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Abstract. Industrial-control systems (ICSs) are especially vulnerable cyberattack 
targets because of their role in critical infrastructure, their infrequently updated 
software, and their frequent need to run uninterrupted. For them, deception is a 
valuable active-defense method under cyberattack, as another line of defense af-
ter access controls and system monitoring. We provide here a general theory for 
planning deception defenses for ICSs. The theory enumerates the rich variety of 
options that can be considered for attack targets, deception locations, deception 
tactics, adversarial material goals, and adversary psychological goals. Our ap-
proach is to learn a model of attacker goals and priorities using reinforcement 
learning from the actions taken by an attacker or a class of attackers from the 
same source, and their intended targets. Goals and targets are chosen from a list 
of possibilities in the system, and priorities are inferred from a set of psycholog-
ical “adversary variables”. We then select a set of deceptions most compatible 
with those goals and priorities. Implementing such deceptions can benefit from 
placing them in multiple layers for “defense in depth”.  
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1 Introduction 

Defensive deception is a powerful technique for defending computer systems and dig-
ital devices since it is often unexpected (Rowe and Rrushi 2016). The subtype of cyber-
physical systems (CPSs) called industrial control systems (ICSs) are particularly vul-
nerable targets of cyberattacks due to their predominant function as critical infrastruc-
ture, their frequent use of old software for compatibility with hardware, and the diffi-
culty of updating them to fix vulnerabilities due to the need to keep them running con-
tinuously (Ackerman 2017) (Kayan et al. 2022). ICSs thus greatly benefit from 
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additional defense methods including cyberdeception since traditional access controls 
and intrusion detection are insufficient to defend them (Sohl et al. 2015). Deception can 
also be especially effective in defending ICSs because many have large networks of 
uncommon devices and sensors in which attackers can become confused, and their con-
trols are designed for specialists familiar with the underlying physics or chemistry, un-
like many attackers. Although they can use defensive deception methods common to 
other digital systems, ICSs thus present new opportunities for deception related to their 
processes that have no counterpart in traditional operating systems. This chapter will 
survey ICS deception planning opportunities in the context of an experimental network 
which we are developing.  

2 Previous work 

A classic distinction is between defensive deception to encourage an attacker, as with 
honeypots trying to collect attack intelligence, and defensive deception to discourage 
an attacker, as with real (“production”) systems trying to defend themselves (Rowe 
2024). Most previous work has used encouragement deceptions to collect data on at-
tacks, but we will focus here on discouragement deceptions for production systems. 
Deceptions tend to be more convincing on production systems because they can show 
real rather than simulated activity. Nonetheless, honeypots can test useful encourage-
ment ideas as well. 

(Franco et al. 2021) surveyed previous work with honeypots for ICSs and Internet-
of-Things (IoT) networks. IoT designs are related because they also use large numbers 
of networked processors. However, ICS devices often provide more complex services 
than IoT nodes, and require more processing. 

Honeypots can be considerably more useful when they use deception, since attackers 
avoid known honeypots because attackers know honeypots collect their data and thwart 
exploitation attempts (Rowe 2019). Previous work has examined ideas of building net-
works of honeypots (honeynets) for ICSs since honeypots can attract more attacks when 
they are present in large numbers (“honeypot farms”). Some relevant work is (Urias et 
al 2018), (Abe et al. 2018), (Cifranic et al. 2020), and (Dutta et al. 2020). Honeypots 
can be placed on broad networks, local networks, or in hardware (You et al. 2020). 
Honeypot farms can use a wide range of deceptions to attract a broad range of attacks. 

Our previous work has built and tested honeypot types and tactics for defending 
ICSs. We showed that honeypots are best implemented with cloud services (Atadika 
2019) as supported in (Dodson et al. 2020). After preliminary experiments, we have 
focused on the IEC 104 protocol for ICSs, since it is increasingly popular, and the HTTP 
protocol, the most popular protocol with our attackers (Foley et al. 2022). We have 
been using a design with a modified general-purpose honeypot Conpot as a front end 
to a GridPot electrical-grid honeypot on the back end (Rowe et al. 2020), which was 
later hardened with a user-interface front end on a separate machine and a separate 
logging site (Meier et al. 2023). Hardening was essential to collecting data on the more 
serious attacks since it prevented erasing the log or terminating the virtual machines 
used to run the honeypot. Further experiments showed we got similar traffic 



3 

independent of where in the world the honeypot was situated, whether it was a virtual 
machine, and what details it claimed about its operations (Rowe et al. 2022).  

Deception for discouragement is appropriate in defending real infrastructure includ-
ing ICSs. Its goal is to convince an attacker that attacking a system will be costly and 
unlikely to succeed. Discouragement deceptions are not easy to test because they should 
involve real systems and real attacks to accurately measure effectiveness. Nonetheless, 
we can implement them and compare them to similar systems that are not using dis-
couragement, if we are patient enough to get a representative sample of attacks. 

3 Example layered deception plan for a sophisticated adversary 

Effective digital defensive deception requires advance planning, much like deceptions 
for defensive military operations (Clark and Mitchell 2019). We focus in this chapter 
on planning for protecting an ICS against a sophisticated adversary with many re-
sources, such as a nation-state or “advanced persistent threat”. We cannot stop such an 
attack indefinitely, given sufficient time and resources for an attacker to try many meth-
ods. However, it often suffices to delay them. Delays give defenders time to figure out 
the type, methods, sources, and targets of an attack, and that may suffice to divert or 
block the attack’s most damaging aspects.  

Military defenses often use multiple layers (or “lines”) to delay attacks considerably, 
a concept called “defense in depth”. Since ICSs are often analogous critical infrastruc-
ture, defensive ICS deception can also use multiple layers for “deception in depth” 
(Landsborough et al. 2024). Each layer can use different deceptions, choosing them for 
the setting and from an ontology (Basan et al. 2022). A layered deception permits test-
ing different attacker skills at each level, providing valuable intelligence about the dif-
ferent methods they use. However, (Clark and Mitchell 2019) also suggests that intel-
ligent adversaries are most effectively fooled by a consistent plausible “story”, as for 
instance “the site is well hardened” or “the site is logging your activities”. A useful 
plausible story for discouragement should be consistent through the levels of defense, 
reinforce prior attacker beliefs, and should encourage them to leave. 

