Taylor & Francis
Taylor & Francis Group

Journal of the Operational Research Society

ISSN: 0160-5682 (Print) 1476-9360 (Online) Journal homepage: https://www.tandfonline.com/loi/tjor20

A particle filter approach to estimating target
location using Brownian bridges

Jesse A. Nunez, Dashi I. Singham & Michael P. Atkinson

To cite this article: Jesse A. Nunez, Dashi |. Singham & Michael P. Atkinson (2020) A particle filter
approach to estimating target location using Brownian bridges, Journal of the Operational Research
Society, 71:4, 589-605, DOI: 10.1080/01605682.2019.1570806

To link to this article: https://doi.org/10.1080/01605682.2019.1570806

@ Published online: 26 Apr 2019.

N
CJ/ Submit your article to this journal

||I| Article views: 113

A
& View related articles &'

@ View Crossmark data (&

CrossMark

@ Citing articles: 2 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tjor20


https://www.tandfonline.com/action/journalInformation?journalCode=tjor20
https://www.tandfonline.com/loi/tjor20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01605682.2019.1570806
https://doi.org/10.1080/01605682.2019.1570806
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjor20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01605682.2019.1570806
https://www.tandfonline.com/doi/mlt/10.1080/01605682.2019.1570806
http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2019.1570806&domain=pdf&date_stamp=2019-04-26
http://crossmark.crossref.org/dialog/?doi=10.1080/01605682.2019.1570806&domain=pdf&date_stamp=2019-04-26
https://www.tandfonline.com/doi/citedby/10.1080/01605682.2019.1570806#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01605682.2019.1570806#tabModule

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
2020, VOL. 71, NO. 4, 589-605
https://doi.org/10.1080/01605682.2019.1570806

THE
SEEEQE(?”AL Taylor & Francis
SOCIETY Taylor & Francis Group

ORIGINAL ARTICLE

‘ W) Check for updates

A particle filter approach to estimating target location using

Brownian bridges
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ABSTRACT

We study the problem of modelling the trajectory of a moving object of interest, or target,
given limited locational and temporal information. Because of uncertainty in information,
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the location of the target can be represented using a spatial distribution, or heatmap. This

paper proposes a comprehensive method for constructing and updating probability heat-
maps for the location of a moving object based on uncertain information. This method uses
Brownian bridges to model and construct temporal probability heatmaps of target move-
ment, and employs a particle filter to update the heatmap as new intelligence arrives. This
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approach allows for more complexity than simple deterministic motion models, and is com-
putationally easier to implement than detailed models for local target movement.

1. Introduction

Searching for a target of interest moving through an
area of operations is a fundamental problem that
falls within the field of search theory. The field of
search theory is a prime example of decision-making
under uncertainty. For an overview of search and
detection, see Washburn (2002). A challenging type
of search relevant to our work involves a mobile tar-
get (see Brown, 1980; Pietz & Royset, 2015; Stone,
Royset, & Washburn, 2016). Search models with
mobile targets must specify the behaviour of the tar-
gets and their movements and actions (Ben-Zvi &
Nickerson, 2012; Eagle & Yee, 1990; Stone &
Kadane, 1981; Thomas & Hulme, 1997; Vermeulen
& van den Brink, 2005). Given the specified move-
ment dynamics of a target, the searcher must decide
how to best find the target in response, by deciding
when and where to allocate sensors to detect the
target (Ben-Zvi, 2017).

This paper does not formulate prescriptive mod-
els to allocate search resources, but rather provides
a complementary analysis to traditional search
methods by providing the key input to many search
models: the distribution for a target’s location over
time. We focus on building a comprehensive model
for the uncertainty in a target’s continuous move-
ment through an area of interest of arbitrary size,
given initial information about its location and
updates from observing portions of the area. Having
a realistic stochastic model for the target’s behaviour
based on whatever information is available is critical
to a successful search effort. Intelligence about a

target’s location and movement patterns comes
from many different sources, such as sonar, radar,
communication and human intelligence. The intelli-
gence is imperfect (e.g., can have false positive and
false negative errors), which provides a challenge in
effectively fusing together the information from dif-
ferent sources. In this paper, we model how the dis-
tribution of the target’s location changes over time
based on uncertain intelligence. We develop a new
method to produce spatio-temporal heatmaps that
display the uncertainty in a target’s location. The
heatmap updates when new intelligence arrives from
sensors designed to look for the target.

