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Project Summary 
This work addressed ways of making machine learning more robust against adversaries 
manipulating its input data, as with sensor data an adversary can at least partially control. The 
approach we explored was training and comparing alternative artificial intelligence (AI) models for 
the same data. An AI model is a software structure that draws conclusions from data, such as a 
neural network, a random forest, or a Bayesian network. Usually adversaries assume a neural-
network model is being used, and they manipulate the input to find cases in which incorrect 
conclusions are reached after standard training; they then try to supply similar data in operational 
scenarios. However, it is very difficult to find cases that fool more than one machine-learning 
model, so training more than one on the same data will often reveal the data manipulation by 
disagreements between conclusions. Our project tested this solution on real ship-tracking data 
from the public Automatic Identification System database available from the U.S. Coast Guard for 
U.S. coastal waters. We built ship tracks out of individual ship records and identified ten key 
features of tracks that help classify ship types, with the goal of identifying ships falsely reporting 
their identities. This identified some interesting suspicious anomalies and faulty reports in the data. 
Then we systematically perturbed the data to various degrees to see how that affected the ship-type 
classifications with eight standard machine-learning methods. We were particularly interested in 
effects that did not uniformly increase with the degree of perturbation, effects that varied 
significantly with the direction of perturbation, and in major differences in effects between the 
machine-learning methods. Our results did find some interesting weaknesses in the methods, and 
our methodology is general enough to be applied to many other kinds of machine-learning tasks. 
 
Keywords: machine learning, testing, adversary, data manipulation, deception, models, ships, 
tracking, ship types, artificial intelligence 
 
Background  
The machine-learning subarea of artificial intelligence has become very popular for military 
applications recently due to its successes with computer vision and sensor data.  However, these 
advances can be countered by an adversary that has at least partial access to the data. This could 
occur with aerial or satellite imagery of adversary territory falsified using conventional deception 
methods, with fake signals data provided by adversary emitters, or malware emplaced by 
adversaries on friendly systems to generate false information. Such data manipulation can cause 
learning of false rules and trends about an adversary as a kind of deception, and this can be a 
significant force multiplier for an adversary. Often it is applied to classification problems where 
friendly forces must decide whether they detect a threat and what kind it is, and the adversary can 
manipulate the threshold by small changes to parameters. 
 
Countering these methods can be difficult. The popular neural-network models in particular are 
complex mathematically and are generally too hard for humans to understand, so understanding 
why and how an adversary manipulation works is usually impossible. Confirming the provenance 
of data is a challenging forensic problem due to the complexity of our digital systems and their 
hardware. Attempts to identify the parts of a neural network that are most contributing to a 
surprising conclusion (“salience”) are sometimes possible but unreliable. Retraining the learned 
model in response to every new observation that might represent adversary manipulation requires 
considerable time for important neural networks.  
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One promising approach is to run multiple machine-learning models on some suspect data and 
compare their conclusions. If the models have been well-trained on trusted data, disagreements 
they have about conclusions should be rare, and large numbers of disagreements are suspicious. 
Despite the current tendency to make neural networks the default method for machine learning 
because of their often-high accuracy, other methods have advantages in features such as time and 
storage. In particular for classification problems, simple linear and logistic models, decision trees, 
and Bayesian inference can provide a baseline of performance for machine learning that can flag 
obvious failures of a neural network. This approach we investigate in this work. 
 
Adversaries manipulating data are performing a kind of deception, so it is important to them that 
their manipulations remain undiscovered. Thus their standard method is to perturb the data just 
enough to cause misclassifications.  Thus to provide a good test of effects of data manipulations we 
should perturb data minimally and look for unusual effects.  This is what we have done. 
 
This research used data from ship tracking provided by the U.S. Coast Guard from their Marine 
Cadastre site (www.marinecadastre.gov).  Tracking data provides much useful data about the 
purposes and missions of ships, some of it quite subtle.  Though this data includes few military 
ships, the principles we have developed should be applicable to them to detect military 
reconnaissance and operations, and enabling such classified analysis is the ultimate goal of this 
work. 
 
Findings and Conclusions  
We tested the prediction of ship type from its properties and tracks, something important in 
detecting illegal activity at sea. The results showed significant differences between not only ship-
type classification accuracy because of perturbation, but also in what attributes each model 
considers most important; coordinate popularity (how much the ship moves between transponder 
reports) and ratio of width to length were the most important overall. Four ship classes were 
harder to classify: military ships, passenger ships, “unknown” ships, and “other” ships. We removed 
the “unknown” ships from the final tests since they were so variable, but predicting their true types 
can be done with our methods. Some models were clearly more resistant to perturbation than 
others, with Bayesian networks and the decision tables being good in this property, and random-
forest and nearest-neighbor models were entirely unaffected. The most severely affected were 
logistic neural networks, Naïve Bayes, and simplified logistic models, and the J48 decision trees 
ranked approximately average for these tests. 
 
Tests with evenly spaced perturbations gave us the best data about the sensitivity of each model. 
We observed and documented several unusual phenomena in our data, with some tests showing 
that classification accuracy jumped at some points, sometimes even above the baseline accuracy 
without any data perturbation. This was especially noticeable in the Bayesian models (net and 
Naïve). Other unusual results included large dropoffs in accuracy for the simple logistic and logistic 
neural-network models, and our inability to cause the random forest model to significantly 
misclassify ships, since we could only cause a drop in accuracy from 100% to 99.7% accuracy with 
large negative perturbations. In many models, the importance of each attribute seemed to change 
with every perturbation in a nonlinear way. For instance, the performance of the Naïve Bayes 
model with a perturbation of -1.0 was 70% worse than with a perturbation of 1.0.  
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We observed and documented cases where either classification accuracy dropped inconsistently 
and asynchronously with increasing perturbations, or less often, where classification accuracy 
actually rose with increasing perturbations. Different models had different tipping points in 
accuracy. Our models struggled to classify several kinds of ships, in particular military vessels, 
passenger ships, “unknown” ships, and “other” ships. 
 
We produced detailed summaries of the effects of eight machine-learning methods on ten attributes 
of ship tracks for future guidance of designers of machine-learning methods. Overall, machine-
learning methods are shown effective in identifying ship types in real data from their track data, 
which should be helpful in detecting military activities, smuggling, or illegal fishing. Increasing 
input perturbations usually mean increasing effects, but not always; this means that some judgment 
is needed in applying machine-learning models in critical situations involving tracking data. All 
models were vulnerable to sufficiently large perturbations by demonstrating greatly reduced 
classification accuracy, but these cases are highly noticeable on data inspection and should not be a  
threat. 
 
Recommendations for Further Research 
We did not find any major vulnerabilities in the machine-learning methods we tested in regard to 
perturbations of their input data. We thus confirm their effectiveness in future work in analysis of 
tracking data. Nonetheless, future work needs to investigate further the sensitivities we found in 
some of the machine-learning methods, and analyze further how an adversary might exploit them. 
It also needs to be expanded to cover some of the more complex neural-network methods popular 
today, especially those that are slow and difficult to train although very accurate. The more complex 
a model, the more there is for adversaries to exploit. More data should be collected, especially 
outside of U.S. coastal waters, to allow testing on the rare but important kinds of suspicious 
maritime activity like military reconnaissance, illegal fishing, and smuggling. 
 
Acronyms 
AI artificial intelligence 
 