Consider an example of a layered deceptive defense to discourage an attacker of a 
real ICS network at a military facility. An initial line of defense could try to persuade 
adversaries that the ICS site is not worth attacking by mislabeling it as a less desirable 
target by its name and owner. An example would be labeling a water-treatment plant as 
a cistern system for collecting rainwater for gardening, something not critical to a mil-
itary facility. However, the site must still run legitimate ICS protocols consistent with 
its cover story so that the adversary’s network mapping can detect them. Legitimate 
users of the network would be told the correct resources to use. 

A second line of defense could provide a confusing interface to the real network 
containing the ICSs. It could use cryptic descriptions of its resources with numbers and 
codewords to make it difficult for adversaries to recognize what is there. Legitimate 
users would be given a document to decipher these descriptions. Attackers could be 
quickly identified from their exploratory behavior. 
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A third line of defense could try to decoy adversaries from the legitimate targets 
another way, by providing files with explicitly false information like incorrect network 
maps, faulty instructions for using systems, and false data files allegedly obtained from 
the network. The more detailed a false story that is constructed, the more time that 
sophisticated adversaries will waste exploring the fakes. As a side benefit, the defender 
will obtain valuable information about adversary methods and goals from which to 
harden defenses. 

A fourth line of defense could try to waste attacker time and prove attacker recon-
naissance intentions by offering some minimal ICS network nodes that look promising 
but provide few services (Cifranic et al. 2020). This idea goes back to (Cohen 1999) 
and is used in several commercial tools. It provides a quick way to identify reconnais-
sance. Its disadvantage is that network scanning tools like Nmap can quickly reveal 
minimal nodes. 

A fifth line of defense could provide false error messages to discourage exploration, 
while legitimate users would be given secret codeword to permit normal operation. 
False error messages have the advantage of working best against alert and sophisticated 
attackers that examine their interactions carefully, like advanced persistent threats. 
Many kinds of false error messages can be provided (Rowe and Rrushi 2016 chapter 
9). Since messages are verbal rather than architectural, they can deceive in a different 
way even if adversaries have figured out the others. 

A sixth line of defense could be a confusing or obfuscating user interface to a device, 
as contrasted with the confusing interface to a network in the second line of defense. 
This can be a visual deception rather than a verbal or architectural one, and may have 
a renewed chance of working.  

A seventh level of defense could transfer a persistent attacker to a safe “sandbox” 
environment simulating a device, and either feed them fake data about the state of the 
device or simulate fake states consistent with the adversary commands. The GridLab-
D simulator of an electric grid from Pacific Northwest Laboratories is an example we 
have used in our honeypot research (Rowe et al. 2021). Even if an adversary could infer 
they have been transferred to a simulation, it will take them a while to recognize it, and 
in the meantime, they will provide useful data about their methods and goals. 

4 Deception planning 

We now present a defensive deception strategy for ICSs. (Rowe and Rrushi 2016), (Han 
et al. 2018), and (Pawlick et al. 2019) provide taxonomies of broadly applicable decep-
tion methods for cyberspace on which we build here. ICSs can use most of these, but 
they have additional deception capabilities due to their mission of controlling devices. 
A few are specific to programmable logic controllers (Morales et al. 2020), but we can 
get some generality if we take a broader perspective. With ICSs, attackers generally 
want to set switches and dials to interfere with or stop normal operations. Deceptions 
can fool them into thinking that they have done this and achieved goals. 
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4.1 A procedure for deception planning 

Fig. 1 shows our defensive-deception discouragement-planning procedure for local-
area ICS networks and their systems.  
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Fig. 1. Discouragement-deception planning flowchart for defending ICS systems. 
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The overall procedure for ICS defensive deception planning can also be summarized 
as follows: 

1. Use an attacker-goal library to rate possible attacker goals for those possible cyberat-
tacks, including both physical and psychological goals. 

2. Use an intrusion-detection system to identify cyberattacks in activity on the local-
area network of the ICS (Qassim et al. 2020). 

3. Obtain estimates of adversary variables from prior values and recent network activ-
ity. 

4. Modify adversarial variables based on conditional probabilities of goals. 
5. Use a game model to propose and rate possible deception tactics for the defender 

based on a deception library. 
6. Use game theory to build a good deception plan, and implement it in the local-area 

network. 
7. Run the deception plan against attackers, and monitor the results. 
8. Calculate reinforcements on adversary variables, and apply them. 

4.2 Attacker detection 

Defenses must first distinguish normal traffic from attack traffic. Standard ways are 
access monitoring, log inspection, signature-based intrusion detection, and anomaly-
based intrusion detection. These must be specialized to handle ICSs since ICS protocols 
differ significantly from those of other information systems. ICS attacks may provide 
specialized clues such as attempting to set device parameters to unusual values, trying 
to interact with devices in nonstandard ways, or trying to violate physical constraints 
(Yahya et al. 2020) (Rrushi 2022). However, ICSs are also increasingly using Web 
(e.g., HTTP) and remote-desktop (e.g., SSH and RDP) protocols for easier network 
management, and also can be susceptible to the many attacks on them. An advantage 
that ICSs have is that attacks are easier to distinguish than with most digital systems 
since ICS traffic is often very regular, as attack traffic such as enumeration of networks, 
requesting unusual information, and setting of parameters to unusual values can be easy 
to recognize.  

4.3 Attacker goals and deception venues 

A key issue is what attack activities on an ICS merit deception. Overuse of deception 
makes it easier to detect (Rowe & Rrushi 2016), so it is desirable to deceive sparingly 
and only at important steps in an attack. Table 1 and Table 2 show, in the first two 
columns, a set of attacker goals for ICSs proposed in (Ackerman 2017), followed by 
our assessment of their deception possibilities. These provide options for step 2 in the 
deception-planning procedure of section 4.1. 
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Table 1. Evaluation of broad options for deception in ICS defense, part 1. 