There are two parts to our approach. The first
part exploits the path-driven motion of targets to
construct an analytical model for the spatial distri-
bution based on prior work modelling the paths of
migrating animals as Brownian bridges. A Brownian
bridge is Brownian motion with fixed values at two
endpoints. We model target movement between
waypoints as Brownian bridges, construct heatmaps
based on the Gaussian distribution, and derive val-
ues of interest using boundary-crossing results of
Brownian bridges. The second part extends the ana-
lytical model to a simulation approach, which allows
us to relax assumptions and add complexity to tar-
get behaviour. We apply a particle filter method to
the Brownian bridge model that updates the heat-
map as new intelligence arrives. The objective is to
produce heatmaps for the target’s location over time
that could later be used to determine where to
search for the target, though we do not consider the
search optimisation problem here.
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We now present past methods for modelling a
target’s distribution. Moskowitz and Simmen (1989)
develop an analytical model to estimate a target’s
distribution using an initial probability distribution
and a constant but sampled velocity. The authors
calculate containment regions using level sets to
determine areas that are likely to contain the target
with a given probability. Miller and Moskowitz
(1996) extend this work to obtain closed-form solu-
tions in certain cases. Sklar and Ladany (1993) use
angles of observation to estimate target location,
and incorporate error in the observer’s location and
measurement instrument. More generally, the idea
of modelling location data as spatial distributions
has been developed in Angermann, Kammann,
Robertson, Steingaf’, and Strang (2001) and Turchin
(1991). This paper models spatial distributions using
heatmaps aggregated from individual path trajecto-
ries. Jian, Matsuka, and Nickerson (2006) use paths
generated by experimental subjects drawing trajecto-
ries while attempting to avoid detection and
obstacles. These trajectories are aggregated into
heatmaps to estimate the frequency of a trajectory
being in a certain area.

Search models also make assumptions about how
targets move through the area. The simplest variants
assume stationary targets who hide within one of N
distinct locations, as in Kadane (1971) and Chew
(1973). When the target is mobile, the models often
assume the target travels in a straight line
(Baumgartner, Ferrari, & Wettergren, 2009; Le
Cadre & Souris, 2000; Mooshegian, 2013), possibly
with uncertainty in the starting and ending points
(Pietz & Royset, 2013; Stone & Kadane, 1981) or
moving boxes that represent spatial uncertainty
(Pietz & Royset, 2015). Lersteau, Rossi, and Sevaux
(2016) assume a known target path, with uncer-
tainty in the timing of the path traversal; we include
both temporal and path uncertainty. Network mod-
els define target dynamics across a discrete set of
nodes (Brown, Carlyle, Abdul-Ghaffar, & Kline,
2011; Przybyla, Taylor, & Zhou, 2010). Similarly, the
target may move on a lattice according to a Markov
transition function (Eagle & Yee; 1990, Gentil,
Rémillard, & Del Moral, 2005; Royset & Sato, 2010)
or Bayesian methods (Simonin, Le Cadre, &
Dambreville, 2009). Ben-Zvi and Nickerson (2012)
deliver an optimal strategy for deciding whether to
interdict a target that could be hostile using a par-
tially observable Markov decision process model
over a series of discrete locations.

1.1. Proposed model

We present a method for modelling the distribu-
tional uncertainty in target movement over time

using heatmaps and a systematic way of updating
those heatmaps as new intelligence arrives. Our
model is motivated by the Brownian bridge move-
ment model (BBMM), originally introduced by
Bullard (1999) to represent animal movement pat-
terns. Our two main contributions are 1) extending
this method to develop spatio-temporal heatmaps,
and 2) using particle filtering to update these heat-
maps over time. The BBMM assumes Brownian
bridge motion between a start and end point, and
estimates the distribution of an animal’s location
based on properties of the Gaussian distribution.
The BBMM has been used to estimate home ranges
and migration routes (Horne, Garton, Krone, &
Lewis, 2007), and has been suggested as a useful
method for analysing low resolution trajectory data
because it “assumes random movement between
sample points” (Buchin, Sijben, Arseneau, &
Willems, 2012). The idea is that knowledge of an
animal’s location cannot be known exactly at all
times, but may be known at specified times. The
Brownian bridge model allows for this known infor-
mation to be incorporated as endpoints, with uncer-
tainty represented in the trajectory between the
endpoints. While Brownian motion may not be a
perfect representation of the trajectory of the animal
(or in our case, the target), the Brownian bridge
models the relative uncertainty in location.
Brownian bridges have higher uncertainty in the
middle, with reduced uncertainty towards the end-
points which are fixed.

