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Abstract

Consider a patrol problem, where a patroller traverses a graph through edges to detect
potential attacks at nodes. An attack takes a random amount of time to complete. The
patroller takes one time unit to move to and inspect an adjacent node, and will detect
an ongoing attack with some probability. If an attack completes before it is detected, a
cost is incurred. The attack time distribution, the cost due to a successful attack, and
the detection probability all depend on the attack node. The patroller seeks a patrol
policy that minimizes the expected cost incurred when, and if, an attack eventually
happens. We consider two cases. A random attacker chooses where to attack accord-
ing to predetermined probabilities, while a strategic attacker chooses where to attack
to incur the maximal expected cost. In each case, computing the optimal solution,
although possible, quickly becomes intractable for problems of practical sizes. Our
main contribution is to develop efficient index policies—based on Lagrangian relax-
ation methodology, and also on approximate dynamic programming—which typically
achieve within 1% of optimality with computation time orders of magnitude less than
what is required to compute the optimal policy for problems of practical sizes.

Keywords: surveillance, infrastructure protection, search and detection, Lagrangian realx-
ation, approximate dynamic programming.

1 Introduction

While patrol problems have been studied since the 1950s [12], there has been renewed interest
in this subject due to the rapid advancement of surveillance technology in recent years,
such as unmanned vehicles, automatic image recognition, and data fusion. Most of the
earlier works on patrol planning assume that patrol forces are allocated to maximize some
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performance measure based on known and fixed frequencies of illicit activities at different
locations [7, 8, 9, 13, 14, 16, 23]. In other words, these works do not account for the possibility
that the adversary may change his behavior in the presence of patrol.

There has been a growing interest in recent years in taking a game-theoretic approach to
modeling patrol problems. With an intelligent attacker who seeks to minimize his probability
of getting caught, the objective of the patrol force is to determine a patrol policy—possibly
randomized—to maximize the minimum detection probability regardless of where the at-
tacker chooses to attack. A common model framework is to embed the patrol area in a
graph, with nodes representing potential targets for attack, and edges connecting targets
next to each other. For instance, a museum can be divided into exhibit rooms as nodes
and connecting doors as edges; an open area can be divided into hexagon cells as nodes
and adjacent cells connected by edges. A patroller then has to decide how to traverse the
graph through edges to detect potential attacks at nodes [3, 4, 5, 15, 22]. There is also a
stream of works that study patrol problems with multiple agents. These works typically use
distributed methods that rely on local objective functions and myopic policies to produce
scalable patrol strategies [1, 2, 6, 17, 18, 19, 24].

In this paper, we use a graph to model the patrol area, with one patroller traversing the
edges in the graph in order to detect potential attacks at nodes, similar to the framework
in Alpern et al. [3] and Lin et al. [15]. There are two prominent features of our model:
(1) the time it takes to attack a node is a random variable whose probability distribution
depends on the node, and (2) the patroller may overlook an ongoing attack at the inspected
node. Whereas most of the earlier works formulate a mathematical program to determine
the optimal patrol strategy, these two features make the optimal solution computationally
feasible only for small graphs. To the best of our knowledge, our work is the first to address
these two features simultaneously.

Specifically, our work extends that of Lin et al. [15] by allowing the possibility of over-
looking. In other words, when the patroller inspects a node, he will detect an ongoing attack
with a probability that depends on the node. For instance, an unmanned aerial vehicle
may have a better chance to locate a target in desert than in forest. Mathematically, the
possibility of overlooking makes the problem considerably more difficult. To decide where
to go next, it is no longer sufficient for the patroller to only keep track of the last time he
inspected each of the nodes. Thus the methods reported in Lin et al. [15] no longer apply.

We first analyze the case of random attackers, who choose which node to attack according
to a probability distribution. Although it is possible to formulate the problem as a Markov
decision process and to compute the optimal solution via a linear program, computing the
optimal policy quickly becomes intractable for problems of practical sizes. The main con-
tribution of this paper is to introduce two methods to develop heuristic policies that score
nodes as candidates to be inspected next by giving them each an index.

1. The first method uses Lagrangian relaxation to develop a node index which can be
interpreted as the fair charge for a patrol inspection at that node in its current state.
Because in general an arbitrary state cannot map directly to such a charge, the novelty
of our method is to use both the expected number of ongoing attacks and their departure
rates in the near future as a conduit to develop an index.
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2. The second approach to index generation uses approximate dynamic programming.
Specifically, we first compute a lower bound for the optimal policy and use the lower
bound to infer the patrol rate at each node. The novelty of this method is to approxi-
mate the value of inspecting a node by assuming the future patrols will arrive at rates
implied from the lower bound.

In our numerical experiments, these index policies typically achieve within 1% of optimality
with computation time orders of magnitude less than what is required to compute the optimal
policy for problems of practical sizes. These index policies also allow us to construct effective
patrol strategies against strategic attackers, who seek to maximize the expected damage by
attacking the most vulnerable node.

The rest of this paper proceeds as follows. Section 2 introduces a patrol model and a
linear program to compute the optimal solution. Section 3 presents index policies based on
Lagrangian relaxation, and Section 4 presents index policies based on approximate dynamic
programming. Section 5 presents numerical results for these index heuristics, and Section 6
demonstrates how they can be used to construct effective patrol strategies against strategic
attackers. Finally, Section 7 concludes the paper.

2 The Model

This section extends the graph patrol model studied in [15], so that a patroller may overlook
an attack when they are at the same location. The patrol area is divided into n locations
that are subject to enemy attacks, with each location represented by a node and adjacent
locations connected by an edge. A patroller traverses the edges in the graph trying to detect
attacks at nodes. It takes 1 time unit for the patroller to inspect a node, and at the end of
the inspection, the patroller can move to an adjacent node (or stay at the same node) and
inspect it. In other words, a patrol schedule is a sequence of nodes that observe the edge
constraints in the graph.

We first consider the case of random attackers, who will attack node i with probability
pi upon arrival. The time it takes to complete an attack at node i is random and follows
cumulative distribution function Fi(·), for i = 1, . . . , n. If the patroller inspects node i, then
at the end of the inspection the patroller will detect an ongoing attack with probability αi,
or overlook it with probability 1 − αi, independent of everything else, for i = 1, . . . , n. A
cost ci is incurred if an attack completes at node i before being detected; otherwise no cost
is incurred.

We assume that the patroller has no knowledge about when an attack will occur, so a
sensible objective is to minimize the expected cost incurred when, and if, an attack even-
tually happens. Mathematically, we seek to determine the patrol policy that minimizes the
expected cost when an attack occurs in the system’s steady state. To do so, we assume the
attackers arrive according to a Poisson process with rate Λ, with each attacker operating
independently, and possibly simultaneously at the same node. By letting the patrol pro-
cess continue indefinitely without interruption by attacks—whether an attack is detected or
not—we seek the patrol policy that minimizes the long-run cost rate. Because this long-run
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cost rate scales proportionally in Λ, the optimal policy does not depend on Λ. In fact, the
patrol policy that minimizes the long-run cost rate also minimizes the long-run average cost
for each attack, therefore the expected cost due to an attack in steady state.

2.1 Markov Decision Process Formulation

To make it possible to formulate the problem as a Markov decision process, we assume that
the attack time distribution Fi(·) is bounded by Bi, for i = 1, . . . , n, and let B = dmaxiBie.
To formulate the problem, we define time 0 as the time of the next detection opportunity.
Because all attackers that arrived at time −B or earlier would have completed their attacks
by time 0, if not detected, the patroller only needs to keep track of what happened in the
time interval [−B, 0) in order to decide what to do at time 0. Presumably, the information
gathered in the interval [−B, 0) includes the nodes inspected and the inspection results. It
turns out, however, that knowing where the patroller has been in the interval [−B, 0) is
sufficient; the additional information about the inspection results does not help the patroller
make a better decision at time 0. This result follows from the fact that the attackers arrive
according to a Poisson process and that each attacker acts independently, as stated in the
next theorem.

Theorem 1 The optimal patrol policy—which node to inspect at time 0—depends only on
where the patroller has been in [−B, 0), but not on the number of attacks detected in each
of those patrol inspections.

Proof. Suppose that the patroller just completed an inspection at time −1 and needs to
decide which adjacent node to inspect at time 0. For any given patrol history—namely which
node the patroller inspected at each times −1,−2, . . .—we can classify each attacker that
arrived before time 0 into several types depending on whether he is detected. Specifically,
we call it a type k attacker if he was detected at time −k, k = 1, 2, . . .; a type 0 attacker if
his attack completed before time 0; or a type i′ attacker if the attack is still ongoing at node
i at time 0, i = 1, 2, . . . , n.

Because each attacker that has arrived belongs to each type with some probability based
on his arrival time, independent of the other attackers, it follows from the Poisson sampling
theorem that (see, for example, Proposition 5.3 in [21]) the numbers of different types of
attackers are independent Poisson random variables. In addition, for each ongoing attack at
time 0, its additional time until completion is also independent of what happens to the other
attackers. Consequently, knowing the past inspection results does not provide additional
information about the number of ongoing attacks at each node and their additional attack
times, beyond what the patroller can glean from the patrol history. Hence, the optimal
patrol policy depends only on the patrol history in [−B, 0). 2

The preceding theorem allows us to define the state of the system by s = (s1, s2, . . . , sB−1),
where sk denotes the node the patroller inspected at time −k, for k = 1, . . . , B − 1. We
write the state space as

Ω = {(s1, . . . , sB−1) : sk = 1, 2, . . . , n, for k = 1, . . . , B − 1} . (1)
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The size of the state space is |Ω| = nB−1 for complete graphs. For other graph types, the
state space is smaller because not all states are feasible, with the size being the smallest for
line graphs.

The current node of the patroller is indicated by s1. For any given state, the future of the
process is independent from its past, and thus we can formulate the problem as a Markov
decision process (MDP). At the end of a time period, the patroller needs to decide whether
to stay at the same node for another time period, or move to one of the adjacent nodes.
Thus, the action space is A = {1, . . . , n}. A deterministic, stationary patrol policy can be
delineated by a map π from the state space to the action space π : Ω→ A.