Attack goal Target Attack 
difficulty 

Possible   
deceptions 

Deception 
difficulty 

Deception 
desirability 

Do  
reconnaissance 

ICS       
network 

Easy Decoys, 
honeypots 

Easy High 

Steal credentials ICS       
network 

Moderate Fake traffic Moderate Moderate 

Analyze packets 
to system to get 
intelligence 

ICS       
network 

Difficult Fake traffic Moderate Moderate 

Replay network 
traffic 

ICS       
network 

Moderate Honeypots Moderate Moderate 

Inject packets ICS       
network 

Difficult Honeypots, 
false data 

High Moderate 

Spoof packets ICS       
network 

Difficult Honeynets High Moderate 

Gain remote     
access 

Controllers  Moderate Honeynets High High 

Modify data 
to/from controller 

Controllers Difficult Honeynets Moderate Moderate 

Modify             
configuration 

Controllers Difficult Honeypots High Moderate 

Modify control 
algorithms 

Controllers Difficult Honeypots High Moderate 

Modify data to  
affect control 

Controllers Moderate Honeynets Moderate High 

Modify controller 
firmware 

Controllers Difficult False data High Moderate 

Modify I/O data 
of controller 

Controllers Moderate False data Moderate Moderate 

Escalate  
privileges 

Work-
stations 

Difficult Decoys, 
honeypots 

Moderate Moderate 

Gain remote  
access 

Work-
stations 

Easy Honeypots High Moderate 

Copy sensitive 
data 

Work-
stations 

Moderate Honeypots Easy Low 

Modify data Work-
stations 

Difficult Honeypots Moderate Moderate 

Modify            
configuration 

Work-
stations 

Difficult Decoys, 
honeypots 

Moderate Moderate 

Send commands 
to controller 

Work-
stations 

Moderate Honeypots Moderate Moderate 

Maintain         
persistence 

Work-
stations 

Moderate False data Moderate Moderate 

Do denial of    
service 

Work-
stations 

Easy Delays Easy Low 

 
  



9 

Table 2. Evaluation of broad options for deception in ICS defense, part 2. 

Attack goal Target Attack 
difficulty 

Possible  
deceptions 

Deception 
difficulty 

Deception 
desirability 

Escalate 
privileges 

Application and 
SCADA servers 

Difficult Decoys, 
honeypots 

High Moderate 

Gain remote 
access 

Application and 
SCADA servers 

Difficult Honeynets Moderate Moderate 

Copy        
sensitive data 

Application and 
SCADA servers 

Moderate Honeypots Easy Low 

Modify data Application and 
SCADA servers 

Difficult Honeypots Moderate Moderate 

Disrupt   
process com-
munications 

Application and 
SCADA servers 

Moderate False data Hard Moderate 

Disrupt user 
interface 

Application and 
SCADA servers 

Moderate False data Hard Moderate 

Maintain 
persistence 

Application and 
SCADA servers 

Moderate False data Moderate Moderate 

4.4 Deception architecture 

Deception methods will be an overlay on existing systems and must cooperate with the 
operating system. An issue is where a deception should be implemented, for following 
step 5 of section 4.1. Fig. 2 shows a generic ICS architecture with eight numbered lo-
cations, extending the three of (Lin et al. 2016).  
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Fig. 2. Block diagram of a generic ICS with possible deception locations. 
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or flooding of the user with information. These should not be overdone to remain 
plausible. This also requires modifying highly secure features of a system, and can 
only be done if planned at an early stage in designing a kernel. Since a kernel must 
be minimal, deception should be triggered by external decisions as in the user inter-
face. 

6. Interface to devices: Changing the software that interacts with backend ICSs requires 
modifying their drivers. This is simpler than modifying the operating system, but 
requires understanding of specialized software. Putting deceptions here does enable 
monitoring them to avoid overuse or underuse of deceptions. 

7. Real devices: These are essential for operations and will keep an attacker interested, 
particularly an advanced persistent threat. However, the devices also must be hard-
ened so they cannot cause major harm or easily spread an attack; and as this may 
require modifying vendor software, it may be difficult. 

8. Decoy devices: These should simulate real systems as much as possible. Deceptions 
can be very effective, but require work in the design and implementation to be plau-
sible. This may not be difficult for many devices, since some like thermostats are 
simple. However, timing (such as the speed of response) is important to simulate 
accurately as well. 

4.5 Game theory for multilayered deception 

Multi-layered deceptions as in section 3 can serve as effective obstacles to attacks by 
persistent attackers, particularly where each deception provides a different challenge, 
and the attacker must solve all the challenges to gain access. The tradeoff is that the 
more deceptions there are, the more easily they can be detected and the less effective 
they will be, particularly when they are similar. It will help to use significantly varied 
and unexpected deceptions that are hard to connect to one another. So if for instance 
we flood an attacker with information through the user interface to slow their attack, 
we can send them to decoy simulations of devices through the device driver if they 
manage to get there in a later phase of their attack. Simulations are conceptually differ-
ent from information displays, so it may be difficult for the attacker to connect the two 
deceptions.  

Another clue that reveals deception is inconsistency on similar tasks. So if we flood 
a human attacker with information on one attempt to query a device, we should also 
flood them with an attempt on a different device. However, inconsistency is not much 
noticed by automated attacks, or even a human controller reviewing their output. It will 
help to identify in advance the activities by the defender that most require consistency. 
Otherwise, maximally different responses to similar situations may prevent attackers 
from seeing them as an overall deception strategy. 

The tradeoffs with deceptions are best planned with game theory (step 6 in section 
4.1) using the conditional probability of detection of each deception given the detection 
of previous deceptions (Rowe et al. 2024). These conditional probabilities can be based 
on observations of human subjects, including non-attackers.  
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5 Adversary goals 

Planning of discouragement deceptions can benefit from knowledge of the adversary’s 
goals. We identify here the possible material and psychological goals, and discuss how 
they can be modeled. 

5.1 Material goals 

Material goals aim to change the physical state of an ICS. For power plants, most ma-
terial goals will be based on the physics of electromagnetism; for a chemical plant, most 
will be based on chemistry. Some more specific material goals for ICSs than those of 
Table 1 and Table 2 are: 

• Disabling the ICS hardware. This could be the overall goal of nation-state adver-
saries, consistent with the primary warfare objective of disabling a nation-state’s 
ability to wage war. However, it is difficult to achieve because ICSs have many 
safeguards to keep them running. But successful damage can have a long-term effect 
much like that of munitions. 

