacker as to whether target data is
real. To test this, we used the Chinook database and created a
“very fake” database copy using as a hint “cats are funny” to
skew the large language model results to generate less realistic,
but not gibberish, data. This sort of data could be used in a
discouraging honeypot that gets adversaries to leave because
it appears to be obviously fake. Some of the artist names that
were inserted into the database were:

1 |Cats are funny
2 |Garfield
3 |The Pussycat Dolls
4 |Kitty Purry
5 |Furry Felines
6 |Whiskers and Wits
7 |Purrfect Storm
8 |Meowzart

Of these, only two were real artists: Garfield, and The Pussycat
Dolls. This also demonstrates that simple hint nudges can
steer the large language model response without needing to
customize the system and assistant roles or go through greater
effort to fine-tune a model.

C. Shuffling

We also examined the results of shuffling (permuting) the
small finance company database Breeze and inserting fake
records among the real. We started with five employees
seen in the “select all” statement. After shuffling the records
and inserting new fake records, we got 15 employees (real
employee records are marked with double asterisks):

80999381 |109 |Julian White ||Manager
294098349 |107 |Ryan Brooks |408-901-2345 |Analyst
922878050 |103 |Ava Taylor |949-765-4321 |Intern
1066670999 |101 |Keanu Reeves |650-416-7899 |Manager**
1438145888 |103 |Annie Robertson ||Analyst**
1498633672 |111 |Michael Kim |310-765-4321 |Manager
1700628308 |108 |Emily Chen |818-456-1234 |Manager
1713268347 |108 |Sophia Brown |415-234-5678 |Analyst
1961761195 |107 |Emily Chen |310-456-1234 |Intern
1983755203 |106 |Sofia Patel ||Intern
1993677995 |102 |Lawrence Meyers |424-654-3210 |Analyst**
2033814233 |109 |Olivia Hall |916-890-1234 |Analyst
2058148069 |105 |John Kang |424-309-5467 |Analyst**
2068128765 |104 |David Lee ||Manager
2107692453 |104 |Alice Johnson |424-435-6914 |Analyst**

When we joined the FinanceAccount and Employee tables,
we saw that Lawrence Meyers managed five accounts. In the
deceptive version, we found that he managed the original five
as well as ten more. These fake accounts could be used as
tripwires to let the company know that their database is being
accessed by an attacker.

D. Detecting Model Deception

Attackers can use artificial intelligence of their own. We
already see this happening with tools like pentestGPT [14].

However, most models would not do well at detecting AI-
generated content, as specialized AI-generated text detection
tools are not very reliable [28]. Still, we can test our output.

We tested each of the candidate models against 100 rows
each from three variants of the Chinook database’s artist table
as well as from each of the three variants of the Northwind
database’s Orders table. The first variant was the original
database. The second variant was the version of the database
with generated records using the approach from Section IV-A.
The third variant was created using the same approach as
the second but with the hint “indoor house plants” for the
Chinook and “Emotions, feelings, and human experiences” for
the Northwind to generate less realistic results. We hoped that
plants would seem strange for artist names and emotions were
not businesses creating orders. The second and third databases
were generated using the llama3.1:8b model. The schema is
also supplied to give additional context since an attacker could
obtain it.

We used the template below within the prompt as well as a
row to test:

template = "Without providing any additional
commentary or other explanatory text, output
FAKE if you think it is AI generated, and REAL
otherwise.\n Here is the schema of the table:\n"
+ str(schema) + "\nHere is the row to check:\n"

We repeated this for 100 rows from all databases, with no prior
chat history or results included to ensure test independency.

Tables V and VI (in Appendix A) show statistics on
the results of this test. The llama3:8b, llama3.2:3b, and
gemma3:4b models were very gullible, guessing that just about
every row was real. The gemma3:12b model identified the
“very fake” data more often than many of the other models
in the Nortwind database case, but did not do as well in
the Chinook database case. The llava:13b model may have
guessed randomly, because it was close to 50% for all cases.