Let ai,j = 1 if nodes i and j are connected by an edge, or ai,j = 0 otherwise, for
i, j = 1, . . . , n. Because the patroller can only move to a node adjacent to the current node,
a specific mapping s→ i is feasible if and only if as1,i = 1. We use

A(s) = {i : as1,i = 1}

to denote the set of feasible actions—or equivalently, the set of nodes the patroller can move
to—when the process is in state s.

The transition probability of this MDP is deterministic. If the patroller next goes to
node i ∈ A(s) when in state s, the system will transition to state s̃ = (s̃1, s̃2, . . . , s̃B−1),
with

s̃k =

{
sk−1, if k > 1 ,

i, if k = 1 .

For notational simplicity, we write φ(s, i) for the resulting state if the patroller goes to node
i in state s. Namely, φ(s, i) = s̃.

We next consider the cost function for this MDP. Recall that, for a state-action pair
(s, i), the patroller completes inspection at node i at time 0. To determine the expected cost
incurred in the time interval [0, 1], for j = 1, . . . , n and k = 1, . . . , B − 1, define

vjk =

{
1, if sk = j,
0, otherwise.

(2)

In other words, vjk = 1 indicates that the patroller inspected node j at time −k. For
instance, if n = 3, B = 5, and the current state is s = (2, 1, 2, 3), then

[vjk] =

 0 1 0 0
1 0 1 0
0 0 0 1

 .

To compute the expected number of attacks that complete at node j 6= i in [0, 1], first
consider an attack that initiates at time t ∈ [0, 1]. Such an attack will complete before time 1
with probability Fj(1− t); it is impossible to detect this attack no matter what the patroller
does. Next, consider an attack that initiated at time −t, for t ∈ [m,m+ 1]. This attack will
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complete in [0, 1] if (1) its attack time lies in [t, t + 1], and (2) it evades detection at times
−1,−2, . . . ,−m, which occurs with probability

(Fj(t+ 1)− Fj(t))(1− αj)
∑m

k=1 vjk .

The preceding argument holds true for m = 0, 1, . . . , B − 1. Letting λj = pjΛ—the rate
at which attackers arrive at node j, for j = 1, . . . , n—the expected cost due to attack
completions at node j 6= i in [0, 1] is

Cj(s, i) = cjλj

(∫ 1

0

Fj(1− t)dt+
B−1∑
m=0

(1− αj)
∑m

k=1 vjk

∫ m+1

m

(Fj(t+ 1)− Fj(t))dt

)
. (3)

Because the patroller inspects node i at time 0, the expected cost due to attack completions
at node i in [0, 1] is

Ci(s, i) = ciλi

(∫ 1

0

Fi(1− t)dt+
B−1∑
m=0

(1− αi)1+
∑m

k=1 vik

∫ m+1

m

(Fi(t+ 1)− Fi(t))dt

)
, (4)

with the only difference between equations (3) and (4) being the exponent on the (1 − αi)
term. Consequently, the cost function for the state-action pair (s, i) for this MDP is

C(s, i) =
n∑
j=1

Cj(s, i).

The objective of this MDP is to minimize the total long-run cost rate among the n nodes.
Since both the state space and the action space are finite, it follows from Theorem 9.1.8 in
Puterman [20] that it is sufficient to consider deterministic, stationary policies. Because the
state transition is deterministic, we can define ψπ(s) ≡ φ(s, π(s)) as the resulting state, if the
patroller applies policy π to state s. For an initial state s0, policy π will induce an indefinite,
deterministic sequence of states, written by {ψkπ(s0), k = 0, 1, 2, . . .}, where ψkπ = ψπ ◦ ψk−1

π ,
for k ≥ 1. Because the state space is finite, eventually some state will repeat, and a cycle
will continue indefinitely. Therefore, we can write

Vi(π, s0) = lim
N→∞

1

N

N−1∑
k=0

Ci(ψ
k
π(s0), π(ψkπ(s0)))

for the long-run cost rate incurred at node i if the patroller applies policy π to initial state
s0, which is also equal to the total expected cost due to attacks on node i incurred in a cycle
divided by the cycle length. Furthermore, we call the sequence of nodes corresponding to a
cycle a patrol pattern.

We seek to determine the optimal long-run cost rate over all nodes, namely

COPT(s0) ≡ min
π∈Π

n∑
i=1

Vi(π, s0), (5)
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where Π denotes the class of deterministic, stationary patrol policies. Dividing (5) by Λ
gives us the minimized long-run average cost incurred for each attack. When ci = 1 for all
i, the ratio can be interpreted as the probability of not detecting an attack in time.

While Vi(π, s0) does depend upon s0, the optimal cost rate COPT(s0) does not, if the
graph is connected, because Vi(π, s0) depends entirely on the patrol pattern generated by s0

and π. In the rest of this paper, we assume the graph is connected, and write COPT instead
of COPT(s0). To determine the optimal policy, it is equivalent to find the optimal patrol
pattern.

2.2 The Optimal Solution

Our MDP model belongs to the class of multichain models described in Chapter 9 of [20],
because for a given stationary, deterministic policy, it is possible for the resulting Markov
chain to have multiple recurrent classes. To solve for COPT, we need to solve the following
system of equations for g(s) and h(s) (referred to as the multichain optimality equations in
Equations (9.1.1) and (9.1.2) in [20]):

g(s) = min
i∈A(s)

{g(φ(s, i))}, ∀s ∈ Ω,

g(s) + h(s) = min
i∈B(s)

{C(s, i) + h(φ(s, i))}, ∀s ∈ Ω,

where B(s) = {i ∈ A(s) : g(s) = g(φ(s, i))}. That is, B(s) is the subset of A(s), including
all actions that attain minimum in the first equation. The quantity g(s) represents the long-
run cost rate if the system starts in state s and h(s) is a bias term that can be interpreted
as a transient cost. For our system, the optimality equations will have COPT = g(s) for all
s ∈ Ω, because the long-run cost rate is independent of the initial state. Consequently, in
our model we have B(s) = A(s). As the MDP has a finite state space, we can formulate the
following linear program to compute the optimal cost rate COPT (see Section 9.1.1 in [20]
for more details):

max
g,h

g (6)

subject to g + h(s) ≤ C(s, i) + h(φ(s, i)), ∀s ∈ Ω and i ∈ A(s). (7)

The size of the constraint matrix is on the order of |Ω|n × |Ω|, with the exact number
of rows depending on the adjacency structure of the graph. While in principle the linear
programming formulation allows us to compute the optimal solution, the method quickly
becomes computationally intractable for problems of more than a handful of nodes. For
instance, for complete graphs, |Ω| = nB−1, and if we let n = 7 and B = 7, then the size
of the constraint matrix is 77 × 76. The computational intractability motivates the need to
develop efficient heuristics to solve the patrol problem.

3 Index Policies Derived from Lagrangian Relaxation

Recall that we seek to determine the minimized long-run cost rate defined in (5), written
succinctly as COPT, because the graph is connected. First, we relax the problem by extending
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the class of policies so that the patroller is allowed to inspect any node at any real-time point,
as long as the overall long-run inspection rate is no greater than 1. By any real-time point
we mean that the detection opportunities do not need to coincide with integers. Whenever
the patroller inspects node i, he detects each ongoing attack independently with probability
αi, i = 1, . . . , n.

In this relaxed problem, denote by µi, i = 1, . . . , n, the long-run patrol rate at node i.
Let Ci(µi) denote the minimized long-run cost rate, if node i receives a patrol rate µi, which
will be studied closely in Section 3.1. Write µ = (µ1, . . . , µn) and define

Γ1 ≡

{
µ :

n∑
i=1

µi ≤ 1;µi ≥ 0,∀i

}
,

and let

CTR ≡ min
µ∈Γ1

n∑
i=1

Ci(µi)

denote the optimal total cost rate over all nodes, such that each node receives a nonnegative
patrol rate, with the sum no greater than 1. It follows immediately that COPT ≥ CTR,
because any policy π induces a set of feasible patrol rates in Γ1.

We next relax the problem again by incorporating the total-rate constraint
∑n

i=1 µi ≤ 1
into the objective function with a Lagrange multiplier w ≥ 0. Define

Γ2 ≡ {µ : µi ≥ 0,∀i} ,

so the difference between Γ1 and Γ2 is that
∑n

i=1 µi needs to be no greater than 1 in Γ1, but
not necessarily so in Γ2. Define

C(w) ≡ min
µ∈Γ2

{
n∑
i=1

Ci(µi) + w

(
n∑
i=1

µi − 1

)}

= min
µ∈Γ2

n∑
i=1

{Ci(µi) + wµi} − w. (8)

By incorporating a Lagrange multiplier, we can drop the total-rate constraint, so that in (8),
the patroller can inspect any node at any real-time point, by paying a service charge w > 0,
if he chooses to do so. For any w > 0, we have that

CTR = min
µ∈Γ1

n∑
i=1

Ci(µi) ≥ min
µ∈Γ1

{
n∑
i=1

Ci(µi) + w

(
n∑
i=1

µi − 1

)}

≥ min
µ∈Γ2

{
n∑
i=1

Ci(µi) + w

(
n∑
i=1

µi − 1

)}
= C(w).

The first inequality follows because w > 0, and
∑n

i=1 µi − 1 ≤ 0 for any µ ∈ Γ1; the second
inequality follows because Γ1 ⊂ Γ2. Consequently, we have a string of inequalities:

COPT ≥ CTR ≥ C(w).
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The optimization problem in (8) breaks up the original problem into n separate problems,
each concerning a single node. The problem concerning node i can be written as

min
µi≥0

Ci(µi) + wµi, (9)

where w can be interpreted as the service charge for each inspection at node i. Solving the
problem defined by (9) is the first step towards constructing an index policy.

3.1 Single-Node Problem

This section solves the optimization problem in (9), which concerns a single node. We drop
the subscript i for notational simplicity. Attackers arrive at a node according to a Poisson
process with rate λ, with each taking a random time to complete an attack, according to a
distribution function F (·). The node can pay w to receive a patrol inspection at any real-time
point, which will detect each ongoing attack with probability α, independent of everything
else. A detected attack is removed; an attack that completes before getting detected costs c.
The node wishes to minimize the long-run cost rate, which includes cost due to not detecting
an attack and the service cost paid to the patroller.

The next theorem shows that, for a given service rate µ, to maximize the long-run rate
of detection, it is optimal for the patrol to arrive at intervals of 1/µ.