Thus, we propose using the Brownian bridge as a
model for the uncertainty in target movement
between two points where the location is known. A
key difference between our model and the prior
BBMM is that the ecology literature focuses on spa-
tial distributions aggregated over longer time ranges,
whereas we analyse the evolution of spatio-temporal
distributions as the target moves through the area.
Thus, while the underlying assumption on target
movement is the same as in the original BBMM,
our probability heatmap construction is entirely dif-
ferent because we model the target’s distribution
heatmap over time, instead of trying to normalise
over all time to determine long-term areas of high
activity. This modified model is referred to as the
Temporal Brownian Bridge Model (TBBM). Our
model development also offers new analytical met-
rics based on the mathematics of Brownian bridges,
and develops a method of updating the heatmap
estimate based on sensor information captured
mid-trajectory.

The Brownian bridge model lies between two
approaches for modelling target movement and gen-
erating heatmaps: the straight line methods and dis-
cretised grid/network methods mentioned in the



earlier literature review. Straight line movement
assumptions that completely specify target travel are
often unrealistic and do not account for complexity
or uncertainty in target movement. The Brownian
bridge model better captures uncertainty when loca-
tion information is unavailable while allowing intel-
ligence to be incorporated. Models that require
knowledge of how a target moves over a discretised
grid or network require information for calibration
for each node, and detailed information may not
be available.

Brownian bridges define movement only between
points of known intelligence with minimal assump-
tions, and do not require detailed modelling of local
target behaviour, which can propagate modelling
errors and be computationally costly. Additionally,
the Brownian bridge model allows for some analytical
tractability if desired, and it is easy to simulate quickly
relative to models that require parametrisation and
updating over a discretised search space. The appeal
of our approach is that it can incorporate intelligence
information only when it is available, and does not
require calibration for times when it is not available.
The TBBM requires at a minimum some uncertain
estimate of the starting and ending location of the tar-
get, but does not require knowledge of the trajectory.
While this information is minimal, there may be cases
where the target’s desired endpoint is not known. For
example, a straight-line model (e.g, Miller &
Moskowitz, 1996; Moskowitz & Simmen, 1989) may
accurately represent a target fleeing after it executes
an attack, and a grid-based model (e.g., Eagle & Yee,
1990) may be more appropriate for a target loitering
in an area.

Aside from developing a new method for gener-
ating spatio-temporal heatmaps for target move-
ment, we develop a particle filter method for
updating the heatmap with new intelligence as it
arrives. The TBBM model proposed in Cheng
(2016) and Nunez (2017) is uniquely designed to
add model flexibility and incorporate intelligence
updates, unlike the original BBMM model. We
simulate Brownian bridge paths for target move-
ment and treat those simulated paths as particles in
a particle filter algorithm. The weights on each par-
ticle update after the arrival of new intelligence. The
particles are aggregated according to their weights
to form heatmaps. Numerous applications imple-
ment particle filter techniques for tracking targets,
such as car and aircraft positioning and collision
avoidance (Gustafsson, 2010; Gustafsson
et al., 2002).

This paper is organised as follows. Section 2
describes the analytical model that is used to com-
pute the probability the target lies in certain regions.
Section 3 describes the simulation model and
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particle filter implementation to update the heat-
map. Section 4 presents experimental results for dif-
ferent implementations of the particle filter. Finally,
Section 5 concludes the paper.

2. A Brownian bridge model for
target movement

First, we discuss some theoretical results that can be
derived by considering temporal heatmaps con-
structed using Brownian bridge movement between
two points. A Brownian bridge is a stochastic pro-
cess that is Brownian motion tied to particular spa-
tial values at two time points (see 5.6B in Karatzas
and Shreve (1998)). We consider two-dimensional
Brownian bridges that consist of two-dimensional
Brownian motion constrained to pass through two
particular points in the xy-plane.