This suggests that models like the Llama line would be
very easy to fool with deception. Models like phi4:14b may
be harder to fool, but one could take advantage of their
accuracy to deter an attacker by including obviously fake data
in a database to make them think an operational system is a
honeypot. The llava:13b model should not be used by either
attackers or defenders.

Members of our team also assessed some of the data. They
were instructed to determine if the data was original (real) or
AI-generated (fake) and were given the database schema with
an example row much like we did with the large language
model tests. We chose five rows from each of the three variants
of both the Chinook and Northwind databases that were part
of the large language model tests for a total of 30 questions.
The 12 participants were multi-disciplinary members of our
cyberdeception team, most of which were familiar with this
work and most had a strong background in cybersecurity.
Many members only had some experience with databases, as
it is not their normal area of expertise.

Table VII (in Appendix A) shows the results from our team.
The selection options for real or fake were randomized to avoid
skewing the results through a default choice bias if someone

was just selecting the first choice if they were unsure. We
did not do well identifying the real records. We did do well
identifying the “very fake” records.

This was a difficult task. For the Chinook database, many
artists the model produced were real music artists. Because
musicians can sometimes have strange names, it was rather
difficult to identify some of the “very fake” artists. This also
applies to human names because some people have rare names
or unusual variations of names. For example, it is reasonable
that an artist could name themselves after a plant such as
“Amaryllis” which was generated with the “indoor house
plant” hint. We had greater success for the Northwind database
using the “Emotions, feelings, and human experiences” hint.
The model generated realistic results for the fake database, but
with the hint we see several oddities such as for the company
“Feeling Euphoric.” The timestamps were all on the hour and
produced a fake-sounding city and zip code.

(134, JOY, 2, 2023-04-01 18:00:00, 2023-04-02
19:00:00, 2023-04-03 20:00:00, 5, 110.25,
Feeling Euphoric, 654 Pine St, Towntown, Asia,
12345, Japan)

This seems promising to make data that looks fake as a
deceptive deterrence strategy.

E. PUDL Results

Due to its large size, we only used one table in the
PUDL database to limit the runtime of our test . We
chose the ‘core eia923 monthly generation fuel nuclear’
table because an attack on a nuclear facility would have
temporary regional outage impacts but potentially also long-
lasting environmental impacts like the disaster at Chernobyl
near Pripyat, Ukraine. This table has 28,437 rows containing
data from the EIA 923 form, a power plant operations report
that details energy generation and fuel consumption.

For this validation, we chose ‘gemma3:12b’ which we
found performed the best for insertion success rate as well
as execution time in the three other databases. Using the
replacement algorithm to create entirely fake records, it had a
99.80% successful insertion percentage and took eight hours
and 29 minutes to complete. Using the shuffled fake and
real records algorithm, it had a 99.99% successful insertion
percentage and took 18 hours and 26 minutes to add twice
as many records as there originally were leading to a total of
85,311 rows.

The data generated looked reasonable, with some outliers.
For example, a date was generated for the year 2049 which
has not happened yet. For some databases, a future date
may make sense, but this table contains record of submitted
reports. LLMs sometimes struggle to generate random looking
numbers, so some of the values for energy generation or
fuel consumption were obviously fake such as 1234567.8.
However, to convince an attacker that this database is fake,
results like these may be a benefit.

F. Limitations

Because most of our models are text-based, they struggled
with binary data (such as pictures for product categories or

employee photos in the Northwind database) so we removed
that content when giving example rows to the LLM. Our
algorithms could be changed to use a model that can describe
pictures, such as llava, to generate descriptions of the example,
which are then given to the text-based LLM to create a
relevant description of a new picture for the rows it is creating.
The generated description can then be passed to an image-
generating model.

