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ALGORITHMS

Algorithms for 
Artificial Intelligence
Neil C. Rowe,  U.S. Naval Postgraduate School

 Artificial intelligence and machine learning use a 

wide variety of algorithms. More than 60 years 

of research have shown that intelligent behavior 

requires a variety of methods. We discuss the 

major classes of algorithms and their uses. 

<AU: Please note that the abstract has 

been trimmed in accordance to magazine 

style. Please check that the included 

details are correct.>

Artificial intelligence (AI) is usually defined as 
behavior by machines that would appear intel-
ligent if it were done by a human. That does not 
necessarily require reasoning as brains do. AI 

is a large subarea of computer science with a long history 
starting in 1956. Over the years, it has borrowed many al-
gorithms from other areas of computer science, statistics, 

and operations research toward 
the goals of creating many kinds of 
intelligent behavior. It has also in-
vented some algorithms of its own.

BACKGROUND ON AI 
ALGORITHMS  <AU: Please 
check that the edited section 
heading is appropriate.>
Many AI algorithms are described 
in introductory textbooks such as 
the one by Russell and Norvig.1 Al-
gorithms can be distinguished as to 
whether they implement intelligent 
behavior (AI modeling) or improve it 

(machine learning). Modeling methods have been around 
a long time, and machine learning methods have become 
primary only with the increases in computation speeds in 
the last 20 years. However, machine learning is unneces-
sary for AI. You can still program intelligent behavior di-
rectly if a reasonably good simple solution for a task will 
suffice—something possible, for instance, for many help 
desk tasks. Both AI modeling and machine learning can 
be distinguished further on whether they focus on logical 
reasoning, numerical reasoning, or some combination of 
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both. Early work focused on logical 
reasoning, but current work is focused 
on numerical reasoning, though both 
are necessary to cover the full range of 
human reasoning abilities.

Some researchers in AI and al-
lied areas of psychology use AI algo-
rithms to model brains (human or 
animal)2 and other aspects of biology 
such as “artificial life” and immune 
systems.3 We touch only briefly on 
these approaches here. This work has 
important differences from most of 
AI as biological phenomena are lim-
ited in speed and space in ways, un-
like semiconductor technology. For 
instance, brains have short-term and 
long-term memory of a limited size, 
and brains have a distinctive top-level 
process called “consciousness.” Model-
ing of brains and biology is, however, 
important in simulating the behavior 
of people and living creatures as in 
computer games as well as suggesting 
good ideas for AI. Some have argued 
with a religious-like fervor that brain 
modeling is the only way to achieve 
true AI, but this claim is disputed by 
the generally more impressive reason-
ing abilities of algorithms without any 
biological or psychological analogs.

Most problems addressed by AI 
are NP-hard, so their computations 
are exponential in problem size. That 
is because most tasks have features 
of nondeterminism in which consid-
erable trial and error in the testing of 
combinations is necessary. However, 
AI practitioners have been quite clever 
in finding criteria to considerably re-
duce the rate of the “combinatorial 
explosion” with problem size for many 
practical problems so that implemen-
tations of many AI algorithms appear 
polynomial in average performance.4

A good example is the graph–subgraph 
isomorphism problem (determining 
whether one graph is a subgraph of an-
other), which arises in many AI areas 
such as finding objects in pictures and 

matching natural-language questions 
to natural-language documents. It can 
often be done in polynomial average 
time when items have rich features 
to exploit in the matching.5 A related 
problem is that because they are NP-
hard, many AI implementations con-
sume large amounts of energy, and 
“deep learning” methods with artifi-
cial neural networks on large data sets, 
such as picture libraries, can be espe-
cially energy intensive.6

IMPLEMENTING BEHAVIOR

Logical methods
Logical models are necessary when-
ever there are absolute constraints 
on the solutions to a task, as often 
happens in modeling policies and 
laws. Computers and digital devices 
perform logical operations in their 
machine language, so they have an 
inherent ability for logical reasoning. 
Most logical AI algorithms represent 
knowledge in the form of if–then rules 
and apply them to Boolean values rep-
resenting facts to make inferences. 
Inference can go either forward from 
facts to conclusions (“forward chain-
ing”) or backward from conclusions 
to facts (“backward chaining”). Back-
ward chaining is analogous to conven-
tional program execution. The logic 
used can be either Boolean algebra 
(propositional calculus), limited forms 
of predicate calculus, or full predicate 
calculus. A limited predicate calcu-
lus used in the Prolog programming 
language requires the conclusions 
of rules to be single unnegated uni-
versally quantified facts and can run 
much faster than full predicate cal-
culus by reducing the combinato-
rial explosion.7 Reasoning with full 
predicate calculus can be done with 
the classic method of resolution the-
orem proving, but other logical infer-
ence methods like modus ponens are 
used, too.