• Disabling the ICS software. This could be done by modifying software executables 
or possibly input data. It could have the same effect as disabling the hardware while 
being easier for the adversary. Operations could be restored by the defender from 
backup copies of software or data, although it could take time. 

• Denial of service of the ICS software. This could slow operations considerably while 
not disabling anything. This could be useful for adversaries who want to send a po-
litical signal. 

• Modifying the ICS functionality, as by changing switch settings or installing mal-
ware in controllers. For instance, the Industroyer2 attacks on Ukraine in April 2022 
apparently attempted this with the IEC 104 protocol (Zafra et al. 2022). Modifica-
tions could be targeted, or it could be random to create confusion.  

• Changing control parameters in the ICS. For instance, decrease power output of a 
generator. Effective changes require specialized knowledge of the physics or chem-
istry of the ICS. 

• Reprogramming the ICS software to change its operation. This is difficult because 
it would require access to the management system, which is usually more protected 
than the ICS itself. It also likely requires exploiting non-ICS vulnerabilities, which 
are likely to be better protected than ICS vulnerabilities because of the more net-
works they could affect. 

• Thorough reconnaissance of the ICS to enable later attacks. This could involve send-
ing crafted packets to test responses, or systematically modifying settings to see what 
they do. Most of what we saw on our ICS honeypots (Meier et al. 2023) was packet 
traffic of this type. 

• Making money. Ransomware can do this; since ICSs are often critical infrastructure, 
holding them hostage can be very effective. Also, some information-warfare organ-
izations pay bounties to employees to attack sites of adversaries. 
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Since material goals often seek a change of a physical or chemical system, actions 
to accomplish them can be seen as “derivative changers”, changes to the rate of some 
parameter, analogous to Newton’s Second Law which implies that forces are velocity 
changers. For instance, Stuxnet attempted to increase the speed of centrifuges, and In-
dustroyer 2 attempted to change switch states while enumerating them. The appearance 
of more or stronger derivative-changing commands than normal on a system, as by data 
injection, is suspicious and can be detected by deviations from normal behavior (Miao 
and Dong 2021). “Second-derivative” commands that alternate first derivatives of op-
posite directions, such as in turning on and off power repeatedly, can damage equip-
ment by creating strong stresses. They can be mounted by injecting a quickly varying 
signal into an ICS. 

While predicting the effect of derivative changes in unfamiliar domains may seem 
daunting, simplified models of ICS processes may suffice for deception planning. This 
has been called “naïve physics” for physical processes (Smith and Casati 1994), and 
“naïve chemistry” for chemical processes (Gollmann et al. 2015). So for instance, caus-
ing centrifuges to run much faster than normal, or flooding a chemical reaction with 
petrochemicals, will likely do something bad even if an attacker does not know exactly 
what. That is because they considerably exceed normal parameters and measures for 
which the processes are designed. Five subcases of “derivative attacks” can be identi-
fied: 

• First-derivative attacks: These increase or decrease numeric parameters such as the 
applied power from correct settings to interfere with an ongoing process. An exam-
ple is reducing the power on a generator so it is not supplying its required level of 
power, or increasing the heat in a chemical reactor. As (Gollmann et al. 2015) points 
out, modifying a chemical process can damage more than the equipment, possibly 
the chemicals produced or to the output compliance conditions about safety or pol-
lution, and such damage can be done by changing the first derivative of a parameter 
at critical times. 

• Second-derivative attacks: These increase or decrease a numeric parameter and then 
shortly thereafter change it in the opposite direction to stress a system. An example 
is repeatedly heating and cooling a chemical reactor to create unwanted chemicals.  

• First-derivative attack with boundary condition: These increase or decrease a nu-
meric parameter until it exceeds a safe value, such as by increasing the power sup-
plied to a transformer until it catches fire. 

• Second-derivative attack with boundary condition: These alternate increasing and 
decreasing a parameter until the change exceeds safety constraints, as with rapidly 
changing the direction of a rotating shaft until it breaks. These attacks require iden-
tification of safety limits for first derivatives. 

• Transit attacks: These change directions of flow within the ICSs, such as opening 
valves normally kept closed in a water-treatment plant (Lucchese et al. 2023) or sup-
plying electric current to an unusual location. 
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5.2 Psychological goals 

Psychological goals satisfy personal and emotional needs of the attacker. These are 
more important with amateur attackers than paid professionals, but all attackers have 
them and they can often be exploited. Possible psychological goals are: 

• Accomplishment of a job. Information-warfare operatives may enjoy attacking ad-
versary countries and feel it is patriotic. 

• Confidence and self-worth. Attackers like to feel they know what they are doing and 
can achieve results reliably and efficiently. 

• Social rewards: Attackers may work in teams and enjoy the praise of their col-
leagues. 

• Obedience to authority. Attackers may enjoy satisfying their bosses as a means of 
gaining self-worth or material benefits. 

• Revenge for perceived slights. Terrorists are often motivated this way. 
• Fantasies of power and control. Adolescents often have such needs, and entertain 

fantasies of controlling people as well as engaging in pointless exhibitions like petty 
vandalism.  

• Stress reduction. If an attacker becomes frustrated with a system, they may feel better 
if they go away and do something else. 

Psychological goals can be inferred from what is attacked and how. Some work has 
attempted automated inference of such goals (Shinde et al. 2021). Psychological goals 
do not necessarily make sense, as terrorists may be motivated by unreasonable hatreds.  

5.3 Adversary mental states relevant to discouragement 

Defenders can affect adversary mental goals and goal-directed behavior by influencing 
their emotions and inducing mental states. Some mental states defenders should con-
sider encouraging are: 

• Disappointment: Defenders want adversaries to feel disappointed after interacting 
with them, so they will be less likely to return. But if they are too disappointed, they 
may take it as a challenge and want to return with more sophisticated attacks. 

• Unhappiness: Defenders want adversaries to feel unhappy when they cannot fully 
compromise our systems, as this will discourage them from continuing and encour-
age them to find easier targets. But as with disappointment, we do not want to make 
them so unhappy that they take that as a challenge. 