Theorem 2 Consider the optimization problem facing a single node posed in the beginning
of Section 3.1. Suppose that the patroller inspects the node at a long-run rate µ, in the sense
that the patroller repeats a patrol cycle of length l consisting of m inspections indefinitely,
for some positive integer m, such that µ = m/l. To maximize the long-run detection rate,
it is optimal to space these m inspections with equal intervals. In other words, it is optimal
to inspect the node once every 1/µ time units.

Proof. Let x = (x1, . . . , xm), with xi denoting the time of the ith inspection in a patrol cycle,
i = 1, . . . ,m. Without loss of generality, let xm = l. We say that an inspection occurring
at time xi in a patrol cycle is a class-i inspection. Because the patroller repeats the patrol
cycle indefinitely, patrol inspections in the same class are l time units apart.

Consider an attack that takes t < l time units to complete, and let N denote the number
of patrol inspections during his attack time t. First, because t < l, this attack will not see
two patrol inspections in the same class. Second, because Poisson arrivals see time average,
this attacker will see a class-i inspection with the same probability t/l, for i = 1, . . . ,m, so
E[N ] = m(t/l). Although the distribution of N depends on x, its expected value E[N ] =
m(t/l) does not depend on x.

We next determine the policy that maximizes the probability of detecting an attack that
takes t time units to complete. Namely, choose x to maximize

E[1− (1− α)N ],
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where α is the detection probability of each patrol inspection. By conditioning on N , we
can compute

E[1− (1− α)N ] =
∞∑
n=0

((1− (1− α)n)P (N = n))

=
∞∑
n=1

(
α
n−1∑
k=0

(1− α)kP (N = n)

)

= α
∞∑
k=0

∞∑
n=k+1

(1− α)kP (N = n)

= α

∞∑
k=0

(1− α)kP (N > k).

Recall that
∑∞

k=0 P (N > k) = E[N ] = m(t/l), which remains a constant regardless of x.
Treating P (N > k) as decision variables and replace them with yk, for all k, the optimization
problem can be rewritten as

max r
∞∑
k=0

(1− α)kyk,

subject to
∞∑
k=0

yk = E[N ] =
mt

l
(a constant),

1 ≥ y0 ≥ y1 ≥ · · · ≥ 0.

Because (1− α)k decreases in k, the optimal solution to the preceding problem is to let

yk =


1, k = 0, 1, . . . , bmt/lc − 1,
mt/l − bmt/lc, k = bmt/lc,
0, k ≥ bmt/lc+ 1.

In other words, the optimal choice is for N to take on the two integers surrounding E[N ], or
just E[N ] if it happens to be an integer. This distribution of N can be achieved by setting
xi = i(l/m), or equivalently, by spacing the m patrol inspections with equal intervals of
length 1/µ. Such a patrol cycle maximizes the probability of detecting an attack that takes
t < l time units to complete.

Next, consider the case t ≥ l, and let a = bt/lc and t′ = t− a× l. For this attacker, the
number of patrol inspections that he sees is at least a×m over the a complete patrol cycles,
with the extra number being the number of patrol inspections covered by length t′ < l.
The same argument shows that it is optimal to space the m patrol inspections with equal
intervals of length 1/µ.

If the attack time is a random variable, denoted by X, the preceding argument shows
that for all t,

P{Detecting the attacker|X = t}
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is maximized with the equal-space patrol policy. Hence,

P{Detecting the attacker} = E[P{Detecting the attacker|X}]

is also maximized with the equal-space strategy, which completes our proof. 2

We next derive an expression for the objection function C(µ) + wµ, as in (9) with the
subscript i stripped off. According to Theorem 2, C(µ) is simply the long-run cost rate due
to attack completions, when patrols occur at fixed intervals 1/µ. With the original model
setup, each attacker is detected independently with probability α, so an inspection does not
constitute a regenerative point of the process. Without regenerative points, it is not possible
to use the renewal reward theorem to compute the long-run cost rate.

We consider a variation of the model, where each patrol inspection either detects all
ongoing attacks with probability α, or detects none at all with probability 1−α (instead of
detecting each ongoing attack independently with probability α). Because the probability
that each attack will be detected remains the same in this model variation, the long-run cost
rate remains the same. This variation, however, allows us to define a renewal whenever a
detection occurs, which makes it possible to compute the long-run cost rate.

From Theorem 2, we only need to consider policies that inspect the node once every
y time units, for some real number y > 0. A renewal occurs when an inspection results
in a detection (detecting all ongoing attacks). Immediately after a renewal, let N denote
the number of inspections until the next detection (renewal), which follows a geometric
distribution with parameter α. The expected cycle time is

E[cycle] = E[Ny] = yE[N ] =
y

α
.

To compute the expected cost in a cycle, note that conditional on N = n, then an attack
that initiates at time s in the cycle will succeed if its attack time is no greater than ny − s,
which occurs with probability F (ny − s). Hence (see, for example, Proposition 5.3 in [21]),

E[cost|N = n] = λc

∫ ny

0

F (ny − s)ds+ nw = λc

∫ ny

0

F (s)ds+ nw.

For t ≥ 0, write

Ψ(t) ≡
∫ t

0

F (s)ds,

for convenience. The expected cost in a cycle is

E[cost] = λcE

[∫ Ny

0

F (s)ds

]
+ wE[N ]

= λcα

(
∞∑
n=1

(1− α)n−1Ψ(ny)

)
+
w

α
.

Using the renewal-reward theory, the long-run cost rate is therefore

Θ(w, y) ≡ E[cost]

E[cycle]
=
λcα2(

∑∞
n=1(1− α)n−1Ψ(ny)) + w

y
, (10)
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if the patroller inspects the node once every y time units, with each inspection costing w.
For a given service charge w, we want to choose the optimal patrol interval y that

minimizes Θ(w, y). For a given service charge w, define

g(w) ≡ max{y : Θ(w, y) = min
x

Θ(w, x)} (11)

as the largest optimal service interval. In other words, we break the tie by choosing the
largest service interval at which the optimum occurs.

Theorem 3 The function g(w) defined in (11) increases weakly in w.

Proof. For a given x, the function Θ(w, x) is linear and increasing in w. Because γ(w) ≡
minx Θ(w, x) is the lower envelope of a collection of linear and increasing functions, it follows
that γ(w) is concave and increasing in w. Furthermore, the right gradient of γ(w) is simply
1/g(w). Since γ(w) is concave, 1/g(w) decreases weakly in w, and the result follows. 2

Because g(w) increases weakly in w, we can define

g−1(y) = inf{w : g(w) ≥ y}. (12)

The function g−1(y) corresponds to the service charge, for which the patrol interval y is
optimal. To compute g−1(y), take the derivative of Θ(w, y) with respect to y to get

∂Θ(w, y)

∂y
=
λcαE [NF (yN)] y − (λcαE[

∫ yN
0

F (s)ds] + w)

y2
. (13)

Setting the derivative to 0 and solving for w yields

g−1(y) = λcα · E
[
yNF (yN)−

∫ yN

0

F (s)ds

]
= λcα · E

[∫ yN

0

(F (yN)− F (s))ds

]
= λcα2

∞∑
n=1

(1− α)n−1 (ny · F (ny)−Ψ(ny)) . (14)

If y > B, the preceding simplifies to g−1(y) = λcαE[X], which is also the expected cost that
can be saved by a patrol inspection, if the last one was longer than B time units ago.

Theorem 4 The function g−1(y) defined in (14) increases for y < B. In addition, in the
single-node problem, if w = g−1(y) for y < B, then it is optimal to inspect the node once
every y time units. Moreover, if w ≥ g−1(B) = λcαE[X], then it is optimal not to inspect
the node at all.

Proof. We first rewrite (14) as

g−1(y) = λcα2

∞∑
n=1

(1− α)n−1

(∫ ny

0

(F (ny)− F (s))ds

)
.

12



The integrand is positive and increases with y and thus the integral and g−1(y) increase with
y. If w = g−1(y) for y < B, then by construction ∂Θ(w, y)/∂y = 0. To see Θ(w, y) is convex
in y, compute

∂2Θ(w, y)

∂y2
=
λcαE [(2N − 1)F (yN)]

y2
> 0,

since N follows a geometric distribution, which is at least 1. If w = g−1(y), then the minimum
occurs at y, so it is optimal to inspect once every y time periods. Finally, by convexity we
know that the derivative in (13) is increasing. For any y > B, we can simplify equation (13)
to

∂Θ(w, y)

∂y
=
λcαE[X]− w

y2
.

Consequently, if w ≥ g−1(B) = λcαE[X], then Θ(w, y) is a strictly decreasing function and
it is optimal for the patroller to never inspect the node. 2

A downside of using (14) to compute g−1(y) is that it involves a sum of infinitely many
terms. To transform it to eliminate the infinite sum, define

bk(y) ≡ (ky · F (ky)−Ψ(ky))− ((k − 1)y · F ((k − 1)y)−Ψ((k − 1)y)) ,

for k = 1, 2, . . ., which allows us to rewrite (14) as

g−1(y) = λcα2

∞∑
n=1

(
(1− α)n−1

n∑
k=1

bk(y)

)
= λcα2

∞∑
k=1

(
bk(y)

∞∑
n=k

(1− α)n−1

)

= λcα
∞∑
k=1

bk(y)(1− α)k−1. (15)

However, bk(y) = 0 if (k − 1)y > B, so the preceding is a sum of a finite number of terms.
Let’s now return to the problem with n nodes. Recall that with the next inspection

opportunity occurring at time 0, the state of the MDP described in Section 2.1 can be
delineated by s = (s1, s2, . . . , sB−1), with sk indicating the node that was inspected at time
−k, for k = 1, . . . , B − 1. For each node, we can write its state as

v = (v1, . . . , vB−1),

where vk = 1 if the node receives a patrol inspection at time −k, and vk = 0 otherwise,
for k = 1, . . . , B − 1. To define an index heuristic, we need to map from a node’s state to
a real number, namely the index, and let the patroller inspect the adjacent node with the
highest index value. The standard method for doing so is to determine the service charge, for
which a patrol inspection and the node’s state together constitute an optimal policy. Such a
construction, however, is not possible in our problem, because there may not exist a service
charge for which an arbitrary patrol schedule v is optimal. We next present two approaches
to construct indices in Sections 3.2 and 3.3.
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3.2 Calibrate with the Number of Ongoing Attacks

This method uses the expected number of ongoing attacks at time 0 as a surrogate to map
from a node’s state to an index. For a given state v, we first compute the expected number
of ongoing attacks at time 0. We then find the corresponding patrol interval y, such that at
each inspection the patroller will find the same expected number of ongoing attacks. Finally,
we map y to the fair service charge g−1(y) in (15) to obtain the index. We explain the details
below.