Some AI tasks require the knowl-
edge of many facts, such as answering 
unrestricted human questions about 
a subject. Algorithms are then nec-
essary to store the facts, index them, 
and efficiently retrieve them. Logical 
methods can then provide encyclope-
dic capabilities to answer many kinds 
of questions from such facts. Ontol-
ogies (representations of intercon-
nected facts) have been produced as 
input data for such purposes for many 
common applications.

If a set of if–then rules must be run 
frequently, the methods of “compiling” 
the rules can improve their speed. This 
can involve creating an equivalent of a 
customized gate array or semiconduc-
tor chip or creating a decision tree of 
yes–no questions. Special methods 
called “constraint programming” have 
been developed for tasks with many 
logical conditions on a solution, which 
focus on efficient constraint selection 
and application; especially difficult 
scheduling problems can be solved 
with such methods. Constraint-based 
tasks appear to be well suited for quan-
tum computing, though implementa-
tions are proceeding quite slowly.

Planning methods
A special class of logical reasoning is 
needed for reasoning about actions in 
time, the subarea of “planning.” For 
instance, repairing a vehicle or do-
ing surgery often requires a precise 
sequence of steps done in a precise 
order. Tree traversal algorithms are 
helpful for these problems because the 
space of possible states often resem-
bles a tree. Rules can be used to guide 
choices, what is known as a “heuristic 
search.” Numbers can also be used to 
guide choices, as in best-first search 
or branch-and-bound search. A classic 
and versatile search algorithm is the 
A* algorithm, which combines best-
first and branch-and-bound ideas by 
adding the costs incurred to a state 
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to a prediction of the future costs to 
a goal state. Good tasks for A* search 
are route planning and resource allo-
cation. Alternatives are cross-entropy 
optimization8 and random searches 
such as Monte Carlo tree search and 
simulated annealing.

A subclass of planning addresses 
extended interactions between two 
opposing agents, also the subject of 
game theory in operations research. 
This has become especially important 
recently for its applications to cyber-
security planning. Traditional game 
modeling involves adversaries who al-
ternate turns in planning, each trying 
to thwart the other’s goals or increase 
the other’s costs. To plan in adversar-
ial situations, it is important to look 
ahead several moves; a classic heu-
ristic called alpha–beta pruning can 
be used to prove that certain subtrees 
can be ignored if the adversary always 
makes their best choice. Some degree 
of randomness in exploration can also 
be helpful in problems such as plan-
ning business strategies.

Numerical methods
The field of statistics has many models 
with integer and real variables, and 
many of these can be used for AI. A 
simple linear weighted sum of numeric 
input variables (a “linear model”) is 
widely useful in modeling human de-
cision making. In fact, humans often 
unconsciously follow linear models 
in making many decisions, an ob-
servation that marketing strategies 
have efficiently exploited. However, a 
fundamental weakness of linear mod-
els is that they cannot be stacked; a 
weighted sum of linear models is itself 
a linear model. This means that linear 
models cannot explain the levels of 
computing in brains, a realization that 
only became clear in the 1960s.

The solution was to insert nonlin-
ear functions between linear models 
in a graph structure, creating artificial 
neural networks; the models (“neu-
rons”) at the same distance from the 
input are called “layers.” Traditionally, 
the nonlinear function was the logistic 

f (x) = 1/(1 + ek(x−c) ), though other func-
tions are used now, too. Despite their 
name, artificial neural networks gen-
erally do not try to model biological 
neurons. However, neurons have sim-
ilar nonlinearities in the rate at which 
they fire, their primary quantitative 
encoding, since they will not fire un-
less they have more than a threshold 
of excitation, and with increasing in-
put, they asymptotically approach a 
maximum due to chemical limitations 
on the rate of molecular diffusion. 
Many variant algorithms for neural 
networks have been proposed over 
the years, but no one method has been 
shown to provide consistently better 
performance than the others.