The target starts its journey at departure point
(x4 ya) at time t; and will reach its arrival point
(x4 ya) at time t,. In many applications the starting
and ending locations and times will not be known
with certainty and we consider this case in Sections
2.1 and 3, but for now, the randomness in the
model is the path taken by the target between the
known start and end points. While we assume that
in between these times the target moves according
to a Brownian bridge, the value of the model comes
from the heatmap, which is the result of aggregating
over all possible Brownian bridges to represent
uncertainty. Departure and arrival information rep-
resents the most basic form of intelligence that
might be available, and the Brownian bridge model
represents uncertainty in the target’s behaviour dur-
ing the times when its location is unknown between
the start and endpoints. Modelling the target’s
movement as a Brownian bridge allows for continu-
ous paths without assuming a particular path (e.g., a
straight line path). While a Brownian bridge may
not perfectly represent the target’s true dynamics, it
approximates the uncertainty in the target’s location
and produces heatmaps to inform search decisions.

If the target departs from location (x, y;) at time
ty and arrives at location (x,, y,) at time ¢, its loca-

tion at time ¢ € [ty t,] (x(¢),y(t)) evolves according
to the following dynamics:
1% —
<xéz)) - t—t +K<W1EZ id;>
4 Ya+ (}’a_)’d)t 72 ? 4

gt (Wl(ta_td)>’
ta —ta WZ(ta_td)
(1)

where W;(-) and W,(:) are independent standard
Brownian motions over t € [0,f,—t;] and K is a

t—t,
ta — ta

X4 + (Xa—X4)
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0 100" W

Figure 1. One realisation of a Brownian bridge path.

scalar parameter that allows us to tune the variance.
This formulation assumes random fluctuations in the
x and y direction are independent. Incorporating
dependence requires more notation and bookkeeping
without providing additional insight.

For any time t € [ts,t,] the expected location of
the target is a fraction tta:t;’d of the way along the
centre line that connects (xg4, ¥4) and (x, y,):

t—ty
Xd + (Xa—X4)

Ky, t, — 1
He = (ﬂ ) = t—tdd ‘ (2)
Yt Ya+ (Ya—Yd) P—y

The covariance matrix of the process (x(t),y(t))
is a2I, where

Gf K2 (t_td)(ta_t) _

t, —tg S

There is little variation in the target’s location
near the start (t = t;) or end (t = t,) of the journey,
and the maximum variance occurs at the halfway
point and equals K* @.

Figure 1 illustrates one Brownian bridge path.
While a target’s movement dynamics may not liter-
ally evolve in a Brownian fashion at a micro level,
at the macro level the Brownian bridge may
approximate aggregate effects reasonably well.
Environmental conditions may push a maritime tar-
get far off its intended course. Targets may also stop
and loiter in the same location either to rest, or for
tactical reasons to avoid detection. We can approxi-
mate these loiter situations in Figure 1 when the
path backtracks in a small area. The variance par-
ameter K determines the likelihood of these loiter
situations and how far off-track the target may end
up during its transit. A low value of K results in a
near straight line path, whereas larger values of K
can produce paths much more circuitous than
Figure 1.

Figure 1 is useful for illustration purposes but
not for planning search operations because the true
path will be unknown. Rather, a heatmap that

displays the target’s bivariate spatial density moving
through time will provide more valuable decision
support information. The target’s position at any
time (x(t),y(t)) is a bivariate Gaussian with mean
given by , in (2) and covariance matrix ¢2I from
(3). Normality follows because W;(t—t;) and
Wi(t,—t4) are jointly Gaussian by construction. We
can plot analytic heatmaps using ellipses that con-
tain the target with some specified probability (e.g.,
0.95). Figure 2 illustrates one example for t; = 0
and t, = 100 h. The target departs from the star in
the lower right-hand corner and arrives to the star
in the upper left-hand corner. The top row fixes
K=12nm and plots the circles containing 0.5, 0.75,
and 0.95 of the distribution for =15 and t=50h.
The bottom row presents similar figures for
K=24nm. For these parameters, the standard devi-
ation in either component in the middle of the tran-
sit is 5K.