An attack that initiated at time −t will still be ongoing at time 0, if (1) its attack time
is greater than t, and (2) it evades detection during these t time units. Hence, for an attack
that initiated at time −t, for t ∈ [k, k+1], the probability that it will still be ongoing at time

0 is F̄ (t)(1 − α)
∑k

i=1 vi , for k = 0, 1, . . . , B − 1. Therefore, the expected number of ongoing
attacks at time 0 is

ρ(v) =
B−1∑
k=0

λ

∫ k+1

k

F̄ (t)(1− α)
∑k

i=1 vidt. (16)

The larger this quantity, the more attacks the patroller can potentially detect at this node,
and hence the more incentive for the patroller to go there.

To map ρ(v) to an index, consider a patrol policy with fixed patrol intervals y. Whenever
the patroller inspects the node, the expected number of ongoing attacks is equal to

h(y) = λ

∫ B

0

F̄ (t)(1− α)bt/ycdt

= λ

bB/yc∑
k=1

(1− α)k−1

∫ ky

(k−1)y

F̄ (t)dt+ (1− α)bB/yc
∫ B

bB/yc·y
F̄ (t)dt

 . (17)

The function h(y) increases weakly in y, and is left continuous (because the floor function is
right continuous). We can define an inverse function

h−1(ρ) = max{y : h(y) ≤ ρ}.

Consequently, the index for state v is

W (v) = g−1 ◦ h−1 ◦ ρ(v). (18)

3.3 Calibrate with the Number of Ongoing Attacks and Their
Near-Future Departure Rates

The downside of the index defined in (18) is that it maps from a node state to an index
using only the expected number of ongoing attacks at the node, but not how much longer
these attacks will remain there. Intuitively, the sooner those attacks will complete, the more
urgent it is to inspect the node, so the index should be adjusted higher. One way to develop
an index that takes into account how soon ongoing attacks will complete is to search for the
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exponential attack time distribution whose rate yields the closest fit to the departure rate
of ongoing attacks in the near future, and then use the index derived from the model with
the exponential attack time distribution.

To begin, consider a single-node model in which the attack time distribution is exponential
with rate θ. By substituting F (t) = 1 − e−θt into (14), we can compute the corresponding
fair service charge, in terms of the patrol interval y and the exponential rate θ, by

λcαy

1− (1− α)e−θy

(
1− e−θy

θy
− αe−θy

1− (1− α)e−θy

)
, (19)

where λ is the arrival rate of attackers, c the cost for each completed attack, and α the
detection probability. Let ρ denote the expected number of ongoing attacks in this model
when inspections occur; substitute F̄ (t) = e−θt into (17) to get

ρ =
λ

θ

1− e−θy

1− (1− α)e−θy
.

Solving for y from the preceding yields

y =
1

θ
ln

(
λ− ρθ(1− α)

λ− ρθ

)
.

In order to express the fair charge in (19) in terms of ρ rather than y, substitute the preceding
into (19) to arrive at

W (ρ, θ) = ρcα− c

λθ
(λ− ρθ)(λ− ρθ(1− α)) ln

(
λ− ρθ(1− α)

λ− ρθ

)
. (20)

The preceding is the corresponding index if the expected number of ongoing attacks is ρ,
when the attack time distribution is exponential with rate θ.

Now return to the problem with a general attack time distribution F (·). When a node
is in state v at time 0, write φG(v, s) for the expected number of ongoing attacks at time
s, if there is no inspection over the period [0, s). The ongoing attacks at time s consists of
two groups: (1) old attacks that are present at time 0, and (2) new attacks initiated in the
interval [0, s). Therefore,

φG(v, s) =
B−1∑
k=0

λ

∫ k+1

k

F̄ (t+ s)(1− α)
∑k

i=1 vidt+ λ

∫ s

0

F̄ (t)dt.

where the first term corresponds to old attacks and follows with a similar argument that
derives (16).

On the other hand, for a node whose attack time is exponentially distributed with rate
θ, if the expected number of ongoing attacks at time 0 is ρ, and if there is no inspection over
the period [0, s), then the expected number of ongoing attacks at time s is equal to

φE(ρ, θ, s) = ρe−θs + λ

∫ s

0

e−θtdt = ρe−θs +
λ

θ
(1− e−θs),
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where the two terms correspond to old attacks and new attacks, respectively.
The idea now is to choose parameters (ρ, θ) to give a good fit between φG(v, s) and

φE(ρ, θ, s) for some region s ∈ [0, t), so that we can use the index defined in (20) for state
v. Since the current and the next inspections occur at time 0 and time 1, respectively, we
adopt a simple approach by choosing (ρ, θ) to solve the equations

φE(ρ, θ, 0) = φG(v, 0), (21)

φE(ρ, θ, 1) = φG(v, 1). (22)

To see that there exists a unique solution to these two equations, first note that equation
(21) is equivalent to equation (16) and thus fully specifies ρ(v). By inspection, φG(v, 1) ∈
[0, ρ(v) + λ] for the value of ρ(v) calculated in (21). In addition, φE(ρ, θ, 1) is continuous in
θ, and decreases monotonically from ρ + λ to 0 as θ increases from 0 to ∞. Hence, by the
intermediate value theroem there exists a unique θ(v) satisfying φE(ρ(v), θ(v), 1) = φG(v, 1).

Finally, write (ρ(v), θ(v)) for the (ρ, θ) solution to the system of equations defined by
(21)–(22). The index for state v is therefore W (ρ(v), θ(v)), as defined in (20).

3.4 Improve the Heuristics by Looking Ahead

In Sections 3.2 and 3.3, we present two methods to compute an index based on a node’s state
v, written by W (v). Now return to the patrol problem on a graph with n nodes, and recall
the definition of the state of the system from (1), and the definition of the state of a node
from (2). For each state of the system s, we can extract the state of node i, and determine
the corresponding index of node i in that state, i = 1, . . . , n. By affixing a subscript i to
indicate node i, we now write Wi(s) as the index for node i when the system is in state s.
A straightforward way to define an index heuristic is for the patroller to go to the adjacent
node with the highest index. We call this patrol policy the index heuristic (IH).

The IH works well on complete graphs, but not necessarily on less connected graphs. If
the patroller moves to a leaf node, whose only adjacent node has an extremely small attacker
arrival rate, then the patroller may get stuck at the leaf node. To overcome this downside,
we allow the patroller to look ahead a few time periods to compute an aggregate index.
Such a computation is possible because the state of each node depends entirely on the patrol
path, without involving any randomness. Based on previous work [15], we can interpret the
indices of the unselected nodes as penalties. With this interpretation, an l-step look-ahead
aggregate index of a path is the sum of all indices of unselected nodes accumulated over
that path in the next l time periods. The patroller can list all possible paths of length l
and choose the next node to inspect based on the smallest aggregate index among all those
paths. We call it the index penalty heuristic with depth d, or IPH(d), if we compare the d
patrol patterns generated by look-ahead windows l = 1, 2, . . . , d, and choose the best one.
Even though the IPH(d) computes the aggregate index for an l-step path, for l = 1, . . . , d,
the aggregate index is used to determine only the next node. Once at the next node, the
same procedure is repeated to determine the next node.

Regardless of the choice of the look-ahead window l, the index policy maps from a state
to a node. Because the state transition is deterministic, whenever the process enters the
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same state, the IPH will generate the same patrol sequence. Therefore, the patrol schedule
generated by the IPH produces an indefinite repetition of some finite patrol pattern. For a
given patrol pattern, we can evaluate its long-run cost rate in a straightforward manner.

4 Index Policies Based on Approximate Dynamic Pro-

gramming

The second type of heuristic policy presented in this paper is based on approximate dynamic
programming. In particular, we assume that in the future, node i will be inspected at a rate
νi, i = 1, . . . , n. By assuming a future patrol rate to each node, for a given system state, we
can compute the benefit—defined as the expected cost saved—if the patroller next inspects a
particular node. The heuristic policy is then for the patroller to inspect the node that yields
the highest such reward. The future patrol rates—namely ν1, . . . , νn—are input parameters
of this method. We will discuss the choice of future patrol rates in Section 5.

For given future patrol rates ν1, . . . , νn, we offer two methods to approximate the future
patrols. In Section 4.1, we assume the future patrols arrive according to a Poisson process.
In Section 4.2, we assume the future patrols arrive at fixed intervals.

4.1 Future Patrols Arrive According to Poisson Processes

Recall that time 0 refers to the time point when the next inspection opportunity occurs.
Regardless which node the patroller inspects at time 0, we assume that after time 0 the
patroller will inspect node i according to a Poisson process with rate νi, i = 1, . . . , n. With
this assumption, we can compute the benefit (expected cost saved) if the patroller inspects
node i at time 0, and the heuristic policy is for the patroller to inspect the node that yields
the highest such benefit.

We now focus on a single node, and strip off the subscript i for notional convenience.
Consider a node state v = (v1, . . . , vB−1), such that vk = 1 if a patrol inspection occurred
at time −k, for k = 1, . . . , B − 1. Divide the entire time line into three segments. Segment
1 is (−∞,−B]; segment 2 is (−B, 0]; segment 3 is (0,∞). Classify attackers into 3 different
types based on the segment when an attacker arrives. We will compute the expected reward
collected if the patroller inspects the node at time 0, compared with the case if the patroller
does not inspect the node at time 0. We will do so for each of the three attacker types.

Type 1 attackers arrive before time −B. Because an attack can last no longer than B
time units, whether a type 1 attacker is detected depends entirely on the patrol schedule
before time 0. Type 3 attackers arrive after time 0, so whether a type 3 attacker will be
detected depends entirely on the patrol schedule after time 0. Therefore, the patrol decision
at time 0 only affects the fate of type 2 attackers.