We only support shuffling records for keys with integer
values. The PUDL table we used referenced some other tables
that have alphabetic codes, such as NUC for Nuclear, so they
were not changed. creating new random codes for these rows
would have made the database much harder to use. It may be
desirable in other databases to randomize alphabetic or alpha-
numeric keys. Similarly, it may be desirable to not randomize
some integer keys if they correspond to some entity external
to the database such as employee ID numbers.

Improvements can be made to handling the responses from
the models. The models that generate SQL code could be
either filtered or parsed to ensure these statements are not
included as row data. Similarly, simple phrases that models
tend to use as a response instead of data could be filtered out.

Although our trial with humans indicate that the fake data
generated was hard to detect, it remains to be seen what
attackers would do if they encountered fake but realistic or
obviously fake data.

There is a risk to using data deception approaches like
ours. Because deception interferes with an attacker’s thought
process, there may be unexpected second or third order effects
to the deception. For example, in the asset management
database example, an attacker could get fooled by a fake
account and try to access it. However, if the fake account
shows considerable money, the attacker could try to kidnap
the manager of that account for ransom in the real world.

VII. CONCLUSION

Our design shows promise with using any compatible large
language model to generate fake database records. Compared
to randomly selecting values from statistical models, genera-
tive large language models can model complex correlations
between data columns. Model performance varied, and the
gemma3 models offered the best performance in terms of both
how likely the output could be used as well as the time it took
to generate data. We also found that large language models did
not do well at detecting if database records were generated by
a large language model, which is something defenders can
exploit.

Future work will try to measure the effectiveness of the
generated data by comparing it to known distributions of
numeric data and known histograms of symbolic data or
through embedding comparisons. If generative AI is using a
too-small sample of the real world, it should show weaknesses
like those mentioned in Section VI-B, which we can detect
using statistical hypothesis testing.

REFERENCES

[1] Mandiant. (2022) Assembling the russian nesting
doll: Unc2452 merged into apt29. [Online]. Avail-
able: https://www.mandiant.com/resources/blog/unc2452-merged-into-
apt29url

[2] L. H. Newman. (2020) Russia’s fireeye hack is a statement—but not
a catastrophe. [Online]. Available: https://www.wired.com/story/russia-
fireeye-hack-statement-not-catastrophe/

[3] Securiti. (2025) A comprehensive analysis of the biggest data
breaches in history and what to learn from them. [Online]. Avail-
able: https://securiti.ai/analysis-of-the-biggest-data-breaches-in-history-
and-what-to-learn/

[4] Microsoft. (2025) National public data breach: What you need to know.
[Online]. Available: https://support.microsoft.com/en-us/topic/national-
public-data-breach-what-you-need-to-know-843686f7-06e2-4e91-8a3f-
ae30b7213535

[5] CSIS. (2018) Successfully countering russian electoral interfer-
ence. [Online]. Available: https://www.csis.org/analysis/successfully-
countering-russian-electoral-interference

[6] Google, “Secure, empower, advance: How ai can reverse the defender’s
dilemma,” Google, Tech. Rep., 2024.

[7] K. Ferguson-Walter, S. Fugate, J. Mauger, and M. Major, “Game theory
for adaptive defensive cyber deception,” in Proceedings of the 6th
Annual Symposium on Hot Topics in the Science of Security, 2019, pp.
1–8.

[8] N. C. Rowe and J. Rrushi, Introduction to cyberdeception. Springer,
2016.

[9] K. Ferguson-Walter, T. Shade, A. Rogers, M. C. S. Trumbo, K. S.
Nauer, K. M. Divis, A. Jones, A. Combs, and R. G. Abbott, “The
Tularosa study: An experimental design and implementation to quantify
the effectiveness of cyber deception.” Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), Tech. Rep., 2018.

[10] J. Landsborough, L. Carpenter, B. Coronado, S. Fugate, K. Ferguson-
Walter, and D. Van Bruggen, “Towards self-adaptive cyber deception for
defense.” in HICSS, 2021, pp. 1–10.