Figure 2 illustrates the importance of the variance
parameter K. Unlike for complicated simulations
where we have to specify local behaviour, or calibra-
tion of a large discrete state space, our model only
has one parameter K. If the intelligence implies that
the target will move quickly and directly towards its
destination, then K should be small. If intelligence
suggests the target may loiter or stop at various
unknown waypoints along the way, then K should
be large. In practice one can estimate K (or more
generally the covariance structure) using maximum
likelihood estimation if data is available (e.g., paths
of previous targets). See Horne et al. (2007) and
Pozdnyakov, Meyer, Wang, and Yan (2014) for a
discussion of estimation approaches.

2.1. Gaussian uncertainty with departure and
arrival locations

There may be uncertainty with the intelligence
regarding the arrival and departure information. If
the departure or arrival parameters are random, we
can numerically integrate over those parameters via
the law of total probability to compute the likeli-
hood the target is in any region at any time.
Unfortunately, we lose much of our analytic tract-
ability when we introduce this additional source of
randomness. We examine these situations in more
detail in Section 3, where we present our simula-
tion model.

In the special case where the departure location
(x4 y4) and arrival location (x,, y,) follow a multi-
variate Gaussian distribution, we generalise our
results and maintain the bivariate Gaussian nature
of the target’s location (x(t),y(t)) over time. We
allow the departure and arrival locations to be cor-
related, so we must specify the mean and covariance



Heatmap at hour 15, K=12nm
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(a) Time = 15 hours, K = 12 nm
Heatmap at hour 15, K =24nm
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(c) Time = 15 hours, K = 24 nm
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Heatmap at hour 50, K =12nm

0 100" W 190" W 80" W 700 W

0’ 100" W 90" W g w 7w

(d) Time = 50 hours, K = 24 nm

Figure 2. Evolution of heatmap for t; = 0 and t, = 100 h. The circles contain the target with the associated probabilities in

the legend.

of a four dimensional Gaussian random vector as
our input. We denote these parameters as ji and
>

X4 gxd gxd,yd gxd,xa gxd,ya
/:t — j’d 2 — §xd,yd §yal gyd,xa gyd.,ya
Xq ’ gxd,xa gyd,xa gxa gxa,ya
)7,1 gxd,ya 3‘yﬂl,ya gxa,ya 3ya
(4)

The expression for the two-dimensional spatial
position of the target remains the same as in (1).
For the x(t) term, there are now four random terms
on the right-hand size of (1): x4 x,—x4, Wi(t—t4),
and W, (t,—t;). The spatial position of the target at
time ¢, (x(¢),y(t)) is bivariate Gaussian with mean
1, and covariance matrix X, While the mean is
similar to (2), the covariance is more complicated
than the expression in Equation (3):

_ _ .ty
u Xa+ (Xa—X%4)
m={00) = "l o
t 'uyt t_td ’

Fat Ua=Va)p —¢

and
%t)))’ ©

where

2 2
t,—t . t—ty “
O-)zc(t) :<t a_ td) Sxd + <t — td) Sxa
a a

(t=ta)(ta—t) (t=ta)(ta—t)
(ta—ta)’ ts — ta

2 2
t,—t t—tg
2 a A ~
o,(t) =—— | Sya+|——) 5
y( ) <ta — td> yd <ta — td) ya

, (t—ta)(ta—t) 2 (t—ta)(ta—t)

A 2
Sxd xa +K

(7)

+ s + K
(ta—tg)? " ta — ta
(8)
2 2
t,—t . I—ty A
) = —— S E—
O'xy( ) <ta — td) Sxdyd + (ta — td) Sxa,ya
t—tg)(t,—t) . R
M (Sxd,ya + 5yd,xu)~ (9)

(ta—ta)’
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Heatmap at hour 15, K=12nm

7 <
! . - =05

(a) Time = 15 hours

Heatmap at hour 50, K =12nm

0 100" W 90" W w 79 w

(b) Time = 50 hours

Figure 3. Evolution of heatmap at different times for K=12nm. The ellipse in the lower right-hand corner represents the
uncertainty associated with the departure location and the ellipse in the upper left-hand corner represents the uncertainty
associated with the arrival location. The ellipses in the middle capture the evolving uncertainty of the target’s location as the

target moves through the area.

20N | ~

o 100" W 90" W gw o~ dw

(a) Will the target ever enter territorial
waters?