• Trust/mistrust: Defenders want adversaries to trust them so adversaries are more 
likely to believe their deceptions. For instance, we may want adversaries to think 
that a resource is unavailable even when it is not. However, it may also be useful to 
encourage distrust in impatient adversaries looking for easy targets, who may aban-
don an attack site once they see evidence of deception. 



15 

• Irritation and anger: Defenders may want to irritate adversaries, as with false error 
messages, to show that interacting with them will be unpleasant. However, if de-
fenders make them too irritated, they can become angry and retaliate vigorously. 

• Frustration: A good way to create irritation and anger is to create unexpected obsta-
cles in attempting to achieve an apparently easy goal. For instance, getting onto an 
ICS and implanting exploits is often easy with today’s infrequently updated and vul-
nerable ICSs. Then if an attacker meets unexpected obstacles, they can become frus-
trated. Frustration is particularly useful to encourage in attackers as it will both dis-
courage them from continuing and encourage them to stay away. 

• Betrayal: Advanced persistent threats are expecting deception and are not fazed by 
it. However, many amateur attackers recognizing deception against them feel be-
trayed. This may cause an unpredictable range of behaviors, including terminating 
interactions abruptly, publicizing the deception, and redoubling attack efforts. Be-
cause of this unpredictability, encouraging feelings of betrayal is not very useful 
against most adversaries.  

• Superiority: Many adversaries have high opinions of themselves, and it may be use-
ful to encourage this. Then they may underestimate defenders, and be fooled by a 
complex multi-layered deception. 

• Fear: Unlikely to be induced because many adversaries have high opinions of them-
selves and their skills. 

• Sanguinity: Not useful for discouragement because we generally want attackers to 
feel unhappy, but it could be useful for an encouraging honeypot. 

5.4 Psychological adversary variables 

Mental states of adversaries can be inferred by their actions. For instance, if the adver-
sary can elevate privileges of an account or change switch settings, they have high con-
fidence in their abilities and low frustration; if they log out after a short session, they 
have low confidence and high frustration; or if they have ten times opened fake files 
and discovered only gibberish, they have a high threshold for frustration and may be 
professionals of an intelligence-gathering organization that requires them to search ex-
haustively. Hidden Markov models and reinforcement learning are classic machine-
learning models for inferring mental states, and a variety of neural-network architec-
tures can be trained to infer them as well. 

Although sections 5.1 and 5.2 listed a variety of attacker goals, the number of mental 
states relevant to achieving them is more limited. We have thus argued (Landsborough, 
et al. 2024) that they can be modeled by a small set of “adversary variables” represent-
ing key aspects of the mental state of an adversary that affect their actions, and these 
variables can be used to plan the deceptions most likely to succeed against them. Table 
3 shows our proposed adversary variables. These are used at steps 3, 4, and 5 of the 
deception-planning procedure of section 4.1. The rightmost column represents possible 
predictions when the deceivee measures high on the adversary variable. However, pre-
dicting the actual outcome requires estimating costs of the options for the deceivee such 
as time wasted on fruitless tasks, and using a decision tree to estimate the weighted cost 
of options. The table should apply to automated attacks as well, since after finding a 
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rare vulnerability in a system, human judgment is necessary to decide what to do next, 
and then the variables apply to that human. 

Table 3. Adversary variables useful for predicting mental states of an adversary. 

Name of adversary 
variable 

How inferred Correlations 
to other varia-
bles 

Predictive use 

Sophistication of the 
adversary 

Ratio of advanced ac-
tions to basic actions 

Lack of  
surprise 

Superiority 

Confidence of the  
adversary in their 
methods 

Consistency in fol-
lowing a plan without 
digressions 

Sophistication Trust 

Interest more in  
intelligence gathering 
than sabotage 

Ratio of sabotage- 
related actions 

None Rate of attempts 
to modify the 
system 

Adversary estimate of 
reliability of the target 
system 

Number of anomalous 
events observed by 
user 

Sophistication, 
alertness 

Acceptance of 
deceptions as 
unreliability 

Trust in information 
shown about the  
attack target 

One minus ratio of  
redundant confirming 
actions to normal  
actions 

Sophistication, 
alertness 

Likelihood of 
ending the  
interaction 

Alertness of  
adversary to the target 

Whether they notice 
obvious  
inconsistencies 

Sophistication Ineffectiveness 
of deceptions 

Surprise of the  
adversary at the target 

Increase in idle time Lack of  
sophistication 
and confidence 

Likelihood of 
ending the  
interaction 

Adaptability of  
adversary to the target 

How well they find al-
ternatives to obstacles 
created by deceptions 

Sophistication, 
alertness 

Ineffectiveness 
of deceptions 

Impatience of the  
adversary 

Count of steps after 
encountering  
obstacles 

Frustration, 
lack of  
confidence,  
desire to  
disconnect 

Likelihood of 
ending the 
interaction 

Desire of adversary to 
disconnect without 
achieving their goals 

Fraction of  
connections ended  
without achieving 
goals 

Impatience Choice of  
deceptions 

Frustration level of 
the adversary 

Ratio of unnecessary 
sabotage to normal 
actions 

Lack of trust Increased 
length of 
interaction 

Interest of the  
adversary in financial 
gain 

Ratio of sabotage to 
normal actions, and 
sending ransom notes 

Confidence, 
sophistication 

Length of  
reconnaissance 
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6 Deceptive tactics for foiling adversary goals 

(Rowe and Rrushi 2016 chapter 4) lists a range of defensive deceptions against general 
cyberattacks. The options for ICSs can be rated differently since the ICS environment 
usually tries to maintain ongoing processes rather than do new things. Some good tac-
tics for ICSs for accomplishing steps 5-7 of the deception planning in section 4.1, 
roughly in order of decreasing usefulness, are: 

• T1, false displays of system state: If an attacker tries to do something dangerous, it 
can be a useful deception for the defender to merely simulate what happens. For 
instance, increasing the power in many processes could cause overheating, which 
can be simulated with increases on a thermostat icon. Most industrial processes have 
a “digital twin” simulation for testing and analysis, and a display of the twin could 
deceive the attacker. False displays can be effective for ICSs because their special-
ized nature (Rowe and Rrushi 2016 chapter 11) means inconsistencies in a simula-
tion are more likely to be missed by most attackers. A particularly useful false dis-
play is for a target system to imitate an obvious honeypot, since attacks try to avoid 
honeypots (Maesschalck et al. 2024). 