Linear and many mostly linear nu-
merical models are easy to implement 
with vector and matrix operations in 
digital technology, or they can be im-
plemented with analog (voltage-based) 
computational elements. They can run 
very fast because they primarily add 
and multiply without iteration. They 
can also be combined with logical 
models by comparing their outputs to 
thresholds and interpreting a value 
over the threshold as a True and under 
as a False. Or the thresholds can define 
boundaries that partition hyperspace 
in subregions defining a class of data 
(“support vector machines”). This is 
useful for many kinds of classification, 
such as that of sounds and signals.

Two particular kinds of artificial 
neural networks have become pop-
ular recently. For computer vision, 
the intelligent processing of images, 
convolutional neural networks have 
supplanted traditional methods and 
have been shown to solve many classic 
problems much better. They are neural 
networks where the initial (“convolu-
tional”) layers take inputs from a local 
area of the image, and then the later 
layers combine information over the 
whole image. The early convolutional 
layers generally identify small ob-
jects in the images, and then the later 
layers identify relationships between 
them; an example would be an aerial 
photo where the convolutional layers 

identify vehicles, and the later layers 
identify traffic jams. The other popu-
lar kind of neural network is the recur-
rent neural network, which explores 
locality in time analogously to the 
spatial dimensional of convolutional 
networks. They have additional inputs 
to layers that are previous values of 
their inputs or summaries of previous 
values. Recurrent neural networks are 
a good way to recognize and classify 
sequences of events from simple sen-
sors, as in the monitoring of vehicle or 
human traffic for accidents.

An alternative to a linear model is a 
multiplicative model where the factors 
for a conclusion are multiplied rather 
than added. Many of these methods 
multiply probabilities and derive from 
Bayes’ rule in mathematics by impos-
ing various additional assumptions 
on the independence of evidence. Mul-
tiplicative models can be considered 
the exponentiation of linear models, 
where the weights in linear models 
become powers of the exponentiated 
values. However, when used with 
probabilities, they have the advan-
tage that one high probability does not 
overwhelm the other factors, unlike 
one high factor in a linear model. Hu-
man expertise is often used to connect 
Bayesian values in a network along 
likely causal relationships, rather 
than trained as with artificial neural 
networks.

“Fuzzy” models and networks are 
popular to address evidence uncer-
tainty, and they use special mathemat-
ics to combine evidence, especially lin-
guistic evidence. An older alternative 
to recurrent neural networks for rea-
soning about uncertainty for events 
in time is the hidden Markov model 
where probabilities are inferred for 
successive states from probabilistic 
observations and known transition 
probabilities; a classic use is for speech 
understanding.

Specialized AI methods
Brains have specialized capabilities for 
sensing and motion that allow an ani-
mal to interact with its environment, 
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and these are necessary for intelligent 
behavior as well. The AI algorithms for 
these tasks follow more closely to bio-
logical models than other algorithms. 
For instance, computer vision must 
recognize the boundaries of objects 
in an image before it can recognize 
the objects, and this is accomplished 
in the retina in an eye and the subse-
quent visual preprocessing at the back 
of the brain; audio processing needs to 
recognize the distinctive patterns in 
sets of frequencies of sounds, and this 
is accomplished in the cochlea of the 
ear and the subsequent neural audi-
tory preprocessing. Many of the algo-
rithms use artificial neural networks 
since anatomical investigations have 
documented real neural networks for 
these tasks.

AI algorithms are often good can-
didates for distributed processing, 
and pipelined architectures originally 
designed for fast graphics (“graph-
ical processing units”) have greatly 
contributed to the recent success of 
artificial neural networks. However, 
distributed processing plays a more 
intrinsic role in algorithms that model 
organizations or societies—“social 
AI”; they model intelligent commu-
nications between “agents” (intelli-
gences). Social AI differs from proto-
cols for digital networks in that it can 
negotiate in human-like ways rather 
than issue requests and reports.3 A 
synergistic effect can occur where the 
network of communicating AI agents 
is smarter than any one of them alone. 
One simple form of this is “swarm in-
telligence,”9 which can model coordi-
nated herding and flocking actions by 
animals as well as analogous phenom-
ena in military operations.