Figure 4. First passage time applications.

We assume the target’s departure and arrival loca-
tions are independent of the intermediate movement
fluctuations. Normality follows because
(X4, Yy X2, ¥a) are jointly Gaussian, W;(t—t;) and
Wi(t,—t4) are jointly Gaussian, and (x4, ¥4, X4, Va) is
independent of (W;(t—t4), W;(t,—tz)). Figure 3
presents a similar figure to the top row of Figure 2
with K=12nm. Comparing Figure 3 to Figure 2,
we see the associated area of uncertainty (now ellip-
ses) is much greater in Figure 3, and the elongation
and orientation of the ellipse shifts over time.

2.2, First passage time results

Modelling target movement as a Brownian bridge
allows us to leverage first passage time results for
Brownian bridges. Figure 4 presents two examples
of the relevance of these problems to our target set-
ting. Figure 4a illustrates a situation where planners
want to know whether a target will ever enter a
region of interest, such as certain territorial waters.
This corresponds to the probability a Brownian
bridge will hit a line. The line in Figure 4b repre-
sents the boundary of an interdiction region.

0 100° W 90" W 8’ W 7dw

(b) When will the target enter the in-
terdiction region?

Planners may only have access to detection and
interdiction assets for a limited time, and they want
to deploy the assets during a time window the target
is likely in the area. This scenario corresponds to
computing the probability distribution for the first
time the Brownian bridge hits a line that separates
the two endpoints.

Before presenting the results, we list several limi-
tations. The results only hold for linear boundaries,
such as those in Figure 4. The boundaries are infin-
ite, not just line segments. Finally, the departure
(x4,y4,ts) and arrival information (x,,y,,t,) is
deterministic. If the inputs are random, we can
numerically integrate the below results over the ran-
dom quantities to compute the probabilities of inter-
est; however, there will be no analytic
simplifications.

We adapt the hitting time results directly from
Atkinson and Singham (2015), and therefore write
the linear boundary as a.x+a,y=>b, where
az + a§ = 1. The first result specifies the probability
the target will hit the boundary, given that both the
departure location and arrival location lie on the
same side of the line (e.g., Figure 4a). The following



result corresponds to Proposition 4.6 in Atkinson
and Singham (2015).

Result 1. Given that the start and end points are on
the same side of the line, we present the probability
that the target ever crosses the line. If (a.x;+
a,ya—b)(a.x, + a,y,—b)>0 then

P [te[ut ] ((axxd + ayya—b) (axx(t) + ayy(t)—b) < O)]

ta;ta

laxxa + ayya—bl|axx, + a,y,—b|
=exp| —2 .
Kz(ta — td)

(10)

The condition in Result 1 is the mathematical
representation for both endpoints lying on the same
side of the line. The expression in the probability is
the mathematical representation for the Brownian
bridge hitting the line for any f € [ts,t,]. For the
example in Figure 4a, the line representing the terri-
torial water’s demarcation has parameters a, =
0.631,a, = 0.776 and b = - 2842nm. The distance
from the departure location to the line is 323 nm,
and the distance from the arrival location is 167 nm.
If t; = 0 and ¢, = 100, then Figure 5 illustrates how
the probability in (10) varies with K.

The second result specifies the probability distri-
bution for the first time the Brownian bridge hits a
line that line separates the departure location and
arrival location (e.g., Figure 4b). The following cor-
responds to Proposition 4.7 in Atkinson and
Singham (2015).

Result 2. Given that the line separates the start and
end points, we present the probability that the
Brownian bridge crosses the line before time t. If
(axxa + ayya—b)(axxs + a,y,—b)<0 then

P[ U (axXd + ayyq — b) (axx(s) + ayy(s)—b) < 0)]

SE[tat]

£2 _b xNa u_b
~ exp 2|a X4 +ayyd2 [|axxa + a,y.—b|
K (ta — td)

<ol laxxa + ayya—b|(ta—t) + (t—tq)|axxs + ayy.—b|
VR ta) (a1 1—12)

laxxq + ayya—b|(t,—t)—(t—tq)|axxs + ayy,—b|
+(1 _(D< i VR (ta—ta) (ta—1) (t—ta) ; ))’

for t; <t <t,. (11)