Type 2 attackers arrive in the interval (−B, 0]. Any patrol inspection that takes place in
(−B,B] has a chance to detect type 2 attackers. Because we cannot change what happened
in (−B, 0), to study the effect of whether there is a patrol at time 0, we only need to examine
the patrols in the interval [0, B].
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First, suppose that there is no patrol at time 0. Future patrols arrive in the time interval
(0, B] according to a Poisson process with rate ν. Suppose that there are ` patrol inspections
in the interval (0, B], and denote these time points by 0 < s(1) < s(2) < . . . < s(`) < B. Define
s(0) ≡ 0 and s(`+1) ≡ B for notational convenience. If an attack initiates at time −t, for
t ∈ [k, k + 1], then it will still be ongoing at time s ∈ [s(m−1), s(m)] with probability

F̄ (t+ s)(1− α)
∑k

i=1 vi+m−1,

because the attack has to last for longer than t + s, and it has to evade detections at
times −1,−2, . . . ,−k and at times s(1), s(2), . . . , s(m−1). This argument holds true for k =
0, 1, . . . , B − 1. Next, for s ∈ [0, B] and a node state v, define

Φ(s,v) ≡ λ

(
B−1∑
k=0

∫ k+1

k

F̄ (t+ s)(1− α)
∑k

i=1 vidt

)

= λ

(
B−1∑
k=0

(1− α)
∑k

i=1 vi

∫ k+1+s

k+s

F̄ (t)dt

)
,

which represents the expected number of type 2 attackers who have not been detected by time
0, and whose attack will not complete by time s. Some fraction of these Φ(s,v) attackers,
however, will be detected between time 0 and time s. Therefore, the expected number of
ongoing type 2 attacks at time s(m) is equal to

(1− α)m−1Φ(s(m),v).

Consequently, if the patroller does not inspect the node at time 0, the expected total number
of type 2 attackers who are detected by the ` patrols in the interval (0, B] is

α
∑̀
m=1

(1− α)m−1Φ(s(m),v).

The preceding quantity is conditional on ` patrols in (0, B] at times s(1), s(2), . . . , s(`). Because
patrols arrive according to a Poisson process with rate ν in (0, B], the values s(1), s(2), . . . , s(`)

have the same distribution as the order statistics from ` independent uniform random vari-
ables over (0, B]. In other words, conditional on ` patrols in the interval (0, B], the probability
density function of the arrival time of the mth patrol, namely s(m), is given by

`!tm−1 (B − t)`−m

(`− 1)!m!B`
, 0 ≤ t ≤ B.

Consequently, we can compute the expected number of type 2 attackers that are detected
in the interval (0, B] by

Ψ(ν,v) ≡
∞∑
`=0

(
(νB)`

`!
exp(−νB) ·

∫ B

0

(
α
∑̀
m=1

(1− α)m−1Φ(t,v)

)
`!tm−1 (B − t)`−m

(`− 1)!m!B`
dt

)

=
∞∑
`=1

(
(νB)`

`!
exp (−νB)

∑̀
m=1

α(1− α)m−1

∫ B

0

Φ(t,v)
`!tm−1 (B − t)`−m

(`− 1)!m!B`
dt

)
. (23)
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Suppose now that we send the patroller to this node at time 0. The expected reward
from the inspection at time 0 and also from inspections at the node conducted after 0, which
accrues from detecting type 2 attackers, is given by

c(αΦ(0,v) + (1− α)Ψ(ν,v)).

Now return to the patrol problem with n nodes, and define the functions Φi(·, ·) and
Ψi(·, ·) similarly for node i, i = 1, . . . , n. If the patroller does not patrol anywhere at time 0,
the total expected reward collected from type 2 attackers across all nodes is

∑n
i=1 ciΨi(νi,vi).

If the patroller inspects node j at time 0, then the expected reward collected from type 2
attackers across all nodes is

cj(αjΦj(0,vj) + (1− αj)Ψj(νj,vj)) +
∑
i 6=j

ciΨi(νi,vi).

Thus, the benefit for choosing node j is

cjαj(Φj(0,vj)−Ψj(νj,vj)),

which is the index for node j. The heuristic is for the patroller to go to the adjacent node
that yields the highest such value.

4.2 Future Patrols Arrive at Fixed Intervals

In this section, we assume the future patrols arrive at each node at fixed intervals. For a
given system state, the patroller needs to decide which node to inspect at time 0. Suppose
the patroller inspects node i at time 0, then we assume that the future patrols at node i
occur at times 0, 1/νi, 2/νi, . . .; for j 6= i, we assume that the future patrols occur at times
1/(2νj), 3/(2νj), 5/(2νj), . . .. The rationale of using 1/(2νj) as the first patrol time for node j
is that, if the patrols occur at fixed intervals 1/νj, then in equilibrium the time until the first
patrol follows the uniform distribution over [0, 1/νj]. Hence, we use the expected waiting
time, when the patrol process is in equilibrium, to approximate the time of the first patrol.
With the preceding assumptions, we can compute the benefit (expected cost saved) if the
patroller inspects node i at time 0, and the heuristic policy is for the patroller to inspect the
node that yields the highest such benefit.

We now focus on a single node, and strip off the subscript i for notional convenience.
Consider a node state v = (v1, . . . , vB−1), such that vk = 1 if an inspection occurred at time
−k, for k = 1, . . . , B − 1. For a given state v, we want to compare two patrol schedules:

1. Inspect the node at times a+ kb, for k = 0, 1, 2, . . ..

2. Inspect the node at times kb, for k = 0, 1, 2, . . ..

By letting a = 1/(2ν) and b = 1/ν, these two patrol schedules correspond to the two patrol
policies discussed earlier. We want to compute the benefit of using schedule 2 as opposed to
schedule 1 for each node.
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Again, divide the entire time line into three segments as the case in Section 4.1. Segment
1 is (−∞,−B]; segment 2 is (−B, a]; segment 3 is (a,∞). Classify attackers into 3 different
types based on the segment when an attacker arrives. We will compare the expected reward
collected between the two patrol schedules, for each of the three attacker types.

Type 1 attackers arrive before time −B. Because an attack can last no longer than B,
whether a type 1 attacker gets detected depends entirely on the patrol schedule before time
0. Hence, the expected number of type 1 attackers that get detected are identical for the
two patrol schedules.

Type 2 attackers arrive in the interval (−B, a]. Any patrol inspection that takes place in
(−B, a + B] has a chance to detect type 2 attackers. Because the two patrol schedules are
identical before time 0, the difference comes from the patrols that take place in [0, a+B].

With schedule 1, the first patrol occurs at time a. First consider the expected number of
ongoing type 2 attacks at time a. If an attack initiates at time t, for t ∈ [0, a], then it will
still be ongoing at time a with probability F̄ (a − t). If an attack initiates at time −t, for
t ∈ [k, k + 1], then it will still be ongoing at time a with probability

F̄ (t+ a)(1− α)
∑k

i=1 vi ,

because the attack has to last for longer than t+ a, and it has to evade detections at times
−1,−2, . . . ,−k. This argument holds true for k = 0, 1, . . . , B − 1. Therefore, the expected
number of ongoing type 2 attacks at time a is

λ

(∫ a

0

F̄ (a− t)dt+
B−1∑
k=0

∫ k+1

k

F̄ (t+ a)(1− α)
∑k

i=1 vidt

)
.

In general, the expected number of ongoing type 2 attacks at time a + mb, for m =
0, . . . , bB/bc, is given by

Φ1(m) ≡ λ

(∫ a

0

F̄ (a+mb− t)(1− α)mdt+
B−1∑
k=0

∫ k+1

k

F̄ (t+ a+mb)(1− α)
∑k

i=1 vi+mdt

)

= λ

(
(1− α)m

∫ a+mb

mb

F̄ (t)dt+
B−1∑
k=0

(1− α)
∑k

i=1 vi+m

∫ k+1+a+mb

k+a+mb

F̄ (t)dt

)
.

Consequently, with patrol schedule 1, the expected total reward collected from type 2 at-
tackers is

cα

bB/bc∑
m=0

Φ1(m).

Next consider schedule 2. Write Φ2(m) for the expected number of ongoing type 2 attacks
at time mb, for m = 0, 1, . . . , b(a+B)/bc. For m = 0, we have

Φ2(0) ≡
B−1∑
k=0

λ

∫ k+1

k

F̄ (t)(1− α)
∑k

i=1 vidt,
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as given by (16). For m = 1, . . . , b(a+B)/bc, we can compute

Φ2(m) ≡ λ

(∫ a

0

F̄ (mb− t)(1− α)m−1dt+
B−1∑
k=0

∫ k+1

k

F̄ (t+mb)(1− α)
∑k

i=1 vi+mdt

)

= λ

(
(1− α)m−1

∫ mb

mb−a
F̄ (t)dt+

B−1∑
k=0

(1− α)
∑k

i=1 vi+m

∫ k+1+mb

k+mb

F̄ (t)dt

)
.

Consequently, with patrol schedule 2, the expected total reward collected from type 2 at-
tackers is

cα

b(a+B)/bc∑
m=0

Φ2(m).

Type 3 attackers arrive after time a, and we claim that the expected reward collected
from type 3 attackers is identical for the two patrol schedules. Divide segment 3 into blocks,
each with length b, as follows:

(a, a+ b], (a+ b, a+ 2b], (a+ 2b, a+ 3b], . . . .

Consider the block (a, a + b]. The probability that an attacker arriving at time t, for t ∈
(a, 2a], will be detected by schedule 1, is the same as the probability that an attacker arriving
at time t− a+ b will be detected by schedule 2, because this attacker will see the first patrol
after a + b − t time units, and thereafter at fixed intervals b. For the same reason, the
probability that an attacker arriving at time t, for t ∈ (2a, a + b], will be detected by
schedule 1, is the same as the probability that an attacker arriving at time t − a will be
detected by schedule 2. In other words, between the two patrol schedules, there is a one-
to-one correspondence between the time points in the block (a, a + b], such that attackers
arriving at matching time points have the same probability of getting detected by their
respective patrol schedules. Because attackers arrive according to a Poisson process, which
has stationary increments, the expected reward collected from type 3 attackers in the block
(a, a+b] is thus the same for the two schedules. A similar argument shows that the expected
reward collected from type 3 attackers in each of the blocks in segment 3 is the same for the
two schedules.

To sum up, the two patrol schedules collect the same expected reward from types 1 and
3 attackers. Therefore, the improvement of schedule 2 over schedule 1 is the difference of
rewards collected from type 2 attackers, namely

cα

b(a+B)/bc∑
m=0

Φ2(m)−
bB/bc∑
m=0

Φ1(m)

 .