MACHINE LEARNING
Recent attention to AI has been focused 
on the subarea of machine learning 
and the related area of data mining.10 
With machine learning, a carefully de-
signed starting model for intelligent 
behavior is unnecessary; instead, an 
adequate model is optimized automat-
ically. Most algorithms for machine 

learning have been around for a long 
time but have not been sufficiently fast 
to be useful until recently; my AI text-
book, which came out in 1988,11 said 
little about machine learning.

Machine learning can be super-
vised (training on examples), unsuper-
vised (using some less direct feedback), 
or some combination of both. Training 
examples in supervised learning must 
specify what should be concluded from 
the case; for instance, a training set for 
medical AI could be patient records 
with their diagnoses. Unsupervised 
learning often uses numeric feedback, 
such as the degree of quantitative suc-
cess or distance to a goal state. Most 
machine learning is supervised be-
cause that is much faster.

Logical learning
The caching of previous results is a 
simple and often effective method of 
supervised learning. A new case can be 
assumed to have similar conclusions 
to similar, previously seen cases; this 
is “case-based” or “instance-based” 
reasoning. For instance, a medical 
system may remember the pattern of 
symptoms in rare cases and what the 
eventual diagnoses were. However, 
a distance metric between the cur-
rent situation and stored situations 
is needed, and this is not always easy 
to define; if more than one situation 
is similar, an average or consensus of 
conclusions of the “nearest neighbors” 
should be taken. Stored cases should 
be indexed to enable quickly finding 
the nearest matches.

A still-used supervised learning 
algorithm from the late 1950s learns 
a decision tree incrementally from 
Boolean data. Decision trees are often 
a good model for tasks governed by 
policies, such as filling out tax forms. 
Starting with an empty tree, it consid-
ers each training case in order, follow-
ing the tree according to the features 
of the case until it gets to a leaf node. 
If this process does not lead to a correct 
conclusion according to the training 
set, the leaf node is changed to query 
a previously unasked feature that will 

distinguish this case from the previ-
ous ones. Cycling through the cases 
until no further changes are made to 
the tree ensures that the tree handles 
the cases in its training set correctly if 
they are not contradictory. 

However, the tree built may be quite 
unbalanced; entropy calculations can 
help balance it by considering the 
features whose querying reduces the 
entropy the most. The accuracy of the 
tree on new cases can still be a prob-
lem, however, since the tree does not 
generalize from its experience. A pop-
ular improvement called a “random 
forest” builds a set of trees with ran-
dom orders of questions and takes a 
majority vote on their predictions; this 
seems to perform well on many prac-
tical problems such as classifying ob-
jects in images. The multiple trees may 
require more energy to run than alter-
natives like neural networks, which, 
however, require more energy to train.

An alternative model for logical 
data is a set of if–then rules inter-
preted as an implicit conjunction. For 
an incremental approach, rules can 
be modified as necessary to conform 
to each new case. This may require 
adding terms to the premises (often 
negated terms representing exception 
conditions), deleting terms, or joining 
two rules together. New rules should 
be created for cases sufficiently dif-
ferent from any seen before. As with 
decision trees, cases should be cy-
cled through until the rules no longer 
change. An alternative is to learn a set 
of broader but imperfect (“heuristic”) 
rules since humans use many such 
rules. The “set covering” approach, a 
“greedy” algorithm, uses conditional 
probabilities of the conclusions given 
the premises to rank rules. It first finds 
the best one-premise rules, then com-
bines them by taking conjunctions or 
disjunctions of the “if” parts to get new 
rules, and repeats to build larger and 
larger rules of a minimum conditional 
probability. For instance, a person 
may think they get sick after eating 
seafood, but they may discover after 
further tries that the combination of 
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seafood with garlic and high amounts 
of fat is more likely to cause the 
symptoms.

Numerical learning
The classic way to fit numeric models 
to data is through regression methods 
from statistics, and these are widely 
used for the simpler numeric mod-
els in AI. However, artificial neural 
networks have their own specialized 
learning algorithm called “backprop-
agation,” which adjusts the weights 
in networks incrementally to training 
data. It uses the chain rule for finding 
derivatives and optimizes the weights 
by working backward from the final 
layer to the input layer. Its idea is that 
weights should be increased for a case 
proportional to the correct output 
minus that actual output (which can 
be negative). The degree of blame or 
credit should also be proportional to 
the variable value multiplied by the 
weight on that case, but since a non-
linear function was imposed after the 
weight was applied, it should also be 
proportional to the slope of the nonlin-
ear function then. These three factors 
should be multiplied. 