[11] A. Shabtai, M. Bercovitch, L. Rokach, Y. Gal, Y. Elovici, and
E. Shmueli, “Behavioral study of users when interacting with active
honeytokens,” ACM Transactions on Information and System Security
(TISSEC), vol. 18, no. 3, pp. 1–21, 2016.

[12] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun,
“A comprehensive survey of ai-generated content (aigc): A history
of generative ai from gan to chatgpt,” 2023. [Online]. Available:
https://arxiv.org/abs/2303.04226

[13] M. S. Rana, M. N. Nobi, B. Murali, and A. H. Sung, “Deepfake
detection: A systematic literature review,” IEEE access, vol. 10, pp.
25 494–25 513, 2022.

[14] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “Pentestgpt: An llm-empowered
automatic penetration testing tool,” arXiv preprint arXiv:2308.06782,
2023.

[15] G. T. Intelligence. (2025) Adversarial misuse of generative
ai. [Online]. Available: https://cloud.google.com/blog/topics/threat-
intelligence/adversarial-misuse-generative-ai

[16] S. Nikolenko, Synthetic data for deep learning. Springer, 2021.
[17] Z. Xu, Y. Liu, G. Deng, Y. Li, and S. Picek, “Llm jailbreak attack

versus defense techniques–a comprehensive study,” arXiv e-prints, pp.
arXiv–2402, 2024.

[18] P. Mishra. (2023) Chatgpt3 is bulls*** artist. [Online]. Available:
https://punyamishra.com/2023/03/02/chatgpt3-is-bulls-artist/

[19] S. Johnson, R. Hassing, J. Pijpker, and R. Loves, “A modular generative
honeypot shell,” in 2024 IEEE International Conference on Cyber
Security and Resilience (CSR). IEEE, 2024, pp. 387–394.

[20] H. T. Otal and M. A. Canbaz, “Llm honeypot: Leveraging large
language models as advanced interactive honeypot systems,” in 2024
IEEE Conference on Communications and Network Security (CNS).
IEEE, 2024, pp. 1–6.

[21] D. Reti, N. Becker, T. Angeli, A. Chattopadhyay, D. Schneider,
S. Vollmer, and H. D. Schotten, “Act as a honeytoken generator! an
investigation into honeytoken generation with large language models,”
in Proceedings of the 11th ACM Workshop on Adaptive and Autonomous
Cyber Defense, 2024, pp. 1–12.

[22] J. Landsborough, T. Nguyen, and N. Rowe, “Retrospectively using
multilayer deception in depth against advanced persistent threats,” 2024.

[23] Arrow of Time. Test datasets. [Online]. Available: https://arrow-of-
time.com/commtestdata.aspx

[24] jpwhite3. (2023) northwind-sqlite3. [Online]. Available:
https://github.com/jpwhite3/northwind-SQLite3

[25] lerocha. (2024) chinook. [Online]. Available:
https://github.com/lerocha/chinook-database

[26] J. Rhysider. (2024) Darknet diaries episode 148: Dubsnatch. [Online].
Available: https://darknetdiaries.com/episode/148/

[27] C. Cooperative. title. [Online]. Available: The Public Utility Data
Liberation (PUDL) Project

[28] D. Weber-Wulff, A. Anohina-Naumeca, S. Bjelobaba, T. Foltýnek,
J. Guerrero-Dib, O. Popoola, P. Šigut, and L. Waddington, “Testing
of detection tools for ai-generated text,” International Journal for
Educational Integrity, vol. 19, no. 1, Dec. 2023. [Online]. Available:
http://dx.doi.org/10.1007/s40979-023-00146-z