In the patrol problem with n nodes, we can use the preceding to compute the benefit of
inspecting each node at time 0. The heuristic is for the patroller to go to the adjacent node
that yields the highest such value.
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4.3 Improve the Heuristics by Looking Ahead

Recall from Section 2.1 that s denotes the current system state. Using the method in either
Sections 4.1 or 4.2, the patroller compares all feasible nodes, and inspects the node that
attains the highest benefit; denote this highest benefit by U(s). The function U(s) can be
interpreted as an approximate quality of state s, because it represents the additional benefit
in state s compared with the baseline value. Therefore, we can use U(s) to approximate the
reward-to-go function for state s, and formulate a dynamic program as follows:

max
i∈A(s)

{R(s, i) + U(φ(s, i))} , (24)

where A(s) denotes the set of nodes that can be inspected in state s, and φ(s, i) the resulting
state for the state-action pair (s, i), as defined in Section 2.1. The reward function R(s, i)
represents the expected reward collected for the state-action pair (s, i)—which is simply the
expected number of ongoing attacks at node i at time 0, multiplied by ciαi. Hence, using
(16), we have that

R(s, i) = ciαi

B−1∑
k=0

λi

∫ k+1

k

F̄i(t)(1− αi)
∑k

m=1 vimdt.

where vim = 1 if sm = i. With this policy, in state s the patroller next inspects the node
that attains the highest value in (24).

By taking the idea one step further, we can look ahead l steps. For each path of length l,
we can compute the total expected reward accumulated over the path, and the quality of the
resulting state approximated by the U(·) function. Hence, we can compare all feasible paths
of length l and choose the one that yields the highest value. The patroller moves to the first
node in that winning path, and repeats this procedure to determine the next destination.

5 Numerical Experiments

This section studies the various heuristic methods numerically. We consider 5 graph types.

1. Complete graph: All nodes are connected. A complete graph is suitable in the scenario
where a security manager sits in a surveillance room watching real-time video feeds
from various cameras. The security manager can watch any feed at any time, which is
analogous to a patroller moving to any node directly.

2. Line graph: A line graph is applicable to an air-borne patrol unit responsible for a
border or a vessel responsible for a river or a coast line.

3. Circle graph: A circle graph is applicable to a ground unit patrolling the boundary of
an area.

4. Random tree: A random tree is generated recursively by connecting a new node ran-
domly to an existing node. It is applicable to a patrol car that is responsible for road
segments, or a vessel patrolling a river with branches.
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5. Hexagon grid: A hexagon grid is popular in war games [10], and is applicable to a
patrol unit that covers an open area. Each hexagon corresponds to a node, and the
patroller can move between adjacent hexagons. We label the center node as node 1,
and nodes 2–7 in the first layer, and nodes 8–19 in the second layer, and so on. A
hexagon grid with n nodes consists of nodes 1 to n with this labeling method.

While our heuristic methods work for any bounded attack time distribution, in order to
assess the heuristics we use attack time distributions so that the problem does not become
trivial. We do not want the attack time to be too short, in which case it will be very difficult
for the patroller to detect an attack. As our research goal is to study the effectiveness of
patrol policies, we set the attack time to be at least 1 so that each attack, regardless of its
arrival time, can be detected by some feasible patrol schedule. We also do not want the
attack time to be too large, in which case the patroller will detect almost everything. For
a graph with n nodes, we let the attack time be bounded by B = n, which also makes the
state space manageable for problems of moderate size.

We allow the attack time at each node to follow one of three distributions: deterministic,
uniform, and triangular. In the case of a deterministic attack time, we generate a uniform
random variable over [1, n] to be its attack time, where n is the number of nodes. In the
case of a uniform attack time distribution, we generate two such uniform random variables
to be its minimum and maximum. In the case of a triangular attack time distribution, we
generate three such uniform random variables to be its minimum, mode, and maximum.

For cost of a successful attack, we generate ci according to independent uniform distribu-
tions over [1, 3]. The importance of the nodes are comparable, with the most important node
being at most three times as important as the least important one. For attack probability
on each node, we first generate u1, . . . , un according to independent uniform distributions
over [0, 1], and then normalize them to get ûi = ui/

∑n
j=1 uj. We then let pi = (1/n+ ûi)/2.

In other words, we distribute probability 1/2 evenly among the n nodes, and the other 1/2
randomly among the n nodes. In doing so, we avoid the possibility that a node becomes
irrelevant because its attack probability is close to 0. For detection probability, we generate
αi according to independent uniform distribution over [0.4, 1]. Finally, recall that the value
of Λ is inconsequential in our model.

To implement the index policy based on approximate dynamic programming, we need
to have a set of input parameters (ν1, . . . , νn), with νi being the future patrol rate at node
i, for i = 1, . . . , n. In Appendix A, we discuss two methods to derive lower bounds for the
optimal long-run cost rate. One method is based on Lagrangian relaxation, and the other
method is based on a linear program. For the index policy based on approximate dynamic
programming, we use the patrol rates implied from each of these two lower bounds as input
parameters (ν1, . . . , νn). Consequently, we study six index policies, including two based on
Lagrangian relaxation (LR), and four based on approximate dynamic programming (ADP).
These six heuristics are summarized in Table 1.

Figures 1 and 2 compare the performance of six heuristics in Table 1 on complete graph
and line graph, respectively. Complete graph represents the most connected graph type,
while the line graph represents the least connected one. Although the other graph types are
not shown here, the results are similar, and overall we make the following observations:
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Table 1: Summary of six heuristic methods.

Name Method Details Section
LR1 LR Calibrated by the expected number of ongoing attacks 3.2
LR2 LR Calibrated by the expected number of ongoing attacks 3.3

and their near-future departure rates
AP1 ADP Future patrols Poisson processes, with rates implied 4.1

from lower bound based on Lagrangian relaxation A.1
AP2 ADP Future patrols Poisson processes, with rates implied 4.1

from lower bound based on linear programming A.2
AF1 ADP Future patrols at fixed intervals, with rates implied 4.2

from lower bound based on Lagrangian relaxation A.1
AF2 ADP Future patrols at fixed intervals, with rates implied 4.2

from lower bound based on linear programming A.2

1. For the same look-ahead window, LR2 generally takes less computation time and pro-
duces better results than does LR1.

2. For the same look-ahead window, AP1 generally takes less computation time and
produces better results than does AP2. AP1 takes less computation time, mainly
because computing the lower bound based on Lagrangian relaxation takes less time
than computing the lower bound based on linear programming.

3. For the same look-ahead window, AF2 generally takes more computation time and
produces better results than does AF1. Overall, AF2 compares favorably to AF1.

4. For the same look-ahead window, AP takes more computation time than does AF,
mainly due to numerically computing (23).

From these figures, it appears that the two best heuristics—based on both performance
and computation time—are LR2 and AF2. We propose a hybrid heuristic, with which we
run both LR2 and AF2, and choose the policy that yields a lower long-run cost rate. As
seen in Figures 1 and 2, the hybrid heuristic delivers excellent results.

Also seen from Figures 1 and 2, one can always exert more computational effort to
improve the heuristic by increasing d. The marginal benefit of increasing d depends on the
graph structure. The less connected the graph (such as a line graph), the more pronounced
the benefit when d increases. From our numerical experiments, setting

d = 1 + baverage distance between all pairs of nodesc,

for the hybrid heuristic offers a great balance between computation time and performance.
Table 2 reports the results of this method, by comparing them to the optimal policy. For
complete graphs, we report the results up to 6 nodes, because the linear program formu-
lated in Section 2.2 becomes computationally intractable for 7-node complete graphs on our
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Figure 1: This figure displays the performance of various heuristic methods against compu-
tation time for complete graphs with 6 nodes. The performance is the 90th percentile over
1000 random scenarios, reported as percentage over optimum. Each line corresponds to a
heuristic method, with d = 1, 2, 3, 4 from left to right.
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Figure 2: This figure displays the performance of various heuristic methods against com-
putation time for line graphs with 6 nodes. The performance is the 90th percentile over
1000 random scenarios, reported as percentage over optimum. Each line corresponds to a
heuristic method, with d = 1, 2, 3, 4 from left to right.
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computer. We were able to compute the optimal solution on a line graph for up to 9 nodes,
because the state space grows slower on a less connected graph. Table 2 shows excellent re-
sults for the hybrid heuristic at a fraction of the computation time required for the optimal
solution, especially when the graph size grows. Also seen in Table 2 is the quality of the
lower bound based on linear programming as discussed in Section A.2. The lower bound
does appear to degrade gradually as the graph size grows, faster for less connected graphs
and slower for well connected graphs.

Table 2: Performance of the hybrid heuristic, reported as percentage excess over the optimal
value; the last column reports the mean of (LB−Opt)/Opt in percentage, where the lower
bound is computed using the linear program in Section A.2.