If we write the probability in (11) as F(f), then
F(t) is the CDF for the hitting time of the boundary.
The parameters of the boundary line in Figure 4b
are a, = —0.596,a, = 0.803 and b=4008 nm. This
boundary line intersects the direct line path from
the departure location to the arrival location at frac-
tion 0.725 between departure and arrival. If t; = 0
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Figure 5. Probability the target hits the line for the scenario
in Figure 4(a): ay = 0.631,a, = 0.776, b = - 2842nm, t; =
0 and t, = 100.
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Figure 6. Percentiles for the hitting time of the boundary
line in Figure 4(b): a, = —0.596, a, = 0.803, b=4008 nm, t4
= 0 and t, = 100.

and t, = 100, then Figure 6 illustrates several per-
centiles of F(t) as K increases. For small K, the dis-
tribution is essentially deterministic with a hitting
time of 72.5. However as K increases the spread in
the hitting time distribution increases significantly.

3. A particle filter algorithm for updating
distributions

This section describes enhancements to the TBBM
to incorporate intelligence updates into the target’s
spatial distribution using a particle filter. We first
develop a simulated version of the model which
allows us to use more general data inputs. We next
develop a particle filter algorithm that exploits
unique aspects of the Brownian bridge structure and
the target tracking problem to update the distribu-
tion of the target location when new intelli-
gence arrives.

3.1. Overview

In this subsection we provide an overview of the
TBBM model within a particle filtering framework.
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Figure 7. Intelligence updating example with rectangular sensors (red are positive and green are negative signals) and uni-

form sampling for start and end locations and times.

We present more formal details on the particle filter
in the following subsections. The Brownian bridge
model presented in Section 2 provides a way of
quickly estimating characteristics of the target’s dis-
tribution using an analytical model. There are two
reasons to develop a simulated version of the model.
The first is that simulation allows for more complex
intelligence inputs. For example, the target’s starting
location may have a non-Gaussian spatial distribu-
tion or the arrival time may be random.

The second reason is to effectively incorporate
intelligence to update the target distribution. We
can include some intelligence in the model in
Section 2 and maintain analytic tractability; however
this limits us to a Kalman filter paradigm, which
severely constrains the types of intelligence we can
include. There is no limit to the types of intelligence
we can incorporate into the simulated model, and
the updating procedure fits naturally in the particle
filter framework.

Each simulated Brownian bridge path represents
one “particle.” Without any additional information,

the particles have equal weight. The addition of new
intelligence re-weights the particles according to
how much each particle aligns with the new intelli-
gence. Each intelligence update is a sensor signal at
a specific time. The sensor returns a positive or
negative signal about whether the target is in the
vicinity of the sensor. The sensors may be imperfect,
so a positive signal does not imply the target is
necessarily inside the sensor’s footprint. The updat-
ing procedure computes new particle weights based
on the signal type and sensor characteristics. Before
describing the components of the particle filter in
more detail, we illustrate with a simple scenario
using a basic updating procedure.

Suppose the sensor has perfect accuracy in deter-
mining whether or not a target is present within a
given area (i.e., a cookie-cutter sensor), but does not
deliver more specific information on the location of
the target. If the sensor returns a positive signal,
then all target paths (particles) within the sensor
area of coverage are projected forward with equal
weight, and all paths outside the coverage area



receive zero weight and are removed from consider-
ation. If the sensor instead returns a negative signal,
then particles within the sensor area are removed,
while those outside the sensor area are projected
forward. For simplicity, here we assume the sensor
obtains an instantaneous glimpse that returns a
positive or negative signal at one specific time. An
example of such a sensor would be a satellite image
or dipping sonar.

Figure 7 shows a set of plots produced by the
model using this basic updating method with two
perfect sensors. A positive detection is set for the
lower right sensor at hour 40 and a negative detec-
tion is set for the upper left sensor at hour 70 to
demonstrate the elimination of paths outside and
inside of the sensors, respectively. This example
models the sensor coverage areas as rectangles,
which can represent images collected by satellites at
a particular point in time. Other sensors could pro-
duce different footprint shapes, such as circles. The
red box corresponds to a sensor that reports a posi-
tive signal, while the green box reports the absence
of a target. The scale of the colour legend to the
right of each plot corresponds to the range of prob-
abilities associated with the heat map. The departure
and arrival locations and times are sampled from
independent uniform distributions. The solid boxes
refer to intelligence that has already been observed,
while dashed boxes refer to events scheduled to hap-
pen at future times.