APPENDIX A: TABLES AND FIGURES

Model Name <16 GB? Reasonable output?
gemma3:4b Y Y
gemma3:12b Y Y
gemma3:27b N -
llava:13b Y Y
llava:34b N -
llama3:8b Y Y
llama3.1:8b Y Y
llama3.1:70b N -
llama3.1:405b N -
llama3.2:3b Y Y
llama3.3:70b N -
mistral:7b Y Y
phi4:14b Y Y
smollm2:135m Y N
smollm2:360m Y N
smollm2:1.7b Y N
starcoder2:15b Y N

TABLE I
INITIAL MODEL EVALUATION

Model Name Size
(GB)

Rows
Gen-
er-
ated

Failed
In-
serts

%
Suc-
cess

Time
(min)

%
Unique

llama3:8b 4.7 1,350 250 81.48 8 91.97
llama3.1:8b 4.9 1,675 575 65.67 13 90.39
llama3.2:3b 2.0 1,804 704 60.98 7 77.99
mistral:7b 4.1 2,010 910 54.73 13 95.01
gemma3:4b 3.3 1,101 1 99.91 6 94.84
gemma3:12b 8.1 1,160 60 94.83 13 95.00
phi4:14b 9.1 1,333 233 82.52 14 87.71
llava:13b 8.0 2,393 1,293 45.97 35 78.87

TABLE II
PERFORMANCE RESULTS FOR NORTHWIND DATABASE GENERATION

Fig. 2. Asset management company tables

Fig. 1. Example deception system architecture

Model Name Size
(GB)

Rows
Gen-
er-
ated

Failed
In-
serts

%
Suc-
cess

Time
(min)

%
Unique

llama3:8b 4.7 1,261 161 87.23 7 89.86
llama3.1:8b 4.9 1,198 98 91.82 5 90.73
llama3.2:3b 2.0 1,201 101 91.59 3 81.25
mistral:7b 4.1 1,933 833 56.91 12 89.66
gemma3:4b 3.3 1,100 0 100 4 86.99
gemma3:12b 8.1 1,100 0 100 9 92.57
phi4:14b 9.1 1,189 89 92.51 8 91.91
llava:13b 8.0 2,486 1,386 44.25 31 82.79

TABLE III
PERFORMANCE RESULTS FOR CHINOOK DATABASE GENERATION

Model Name Size
(GB)

Rows
Gen-
er-
ated

Failed
In-
serts

%
Suc-
cess

Time
(min)

%
Unique

llama3:8b 4.7 311 11 96.46 1 98.88
llama3.1:8b 4.9 307 7 97.72 1 99.27
llama3.2:3b 2.0 310 10 96.77 1 88.37
mistral:7b 4.1 694 394 43.23 4 98.00
gemma3:4b 3.3 301 1 99.67 1 98.39
gemma3:12b 8.1 301 1 99.67 3 99.14
phi4:14b 9.1 317 17 94.64 2 99.03
llava:13b 8.0 344 44 87.21 3 89.71

TABLE IV
PERFORMANCE RESULTS FOR BREEZE DATABASE ROW GENERATION

Model Name % Real % Fake % Very fake
llama3:8b 100 0 0
llama3.1:8b 81 16 17
llama3.2:3b 100 0 0
mistral:7b 64 10 39
gemma3:4b 100 0 0
gemma3:12b 82 1 11
phi4:14b 70 33 56
llava:13b 60 46 37

TABLE V
PERCENT AI CORRECT GUESSES FOR CHINOOK DATABASE

Model Name % Real % Fake % Very fake
llama3:8b 100 1 7
llama3.1:8b 94 8 14
llama3.2:3b 99 0 1
mistral:7b 100 1 7
gemma3:4b 100 3 18
gemma3:12b 100 2 46
phi4:14b 86 19 62
llava:13b 65 41 36

TABLE VI
PERCENT AI CORRECT GUESSES FOR NORTHWIND DATABASE

Database % Real % Fake % Very fake
Chinook 78.18 7.27 61.81
Northwind 68.09 40.0 83.63

TABLE VII
PERCENT HUMAN CORRECT GUESSES FOR EACH DATABASE