• T2, fake controls: Attackers want to control systems, so an interface they can ma-
nipulate as in (Ramirez et al. 2022) is appealing. It can look like the controls of a 
real ICS, with knobs and switches that appear to change the ICS, though they do not. 
They can also log what the attacker does for future analysis. 

• T3, fake resources (“decoys”): These include useless nodes, processes, and files to 
waste attacker time. ICSs tend to have many nodes and features, and it is easy to 
make some extra ones. Fake resources can also be generated dynamically to answer 
attacker interests, as a more active defense (Yang et al. 2020). Files can be made 
more realistic by simulating plausible resource use (Sutton et al. 2019).  

• T4, false error messages: These can be used as excuses not to do something danger-
ous. Attackers can take error messages seriously, particularly for an unfamiliar and 
specialized system like an ICS, since they may mean goals are unachievable (Rowe 
and Rrushi 2016 chapter 9). False error messages can also thwart automated attacks 
because they cause unexpected interruptions, made worse if followed by requests to 
do new things for which the automated attack is unprepared. 

• T5, fake crises: These can be triggered by defenders by interjecting messages that 
an intruder has been detected, or reporting that the ICS is out of control. This is 
useful in fooling intended saboteurs, but is too dramatic to be used routinely. 

• T6, flooding the adversary with data: This is denial of service in reverse. It can be 
done by generating fake data or using historical data with dates changed. It is useful 
against sophisticated attackers who may waste time trying to understand the data. 

• T7, obfuscatory controls: An interface can be made hard to understand so that the 
attacker cannot usefully control it. Controls can be poorly labeled with code names 
and numbers, so an attacker has few clues about how to proceed. Real systems de-
signed for a limited set of specialized users often lack adequate labeling, and many 
ICSs require specialized technical knowledge to understand, so incomprehensible 
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interfaces are plausible. The interface can also require confusing preconditions be-
fore anything happens.  

• T8, misleading controls: A deception unique to ICSs is to have the knobs and 
switches do something different from expected. A knob labeled “power” could de-
crease power if turned clockwise, contrary to the usual expectation, or switches la-
beled “on/off” could be inconsistent in which direction is “on”.  

• T9, process interruptions and delays: The system can stop responding for random 
periods of time for no obvious reason, or can respond very slowly as in “tarpits”. 
This will confuse the attacker or encourage them to think they have disabled the 
system. 

• T10, decoy financial records: These encourage adversaries who seek monetary gain. 

These deceptions work best when tied to high-priority adversary goals. Some exam-
ples: 

• Adversaries want a feeling of control, and many want to disable things. So simulate 
disablement events that the attackers likely want. An example would be to simulate 
the turning off an entire power plant by terminating all protocols connecting to it. It 
could be made further convincing if preceded by dramatic fluctuations of the dials 
and lights of the display.  

• Adversaries want to do reconnaissance, and they may get bounties for the nodes that 
they find. So simulate an ICS network with so many nodes that it will take a long 
time to explore, perhaps even an unbounded time if nodes are generated whenever 
an adversary queries a new address. Most nodes can be decoys to confuse the adver-
sary; this might seem suspicious, but will not impede an automated attack. 

• To frustrate adversaries who need to feel in control and having achieved persistence 
on systems, simulate an unreliable system with inconsistent behavior to give them a 
sense of failure to control things. For instance, terminate access to resources ran-
domly, and ask for passwords repeatedly. 

• Similarly, to frustrate adversaries who need to feel in control, provide complex vis-
ual displays that are difficult to decipher and waste their time. Use ambiguous labels 
and abbreviations to require adversaries to use considerable trial and error to accom-
plish anything.  

 
Another consideration in choosing deceptions is their compatibility with high and low 

values of the adversary variables. Table 4 summarizes the compatibility of these 
deception tactics to the adversary variables in Table 3. 
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Table 4. Compatibility of deception tactics with high and low values of the adversary variables. 

Adversary variable Deception tactics 
for high values of 
this variable 

Deception tactics 
for low values of 
this variable 

Sophistication of the adversary T6, T7, T8, T9 T1, T2, T3, T4, T5 
Confidence of the adversary in their 
methods 

T1, T2, T3, T4, T8 T5, T6, T7 

Interest of adversary in intelligence 
gathering versus sabotage 

T3, T6, T10 T4, T5, T7, T8 

Adversary estimate of reliability of the 
target system 

T1, T2, T3, T4 T8, T9 

Trust in information shown about the  
attack target 

T1, T2, T3, T4, T5, 
T6 

T8, T9 

Alertness of adversary to the target T6, T7, T8, T9 T1, T2, T3, T4, T5 
Surprise of the adversary at the target T3, T4, T6 T1, T2, T3, T4, 

T10 
Adaptability of adversary to the target T6, T7, T8, T9, T10 T1, T2, T3, T4, T5 
Impatience of the adversary T4, T5, T6, T7, T8, 

T9 
T1, T2, T3 

Desire of adversary to disconnect  
without achieving their goals 

T4, T5, T6, T7, T8, 
T9  

T1, T2, T3 

Frustration level of the adversary T4, T5, T6, T7, T8, 
T9 

T1, T2,T3 

Interest of the adversary in financial 
gain 

T3, T10  

7 Reinforcement learning of adversary variables 

Choosing among these options can try to optimize defender benefits by assigning costs 
and benefits to both attacker and defender tactics, and then using decision theory (if the 
attack plan is fixed), game theory (La et al. 2016; Rowe et al. 2024), or stochastic mod-
eling (Betancourt et al. 2022) to determine the best tactics. Deception methods are also 
just one kind of active-defense method; alternative methods to consider are moving-
target defenses than modify configurations and software (Ma et al. 2022) and active 
searching for attackers (Ajmal et al. 2021). 