Backpropagation ran into accuracy 
limits in deeper networks during the 
1980s until it was realized that neu-
rons at deeper layers were frequently 
getting stuck on extremes of the 
ranges of their nonlinear functions. 
The solution was to normalize the set 
of weights for a neuron periodically 
to get them back closer to the middle 
of their ranges, where adjustments 
could work faster. This enabled neural 
networks to have more layers, hence 
the current vogue for “deep learning.” 
Note that learning for neural networks 
fits known cases to a complicated 
mathematical function and cannot be 
said to be “creative” (in the sense of 
forming something new).

Numerical learning of plans
Planning methods can be trained us-
ing recurrent neural networks where 
successive outputs represent suc-
cessive steps in a plan. Increasingly 

popular, however, is to use reinforce-
ment learning to improve planning. 
One simple approach is inspired by ant 
trails as marked by chemical signals 
(pheromones) and modifies the costs of 
branches taken in a traditional search 
tree with backpropagation of the de-
gree of the eventual relative success 
or failure of plans using that branch. 
Relatively successful routes to a solu-
tion decrease the costs of their steps, 
whereas relatively unsuccessful routes 
increase them. By running enough ex-
amples, consensus costs are obtained 
on the choices of plan steps. An ex-
ample is businesses learning good 
production and marketing strategies. 
Reinforcement learning only works, 
however, when there are few enough 
branches to obtain good feedback on 
them, and many important planning 
tasks are too complex for this to work.

Adversarial and game-search tasks 
may use an adversary’s actions to learn 
better than they could on their own. 
That is because adversaries deliber-
ately seek weaknesses in their oppo-
nents, and that helps opponents to fo-
cus on the features of their strategies 
that most need improving. Recent ex-
amples have been the surprising suc-
cesses of AI programs against people 
in games like poker12 and Go that were 
previously thought too difficult for AI 
methods.

Unsupervised learning
Supervised learning methods need 
training cases, and for many import-
ant AI tasks, such as computer vision, 
huge training sets are required be-
cause of the wide variety of possible 
inputs that must be handled. Big data 
methods have developed consider-
ably in recent years, so obtaining and 
working with millions or billions of 
cases may not be unreasonable, as 
with the task of assigning names to 
people from their online photos, of 
which only some are captioned. None-
theless, many important data collec-
tions do not come with preassigned 
conclusions, such as collections of new 
Internet traffic for the identification 

of suspicious activity. Unsupervised 
learning can find patterns and hidden 
classes in unlabeled data.13 However, 
there must be at least some feedback 
to the learning algorithm to guide it. 
The feedback can be a rating of the ap-
parent success (as with planning), con-
sistency of the model with new data (as 
with classification problems), or some 
measure of interestingness of what the 
algorithm has done.

Clustering algorithms are a classic 
form of unsupervised learning that 
group related cases in data; the groups 
they find can be used as labels for su-
pervised learning. Clustering has a 
long history in many areas of science, 
most notably in the social sciences in 
identifying types of behavior. Evolu-
tionary algorithms are unsupervised 
methods that use semirandom heuris-
tic searches to rate states by “interest-
ingness” and use heuristics to create 
new, interesting states by combining 
and modifying the most interesting 
known ones. They were originally in-
spired by genetics and are good at dis-
covering surprises that other methods 
may overlook. An example of usage is 
finding technological surprises that 
could affect a military organization.

Neural networks can be adapted for 
unsupervised learning by using two of 
them together. A first idea was an “au-
toencoder,” where one neural network 
created a random compressed encod-
ing of its input, and another neural 
network tried to decode it back to the 
original input. Encodings that could 
decode closest to the original input 
caused weights to be increased in both 
networks. This idea has developed into 
“generative adversarial networks,” 
which model learning as a game where 
one network (a “generator”) tries to 
create input to fool another network 
(a “discriminator”). The weights on 
the generator neural network are in-
creased when it fools the discrimina-
tor well, and the weights on the dis-
criminator are increased when it is 
not fooled much. A much-discussed 
application is creating fake faces of 
people. Despite notable successes, 
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unsupervised learning methods are 
hard to control and inconsistent, and 
many never discover anything use-
ful. However, they may be worth a try 
for important problems since they are 
truly creative compared to supervised 
learning.