Avg Time Avg Time
Avg Heuristic Optimal Lower

Graph # Nodes Mean 50th 75th 90th Depth (sec) (sec) Bound
complete 4 0.17 0.00 0.00 0.23 2.0 0.07 0.28 -0.50
complete 5 0.23 0.00 0.00 0.77 2.0 0.13 4.02 -0.52
complete 6 0.42 0.00 0.52 1.43 2.0 0.19 165.81 -0.66
line 4 0.18 0.00 0.00 0.36 2.0 0.07 0.09 -0.46
line 5 0.08 0.00 0.00 0.10 3.0 0.20 0.36 -0.74
line 6 0.12 0.00 0.00 0.36 3.0 0.27 0.64 -1.10
line 7 0.22 0.00 0.06 0.85 3.0 0.55 0.84 -1.56
line 8 0.18 0.00 0.05 0.72 4.0 1.54 4.86 -2.27
line 9 0.27 0.00 0.27 0.89 4.0 2.72 56.67 -2.64
circle 4 0.15 0.00 0.00 0.24 2.0 0.08 0.13 -0.29
circle 5 0.24 0.00 0.00 0.72 2.0 0.12 0.52 -0.48
circle 6 0.49 0.00 0.29 1.70 2.0 0.16 0.77 -0.84
circle 7 0.27 0.00 0.21 0.94 3.0 0.53 1.59 -1.19
circle 8 0.53 0.00 0.57 1.75 3.0 0.95 10.73 -1.76
circle 9 0.69 0.03 0.89 2.15 3.0 1.77 135.68 -2.07
random tree 4 0.14 0.00 0.00 0.16 2.0 0.07 0.09 -0.47
random tree 5 0.16 0.00 0.00 0.36 2.3 0.14 0.39 -0.68
random tree 6 0.19 0.00 0.00 0.78 2.7 0.24 0.69 -1.08
random tree 7 0.20 0.00 0.05 0.69 2.9 0.52 1.43 -1.35
random tree 8 0.31 0.00 0.30 1.05 3.0 0.99 13.78 -1.97
random tree 9 0.31 0.00 0.32 1.12 3.1 1.82 217.87 -2.12
hexagon grid 4 0.15 0.00 0.00 0.24 2.0 0.09 0.20 -0.22
hexagon grid 5 0.24 0.00 0.00 0.78 2.0 0.17 1.30 -0.37
hexagon grid 6 0.38 0.00 0.36 1.39 2.0 0.20 3.85 -0.68
hexagon grid 7 0.50 0.00 0.71 1.67 2.0 0.43 259.63 -0.82
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Table 3 compares the hybrid heuristic with the lower bound, for larger graphs. We include
the case n = 6 so that one can compare the trends in Table 2 and Table 3. As the graph size
grows, it takes more computational effort to achieve the same level of performance, and the
lower bound degrades gradually, as seen in Table 2. For these two reasons, the gap between
the hybrid heuristic and the lower bound widens as the graph size grows, as seen in Table 3.
However, from the two columns “Mean” and “Lower Bound” in Table 2, one can see that the
hybrid heuristic is closer to the optimal solution, than the optimal solution is to the lower
bound. In addition, the gap between the lower bound and the optimal solution appears to
widen faster than that between the hybrid heuristic and the optimal solution. Consequently,
it is reasonable to conjecture that more than half of the gap between the hybrid heuristic
and the lower bound is due to the gap between the optimal solution and the lower bound.

Table 3: Performance of the hybrid heuristic, reported as percentage excess over the lower
bound, which is computed using the linear program in Section A.2.

Avg Avg Time
Graph # Nodes Mean 50th 75th 90th Depth (sec)
complete 6 1.12 0.57 1.30 2.45 2.0 0.19
complete 8 1.67 0.93 1.63 3.49 2.0 0.76
complete 10 1.87 1.10 1.94 3.66 2.0 2.74
line 6 1.32 0.07 1.24 3.62 3.0 0.27
line 8 2.66 1.10 3.16 7.22 4.0 1.54
line 10 3.82 2.22 4.80 9.27 4.0 5.49
circle 6 1.42 0.12 1.32 3.94 2.0 0.16
circle 8 2.44 0.98 2.97 6.26 3.0 0.95
circle 10 3.42 2.16 4.23 8.17 3.0 3.72
random tree 6 1.39 0.11 1.14 3.67 2.7 0.24
random tree 8 2.47 1.02 2.63 6.13 3.0 0.99
random tree 10 3.27 1.84 3.97 8.01 3.1 3.96
hexagon grid 6 1.12 0.16 1.20 2.91 2.0 0.20
hexagon grid 8 2.09 1.06 2.37 4.74 2.0 0.75
hexagon grid 10 2.94 1.96 3.71 6.64 2.0 3.38

6 Patrol Against Strategic Attackers

Instead of choosing the attack location according to a probability distribution, as in the model
in Section 2, a strategic attacker plays a two-person zero-sum game with the patroller. A
strategic attacker chooses the attack location in order to maximize the expected cost incurred
due to the attack, while the patroller decides how to patrol the graph to minimize it.

One way to formulate this problem is to use the model framework in Section 2, by
extending the class of patrol policies to include randomized policies. Let ΠR represent the
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set of randomized policies—all policies that map from the state space Ω to the action space
A according to a probability distribution. For an initial state s0 and a given patrol policy
π ∈ ΠR, the ratio Vi(π, s0)/λi represents the long-run average cost incurred due to an attack
at node i. Hence, the patroller’s objective function becomes

min
π∈ΠR

max
i=1,...,n

Vi(π, s0)

λi
. (25)

Because Vi(π, s0) scales proportionally with λi, the ratio Vi(π, s0)/λi does not depend on
λi. Although Vi(π, s0)/λi depends on the initial state s0, the optimal solution in (25) does
not because we only consider connected graphs. While it is possible to compute the optimal
policy via a linear program, as explained in Appendix B.1, that method quickly becomes
computationally intractable as the problem size grows.

One way to use the results from the random-attacker case to construct effective patrol
policies in the strategic-attacker case is to formulate a two-person zero-sum matrix game
between the strategic attacker and the patroller. A pure strategy for the strategic attacker
is one of the n nodes to attack, while a pure strategy for the patroller is a patrol pattern
to be repeated indefinitely. If we can come up with a set of diverse effective patrol patterns
for the patroller to choose from, then the value of this matrix game would come close to the
optimal value in (25).

To produce effective patrol patterns for this matrix game, we adapt and strengthen the
approach in [15]. We generate pure strategies for the patroller—each corresponding to a
patrol pattern—using the heuristics against random attackers described in Sections 3 and 4.
The set of columns in the matrix game consists of four groups: (1) n patrol patterns, each
covering just a single node, (2) 1 patrol pattern designed to provide good coverage to all
nodes, (3) n patrol patterns, each designed to cover one node well, and (4) patrol patterns
generated by an iterative algorithm.

To generate the patrol patterns in the second and third groups, note that the LR2 index
of node i becomes αicipiΛE[Xi], if it has been at least Bi time units since the last patrol to
node i. By letting bi = 1/αiciE[Xi] and setting

pi =
bi∑n
k=1 bk

, (26)

each node’s index converges to the same value after a long time without patrols. We produce
the pattern in the second group by using LR2 for the probabilities defined by (26). For the
third group, we modify (26) to create a new probability vector:

pi =
2bi

bi +
∑n

k=1 bk
,

pj =
bj

bi +
∑n

k=1 bk
, j 6= i.

The LR2 heuristic for this probability will likely produce a patrol pattern that covers node i
well. By repeating the procedure for i = 1, . . . , n, we obtain n patrol patterns that compose
the third group.
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For the fourth group, we use an approach that is more efficient than the fictitious play
method in [15]. The downside of using fictitious play is that in each iteration, the attacker’s
mixed strategy changes slightly, so that many patrol patterns generated replicate those in
earlier iterations. In this paper, we use the following algorithm to generate patrol patterns,
which speeds up the process considerably in our numerical experiments.

1. Pick an arbitrary set of patrol patterns S = {ξ1, . . . , ξ|S|}. We will add patrol patterns
to S to form the fourth group. Initialize k ← 0.

2. If k = r × n, stop, where r is a predetermined positive integer.

3. Construct a two-person zero-sum matrix game with n rows and |S| columns, where row
i corresponds to the attacker choosing node i to attack, and column j corresponds to
patrol pattern ξj. Populate the values in the matrix with the value at (i, j) being the
corresponding expected cost incurred, if the attacker attacks node i and the patroller
uses patrol pattern ξj. Solve the matrix game via linear programming, and write
(p1, . . . , pn) for the attacker’s optimal mixed strategy.

4. Use LR2 to compute ξ, the patrol pattern against the attacker’s mixed strategy
(p1, . . . , pn). If ξ ∈ S, stop; otherwise, update S ← S ∪ ξ and k ← k + 1, and go
to Step 2.

When the algorithm stops, we use the patrol patterns in S to form the fourth group. In
our numerical experiment, we set r = 5 to ensure the algorithm will stop, although in most
cases the algorithm stops sooner in Step 4, since no new patrol pattern will be generated. In
Step 1, we initialize S to consist of just one patrol pattern, the patrol pattern generated by
LR2 by setting pi = 1/n for all i. It is theoretically possible to further strengthen the fourth
group by running the algorithm multiple times with different initial patrol pattern sets, but
in practice the improvement is often rather marginal.

When generating patrol patterns in the second, third, and fourth groups, we use LR2 in
Section 3.3 with depth set to

d = 1 + d(average distance between all pairs of nodes− 1)/2e.

Finally, we obtain the patroller’s heuristic policy by solving the matrix game, where
the patroller can use any patrol pattern in all four groups. Table 4 displays the numerical
results. The optimal solution and the lower bound used in Table 4 are simple modifications
of the corresponding approaches used in the random-attacker case, so we defer the details to
Appendix B. As seen in Table 4, our heuristic policy achieves, on average, within 1% of the
optimal policy. As the problem size grows, the computation time becomes significantly less
than what is required to compute the optimal policy.

7 Conclusions

This paper studies a graph patrol problem, where a patroller traverses a graph through edges
to detect potential attacks at nodes. The significance of our work is to allow the possibility
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Table 4: Performance of the heuristic in the strategic-attacker case, reported as percentage
excess over the optimal value; the last column reports the mean of (LB − Opt)/Opt in
percentage, where the lower bound is computed using the linear program in Section B.2.