Our experience with real ICS honeypots has been that most malicious activity is 
exploratory (Ramirez et al. 2022), and can be deceived by simple methods like random 
error messages. Defensive planning is primarily useful against the rarer sophisticated 
adversary who has time to make a plan specific for the target site, and can adjust to our 
attempts to deceive. For such adversaries, reinforcement learning is a simple way to 
dynamically find their weaknesses (as step 8 in the deception plan of section 4.1). For 
instance, many Chinese attacks attempt espionage; so to deceive them, offer them 
plenty of what looks like valid intelligence, and see if they like it by looking for more. 
Many Russian attacks attempt to sabotage; so to deceive them, give them plenty of 
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evidence of suddenly crashed processes after malicious-appearing adversary com-
mands, and see if they try to do more.  

After deceptions, reinforcements can also update the estimates of the adversary var-
iables based on adversary choices and deception success or failure. Reinforcement 
learning also has the advantage that it is self-correcting. After a false error message for 
instance, we could decrease the estimated perception by the adversary of the reliability 
of the system, and increase the estimated frustration of the adversary. It simplifies mat-
ters to treat adversary variables as probabilities on a range of 0 to 1. To keep variables 
in that range, we can ignore increments that would force them outside the range. Alter-
natively, a common method is to set the probability of choice p to 𝑐𝑐𝐷𝐷 ∗ p for a decrease 
and to p + 𝑐𝑐𝐷𝐷 ∗ (1 − p) for an increase, where p is the value of the adversary variable, 
D is a particular deception or system response, and 𝑐𝑐𝐷𝐷 is the reinforcement constant 
specific to deception D. 

For ICSs and a deception plan focused on discouragement, a high rating should be 
given to deceptions that caused an attack to stop. Lesser but positive ratings should be 
given to deceptions that cause an attack to waste time, as by retrieving bait files or 
visiting decoy network nodes, with the rating proportional to the time wasted (Reti et 
al. 2022). Negative ratings should be given to deceptions which the attacker ignored. 
From these ratings we should subtract the values to the attacker of achieving partial 
goals, such as legitimate nodes they have found, legitimate documents they have stolen, 
and how much they have disrupted actual operations. Data to estimate these values can 
be collected from intrusion-detection systems, log files, and packet captures. 

Reinforcements can be applied with attenuation to deceptions earlier in the attacker’s 
session. For instance, if the adversary disconnected after a second error message about 
network availability, this should reinforce the decision to issue a first error message 
about it, so that the first error message should be issued more often by the defender in 
similar situations in the future. However, it is usual that the reinforcement should be 
attenuated by multiplying by it by a fraction for each step backward since earlier actions 
are less related to outcomes. Multiple reinforcements to the same action can be aver-
aged, so that if at one time the defender’s deception worked well and at one time it 
worked badly, the average will assign a more neutral effect to the deception. Reinforce-
ments can be averaged over all attacks so very different attacks will still generate sep-
arate reinforcements for the deceptions that worked with them. 

Data for reinforcement learning can be enhanced with “data farming”. This means 
generating synthetic data based on real data and training with it. (Haynes et al. 2023) 
tried this method by generating new variants of ICS attacks for Log4j and IEC 104 
permutation attacks using an evolutionary algorithm. To implement this in a more gen-
eral way, we need a simulation of the attacker-defender game that we can run many 
times to generate automated outcomes. We need some starting data of attacker behavior 
from which to enumerate a set of attacker actions. We then create sequences of those 
actions that we have not seen previously, choose random sets of defender actions, and 
rate the outcomes based on the achievement of defender goals minus the achievement 
of attacker goals. This then creates new data for reinforcement learning. 

A secondary issue affecting planning of multilayer deceptions is how often decep-
tions should be used. Adversaries that are high on the sophistication parameter such as 
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advanced persistent threats will be expecting obstacles including deceptions, so we can 
use as many deceptions as we like without expecting them to react differently, since 
they are low on the “trust” parameter concerning us. But amateur attackers may expe-
rience a major change to the trust variable when they realize we are deceiving them, 
and they may redouble their efforts or seek revenge against us. We should try to avoid 
this situation because it may lead to new circumstances against which we are unpre-
pared to defend, so we may not want to use multilayered deceptions against such at-
tackers.  

8 Case study: Experiments with building maintenance systems 

8.1 The equipment 

We have recently been exploring these ideas in the context of heating, ventilation, and 
air-conditioning (HVAC) systems for buildings, a type of ICS underestimated for se-
curity vulnerabilities even though its manipulation can make a building uninhabitable 
and disable its computer systems. We have been working with our Facilities Manage-
ment department to learn about their controls. They have centralized control over all 
the buildings on our campus, using the BACnet protocol for the lower levels of device 
control. 

To foil attacks on facilities, a honeypot designed for discouragement is appropriate. 
We are currently experimenting with an Automated Logic fan-coil unit (Automated 
Logic n.d.), obtained as excess hardware from Facilities Management, which exempli-
fies their hardware and software. The unit contains an actuator, a fan motor, a temper-
ature sensor, a temperature sensor, and a thermostat. It is controlled by a Web-based 
graphical user interface WEBCTRL (Automated Logic 2019) that shows the state of 
the equipment, and it reports data to a centralized collection point using the BACnet-
over-IP protocol. 

 We could block all unauthorized attempts to control the fan, but this would give an 
attacker quick feedback and enable them to switch their targeting to a more vulnerable 
device. A better way to control attackers would be to simulate cooperation with attacks 
by false representations in the graphical user interface. For instance, if an attacker tries 
to turn off a running fan, we should just simulate turning it off by substitution of a 
visualization of a nonrotating fan in the interface, while keeping the fan actually on 
(Colvin 2023). Similarly, if an attacker tries a second-derivative attack by turning on 
and off the fan repeatedly to try to damage it, we can simulate it stopping and no longer 
responding to commands. Appearing to cooperate with user sabotage first plays to their 
sense of power as discussed in section 5.2, and then increases their frustration if they 
discover later that their actions actually failed. People are unlikely to question what 
graphics shows them, and are more likely to blame themselves for failures.   