COMPARING AND 
COMBINING ALGORITHMS
With so many AI algorithms, a fre-
quent question is which one is best 
for a particular task. This question is 
usually answered experimentally by 
trying the algorithms on a sample of 
the data and measuring their perfor-
mance with prechosen metrics. In su-
pervised learning with a training set, 
part of the training set can be set aside 
for testing. Recall and precision are 
standard measures of accuracy for log-
ical models, and root-mean-squared 
error is standard for numerical mod-
els; average processing speed, storage 
required, energy required, and ex-
plainability of the reasoning are other 
important metrics. However, practi-
cally speaking, little difference in per-
formance is observed for many algo-
rithms on many tasks, as is observed 
in running AI packages, such as Weka 
and Scikit-Learn, that offer a variety 
of algorithms to use on the same data. 
That is because it appears that most 
models provide representational (or 
“epistemological”) adequacy for their 
tasks, meaning that most models are 
usable for most AI tasks with proper 
adjustments. 

However, there are exceptions. 
Logical models cannot adequately rep-
resent, without significant complex-
ity, the adding of effects from many 
weak factors in a linear model. Simi-
larly, some numerical models cannot 
adequately represent some logical 
constraints, as for instance, a linear 
weighted sum of numeric factors cannot 
represent an exclusive-or relationship. 
The latter example raises questions 
about the epistemological adequacy 
of artificial neural networks, which 
are based on weighted sums though 
they include nonlinearity. However, 

epistemological adequacy is not always 
necessary. A good example is natu-
ral-language processing. Despite the 
fact that natural languages have been 
shown to require at least context-sen-
sitive grammars, many useful neural 
networks for speech understanding 
provide adequate performance from 
models equivalent to regular gram-
mars (finite-state machines) since the 
occasional context-sensitive features 
can be approximated adequately.

The choice of a single AI algorithm 
may not be appropriate for some tasks 
anyway. Many successes have been 
achieved with “ensemble learning,” 
also called “bagging,” where multiple 
learning algorithms or their variants 
are run simultaneously on data; ran-
dom forests are an example previously 
mentioned.14 If the conclusions are cat-
egorical, a majority vote can be taken 
of the methods; if the conclusions are 
numeric, a weighted average can be 
taken. Ensemble learning appears to be 
the best countermeasure to the threat 
of an adversary manipulating training 
sets to force learning to reach incorrect 
conclusions, as could occur with learn-
ing of new kinds of cyberattacks.

AI has adopted and modified 
algorithms from many areas 
of computer science. Much of 

this variety is unnecessary for practi-
tioners to examine since many tasks 
are addressed equally well by most 
algorithms. Nonetheless, there are 
important tasks for which one algo-
rithm is better, such as neural net-
works for computer vision and speech 
processing. Despite the current vogue 
for numerical algorithms, logical algo-
rithms remain a better fit for problems 
of finding combinations and imposing 
of logical constraints. Though most 
algorithms are NP-hard, the parame-
ters of the complexity with input size 
can vary considerably, and in many 
cases, the tasks are polynomial on the 
average. So the performance of AI al-
gorithms generally needs to be deter-
mined by experiment. 
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Algorithms can be distinguished as to whether they 
implement intelligent behavior (AI modeling) or 

improve it (machine learning).

There are important tasks for which one algorithm is 
better, such as neural networks for computer vision 

and speech processing.

Despite the current vogue for numerical algorithms, 
logical algorithms remain a better fit for problems 
of finding combinations and imposing of logical 

constraints.

Most logical AI algorithms represent knowledge in 
the form of if–then rules and apply them to Boolean 

values representing facts to make inferences.

A simple linear weighted sum of numeric input 
variables (a “linear model”) is widely useful in 

modeling human decision making. 

Many successes have been achieved with 
“ensemble learning,” also called “bagging,” where 

multiple learning algorithms or their variants are run 
simultaneously on data.