Avg Time Avg Time
Avg Heuristic Optimal Lower

Graph # Nodes Mean 50th 75th 90th Depth (sec) (sec) Bound
complete 4 0.11 0.00 0.01 0.26 1.0 0.30 0.15 -0.05
complete 5 0.10 0.00 0.03 0.29 1.0 0.73 2.34 -0.03
complete 6 0.11 0.00 0.02 0.33 1.0 1.77 396.04 -0.02
line 4 0.29 0.05 0.35 0.85 2.0 0.43 0.06 -0.50
line 5 0.37 0.14 0.48 1.01 2.0 0.83 0.21 -0.83
line 6 0.60 0.25 0.78 1.57 2.0 1.66 0.79 -1.24
line 7 0.75 0.36 0.99 1.95 2.0 3.35 3.26 -1.57
line 8 0.99 0.53 1.23 2.53 2.0 6.86 15.16 -1.93
line 9 0.76 0.46 0.96 1.83 3.0 22.49 102.95 -2.15
circle 4 0.27 0.05 0.32 0.79 2.0 0.47 0.08 -0.21
circle 5 0.52 0.23 0.66 1.32 2.0 0.87 0.31 -0.50
circle 6 0.57 0.31 0.75 1.44 2.0 1.68 1.20 -0.86
circle 7 0.77 0.44 1.04 1.92 2.0 3.27 5.29 -1.11
circle 8 0.95 0.58 1.25 2.31 2.0 6.54 26.38 -1.36
circle 9 1.08 0.71 1.36 2.35 2.0 13.42 224.40 -1.55
random tree 4 0.25 0.04 0.29 0.71 2.0 0.40 0.06 -0.47
random tree 5 0.37 0.12 0.48 1.02 2.0 0.84 0.25 -0.82
random tree 6 0.52 0.22 0.69 1.30 2.0 1.69 0.94 -1.17
random tree 7 0.64 0.32 0.84 1.64 2.0 3.42 4.76 -1.39
random tree 8 0.86 0.50 1.11 1.98 2.0 7.01 30.26 -1.69
random tree 9 1.00 0.58 1.27 2.26 2.0 14.53 540.47 -1.93
hexagon grid 4 0.20 0.00 0.16 0.62 2.0 0.54 0.12 -0.12
hexagon grid 5 0.32 0.08 0.43 0.93 2.0 1.13 0.70 -0.29
hexagon grid 6 0.50 0.21 0.62 1.37 2.0 2.25 9.75 -0.46
hexagon grid 7 0.56 0.26 0.75 1.42 2.0 4.76 592.89 -0.48

of overlooking an ongoing attack. The model framework is quite general, allowing for any
connected graph topology, attack time distributions, costs, and detection probabilities that
vary by node. We primarily focus on the random-attacker case, where the attacker chooses
the node to attack according to a known probability distribution. Because computing the
optimal solution is only practical for small graphs, our main contribution is to develop index
heuristics—based on Lagrangian relaxation, and also on approximate dynamic programming.
The novelty of the first method is to use both the expected number of ongoing attacks and
their departure rates in the near future as a conduit to develop an index, while the novelty
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of the second method is to approximate the value of an inspection using future patrol rates
implied by a lower bound for the optimal solution. The heuristics typically achieve within
1% of optimality on a variety of graph topologies. When facing a strategic attacker—who
plays a two-person zero-sum game with the patroller—a randomized patrol policy that uses
the patrol patterns generated from these index heuristics also performs excellently in our
numerical experiments.

In our numerical experiments, we report results for graphs with up to 10 nodes. Such
a graph size has applications to practical patrol scenarios; for example, Shieh et al. [22]
divided the port of Boston into 9 nodes. For graphs with up to 20 nodes, the optimal
policy quickly becomes computationally prohibitive (see Table 4), while our method can still
produce effective patrol policies in a timely fashion. For graphs with more than 20 nodes,
having just one patroller may not be able to achieve a meaningful level of performance.
Although it may be possible to extend some of our results to the case of multiple patrollers
in very special cases—similar to what was done in Lin et al. [15]—generally speaking, the
coordination among several patrollers presents a significant challenge and is outside the scope
of this paper.

There are a few future research directions that will make the model more applicable to
real-world scenarios. For instance, if the locations subject to attacks are dispersed in an
area, one may want to incorporate explicit transit times between nodes. In addition, the
inspection time of each node can be different depending on its size. Our work assumes that
the outcome is binary; there is no cost as long as the attack is detected. In some scenarios,
such as cyber attacks, the cost may depend on how long it takes for the patroller to detect
the attack. Another interesting future research direction is to allow the strategic attacker to
survey the area before deciding where and when to attack.

Appendix

A Two Lower Bounds

A.1 Lower Bound Based on Lagrangian Relaxation

This section presents a lower bound for COPT based on Lagrangian relaxation. Recall from
Section 3 that

CTR ≡ min
µ∈Γ1

n∑
i=1

Ci(µi) = max
w

C(w)

is a lower bound for the optimal value. Because Ci(µi) is nonincreasing and convex in
µi, to compute CTR it is equivalent to solve a classic resource allocation problem; see, for
example, [11]. This method does not take into account graph structure, and allows the
time between two consecutive patrol inspections to be any real number, as opposed to just
integers. Because of these reasons, this lower bound is not expected to be particularly tight.
Nevertheless, the patrol rates implied by this lower bound can be used as future patrol rates
for the approximate dynamic programming method discussed in Section 4.
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A.2 Lower Bound Based on Linear Programming

This section presents a linear program that computes a lower bound for COPT. The linear
program is a slight modification to that used to compute a lower bound in Section 3.3.4 in
[15] when the detection probability is 1 for all nodes. Here we summarize the method and
highlight the difference.

To begin, consider an arbitrary mixed patrol strategy, and denote by yik the expected rate
at which the patroller inspects node i exactly k time units after his previous inspection at
node i. We use the term expected rate because the patrol strategy may involve randomizing
a few patrol patterns. Ideally we would like to find an expression for the expected number
of ongoing attacks at node i, if the patroller inspects node i exactly k time units after his
previous inspection at node i. Without knowing whether the patroller inspected node i
between Bi time units ago and k time units ago, however, it is not possible to do so, as some
attackers may have evaded detection during the patroller’s last inspection k time units ago.
Nevertheless, we can determine an upper bound on the expected number of ongoing attacks
by assuming that the patroller did not inspect node i between Bi time units ago and k time
units ago, which is

λi

∫ k

0

F̄i(t)dt+ λi

∫ Bi

k

(1− αi)F̄i(t)dt.

Hence, each time the patroller inspects node i with the previous inspection being k time
periods ago, the expected cost that can be avoided is at most

Ri(k) ≡ riciλi

(∫ k

0

F̄i(t)dt+

∫ Bi

k

(1− αi)F̄i(t)dt
)
,

for k = 1, 2, . . ..
Because Ri(k) = ciλiE[Xi] for k ≥ Bi, by redefining yi,Bi

to be the expected rate at
which the patroller inspects node i with the previous inspection at least Bi time units ago,
we can write

Bi∑
k=1

yikRi(k)

as an upper bound for the long-run rate at which the patroller avoids cost at node i. Con-
sequently, the total long-run cost rate is at least

n∑
i=1

(
ciλi −

(
Bi∑
k=1

yikRi(k)

))
. (27)

To create a linear program to compute the lower bound, let xij denote the expected rate

33



at which the patroller moves from node i to node j. The linear program goes as follows:

min
n∑
i=1

(
ciλi −

(
Bi∑
k=1

yikRi(k)

))

subject to
n∑
j=1

xji =
n∑
j=1

xij; i = 1, 2, . . . , n, (28)

xij = 0, if aij = 0; (29)
n∑
i=1

n∑
j=1

xij = 1; (30)

yi,1 = xii, i = 1, 2, . . . , n; (31)

Bi∑
k=1

yik =
n∑
j=1

xji, i = 1, 2, . . . , n; (32)

Bi∑
k=1

kyik ≤ 1, i = 1, 2, . . . , n; (33)

xij, yik ≥ 0. (34)

Constraint (28) ensures flow balance at each node; constraint (29) observes the edge con-
straint; constraint (30) ensures the total rate to be 1. Constraint (31) follows because either
side represents the rate at which the patroller inspects node i in two consecutive time pe-
riods. Constraint (32) follows because either side represents the long-run rate at which the
patroller enters node i. Constraint (33) is key in tightening the lower bound. The quantity
kyik represents the expected long-run fraction of time the patroller spends between two in-
spections to node i with the two inspections being k time units apart, for k = 1, . . . , Bi − 1.
It is an inequality for two reasons: (1) we define yi,Bi

as the expected rate at which the
patroller enters node i with the previous inspection at least Bi time units ago, and (2) the
mixed strategy may include a patrol pattern that never inspects node i.

B The Strategic-Attacker Case

B.1 Optimal Policy for Strategic-Attacker Case

It is possible to compute the optimal value in (25). To do so, it is helpful to first write the
dual of the linear program defined by (6)–(7) in Section 2.2.
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min
x

∑
s∈Ω

∑
i∈A(s)

C(s, i)x(s, i) (35)

subject to
∑
i∈A(s)

x(s, i)−
∑
t∈Ω

∑
i∈A(t)

I(φ(t, i) = s)x(t, i) = 0, ∀s ∈ Ω, (36)

x(s, i) ≥ 0, ∀s ∈ Ω, and i ∈ A(s). (37)

Recall from Section 2.2 that φ(t, i) represents the resulting state if the patroller moves to
node i in state t. The indicator function I(φ(t, i) = s) returns 1, if taking an action i in state
t moves the system to state s, and returns 0 otherwise. The decision variable x(s, i) can be
interpreted as the fraction of time the system is in state s with the patroller next moving to
node i. Constraint (36) states that the long-run transition rates entering and leaving each
state must be the same.

The objective function in (35) calculates the total long-run cost rate over all nodes. For a
strategic attacker, however, we want to minimize the largest expected cost per attack among
all nodes. The quantity C(s, i) aggregates the cost over all nodes after the patroller moves
to node i and thus does not allow us to isolate the cost at each node. However, Ci(s, j),
defined in (3) and (4), does specify the cost at the individual node i. The long-run cost rate
at node i is therefore ∑

s∈Ω

∑
j∈A(s)

Ci(s, j)x(s, j),

Dividing the preceding by λi, we can redefine the zero-sum game in (25) as

min
x

max
i=1,...,n

∑
s∈Ω

∑
j∈A(s)

Ci(s, j)

λi
x(s, j).

Therefore, we can modify the linear program in (35)–(37) to minimize the largest long-run
average cost per attack among all nodes:

min
x

δ

subject to
∑
s∈Ω

∑
j∈A(s)

Ci(s, j)

λi
x(s, j) ≤ δ, i = 1, . . . , n,

and equations (36) to (37).

The minimized δ produced by this linear program yields what we want in equation (25). As
is the case in Section 2.2, this linear program quickly becomes computationally intractable
when the problem size increases.

B.2 Lower Bound for Strategic-Attacker Case

The linear program in Section A.2 can be modified slightly to compute a lower bound for
the optimal value for the strategic-attack case. By dividing the cost rate at node i in (27)
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by λi, we see that the expected cost due to an attack at node i is at least

ci −
1

λi

Bi∑
k=1

yikRi(k).

Therefore, the optimal solution to the linear program below is a lower bound for the optimal
solution to the strategic-attacker case.

min z

subject to z ≥ ci −
1

λi

Bi∑
k=1

yikRi(k)

constraints (28)–(34)
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