Similar honeypot ploys can be used for heating and air-conditioning units where 
attackers will have similar goals such as increasing the heat or cooling rate. We can use 
naïve-physics models (Smith and Casati 1994) to simulate the temperature change 
when following attacker commands; all we need for deception is a temperature gauge 
showing the simulated temperature, while in reality the temperature remains the same.  
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8.2 Example reinforcement-learning scenario 

Fig. 3 shows part of the state diagram for an attacker-defender game on the equipment 
described in the last section, assuming the attacker has access to the controller machine 
which displays a table of devices and their associated measures. We assume there is a 
fan, a temperature gauge, and a thermostat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 3. State diagram for some deceptive interactions with a fan, thermostat, and temperature 
gauge in an HVAC (heating, ventilation, and air-conditioning) system. 
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For a demonstration, we will use only the adversary variables given in Table 5, cho-
sen from the variables in Table 3, with some example initial assignments. 

Table 5. Parameters in the HVAC example with demonstration initial values. 

Sym-
bol 

Parameter Initial value for 
Table 6 

𝒑𝒑𝒅𝒅 Probability that adversary disconnects without 
achieving their goals 

0.02 

𝒑𝒑𝒄𝒄 Probability that adversary tries to confirm display 
data 

0.01 

𝒑𝒑𝒕𝒕 Probability adversary trusts data shown 0.05 
𝒑𝒑𝒔𝒔 Probability adversary is sophisticated 0.30 
𝒑𝒑𝒌𝒌 Probability adversary is confident about their meth-

ods 
0.50 

𝒑𝒑𝒂𝒂 Probability that adversary is alert 0.30 
𝒑𝒑𝒓𝒓 Probability that adversary thinks the system is reli-

able 
0.50 

𝒑𝒑𝒇𝒇 Probability that adversary is frustrated 0.01 
 
We can update these values using a table of reinforcements applied to the adversary 

model, giving increments to parameters due to events (Table 6). The increment should 
be ignored if it makes the probability greater than 1 or less than 0. We have used plau-
sible increments here, but they can be fit to data from real adversaries. 

Table 6. Proposed reinforcements to adversary variables based on adversary events. 

Event 𝒑𝒑𝒅𝒅 𝒑𝒑𝒄𝒄 𝒑𝒑𝒕𝒕 𝒑𝒑𝒔𝒔 𝒑𝒑𝒌𝒌 𝒑𝒑𝒂𝒂 𝒑𝒑𝒓𝒓 𝒑𝒑𝒇𝒇 
Get error message .01 .05 .01 .00 -.10 .10 .00 .03 
Command fails .03 .05 .02 .00 -.10 .05 -.05 .10 
Command had oppo-
site effect of expected 

.07 .10 .05 .00 -.10 .05 -.05 .05 

Nothing unusual 
found in examining 
display 

.00 .00 .02 .02 .00 .03 .02 .00 

Something unusual 
found in examining 
display 

.10 .00 .02 .05 .00 .03 -.05 .00 

Unusual response  
delay 

.10 .00 -.05 .00 -.05 .00 -.02 .05 

“Suspicious behav-
ior” noted by system 

.10 .00 -.10 .00 -.10 .05 -.05 .10 

Adversary leaves .10 -.05 .00 .00 -.20 .00 .00 .10 
 
As a demonstration of how reinforcement works, Table 7 gives an example interaction 
with deceptions based on Fig. 3, showing how its steps affect the adversary variables.  
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Table 7. Modifications to adversary variables for an example sequence of adversary actions 
with some defensive deceptions. 

Attacker event and result 𝒑𝒑𝒅𝒅 𝒑𝒑𝒄𝒄 𝒑𝒑𝒕𝒕 𝒑𝒑𝒔𝒔 𝒑𝒑𝒌𝒌 𝒑𝒑𝒂𝒂 𝒑𝒑𝒓𝒓 𝒑𝒑𝒇𝒇 
Start .02 .01 .05 .30 .50 .30 .50 .01 
Attacker views the device table, 
sees nothing interesting 

.02 .01 .07 .32 .50 .33 .52 .01 

Attacker sets the thermostat to a 
higher temperature; tempera-
ture decreases in device table, an 
unexpected result 

.09 .11 .12 .32 .60 .38 .47 .06 

Adversary tries to stop the fan; 
no effect in the display 

.12 .16 .14 .32 .50 .43 .42 .16 

Adversary tries to stop the fan a 
second time, gets long delay 

.22 .16 .09 .32 .45 .43 .35 .21 

Adversary gets password re-
quests, system notes “suspicious 
behavior” 

.32 .16 .00 .32 .35 .48 .32 .31 

Attacker leaves .42 .11 .00 .32 .15 .48 .32 .41 
 
Observing the last row of the table, the overall effect of this sequence of events is to 
leave the attacker frustrated and thinking they have been deceived, less confident of 
themselves, but still thinking they are sophisticated because they did provide a good 
test of the system. If we see the attacker’s IP address again, or an address in the same 
subnetwork, it will be good to avoid deceptions involving fakes (T1, T2, T3, T4, and 
T5 of section 6) since we inferred that this attacker is aware of deception and may tell 
colleagues in their organization. Instead, we could prefer tactics of flooding the attacker 
with data, obfuscatory controls, misleading controls, and process interruptions (T6, T7, 
T8, and T9). 

9 Conclusions 

The cybersecurity problems of industrial control systems differ in important ways from 
those of most information systems. This means their defensive tactics should be differ-
ent, including their deceptive defenses, which should be especially sensitive to the en-
vironment in which they occur. We have identified a range of tactics in this chapter for 
better design of multilayered defensive deception methods for industrial control sys-
tems. These methods infer a set of “adversary variables” from adversary actions, which 
can be used to predict subsequent adversary activity. These can be dynamically modi-
fied by using reinforcement learning from attacker behavior over an extended period of 
interactions with a range of attackers. We have provided a variety of design tools that 
can provide interesting and varied deceptions for a range of attackers. Testing these 
tools is our next step, but testing is difficult since attackers are deliberately uncoopera-
tive, and testing against known attacks does not capture the dynamics of real attack 
campaigns. Nonetheless, much as when artificial neural networks receive repeated 
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feedback to improve their weights, and they can converge to surprisingly powerful con-
sensus models, we expect our multiple methods of feedback can allow us to craft pow-
erful defensive campaigns from repeated exposure to attacks. 
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