While Figure 7 shows a simple updating method,
our particle filter handles more complex weight
functions using relative distance to the sensor. The
particle filter also protects against degeneracy where
the number of unique particles decreases with each
stage. Simply removing paths that fail to meet the
intelligence without employing a resampling method
can result in only a handful of paths having positive
weight at the end of an experiment with multiple
sensor observations. This makes it difficult to accur-
ately estimate the target’s spatial distribution. We
reduce the impact of degeneracy by resampling and
using a roughening technique to re-simulate new
Brownian bridges with the same distributional prop-
erties as those of the sampled Brownian bridges. We
summarise the particle filter algorithm below and
provide additional details, including information
about the weight function and roughening method,
in the next several subsections.

1. Simulate N Brownian bridge paths (particles)
according to initial intelligence on departure
and arrival locations and times.

2. Assign each path an initial weight of 3.

3. When intelligence arrives, update the weights of
each path according to a likelihood function.
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4. Resample (with replacement) a set of N paths
according to the updated weights.

5. Roughen the resampled paths to create a new
set of unique Brownian bridge paths.

6. Project the heatmap forward in time using the
roughened resampled paths, with weights all
equal to .

7. At the time of the next intelligence update, go
to Step 3.

3.2. Particle filter notation

For a more details on the specific mechanics of par-
ticle filters please, see Arulampalam, Maskell,
Gordon, and Clapp (2002) and Doucet and
Johansen (2009). The particles in our systems are
Brownian bridge paths, and therefore the state of
the system at time ¢ is the path p, the target is on at
time t. We assume a fixed set of discrete times
points t € {1,..T} at which heatmaps are gener-
ated, where T is the maximum time period. This
allows for a more straightforward computational
implementation of the particle filter updates at par-
ticular times. Formally, a path p is a collection of
two-dimensional coordinates over all time indices:
pe{{(x,y)} ), %,y €R,Vt}. Therefore our
state-space can be represented as a subset of R*”.

While the target’s position changes across time
periods, the target’s path (and hence state) remains
fixed over time. This path-based state representation
differs from many filter approaches that use loca-
tion-based states. We could formulate a position-
based variant, but prefer our approach as it allows
for path inputs generated by more general move-
ment dynamics.

A filtering algorithm allows us to update the pos-
terior distribution for the target’s path given all
intelligence received. We denote m, as the intelli-
gence signal received at time . We next define our
primary quantity of interest f(p;|m.): the updated
posterior distribution for the target’s path given all
signals received until time t. We approximate
f(pe|mis) as a discrete distribution with weights
assigned to particles. At time ¢t we have N particles
(i.e., possible target paths), where pgi) represents the
ith particle. The particle pgi) will change with ¢ due
to resampling and roughening which will be
described in the next section. Our estimate of
f(pe|my;) takes the form (see Equation (49) in
Arulampalam et al., 2002)

N . .
f(pelmie)~ Z WEI)I(Pt = PEI)) ;
=1

where I(-) is the standard indicator function and
w§’> is the weight associated with particle i. The



598 J. A. NUNEZ ET AL.

particle filter re-weights successive particles p@
using wgi).

A filter model has two main components: a
movement model and a measurement model. The
measurement model dictates how we update the
posterior distribution in a Bayesian fashion from
f(pe|mri—1) to f(p|mi) upon receipt of signal m,.
The measurement model is represented by a func-
tion g(my|p;) which represents the likelihood of
observing measurement m, given that the true path
is gt. This is the key driver in updating the weights
wgl . We discuss several likelihood functions relevant
for our application in Section 3.3. The movement
model specifies how the state transitions in the next
time period and is denoted as a conditional density
h(ps|pi—1). In our case the target remains on the
same path so the movement density h(p;|p;—1) is
deterministic at p,_;. If we used a location-based
state, then h(-) would be the conditional Gaussian
density derived from the Brownian bridge.

In practice a particle filter generates the particles
in the next time period via importance sampling
(see Section V.A in Arulampalam et al., 2002). This
importance density q(p;|p;—1,m;) is often chosen to
be the movement density h(p;|p;—1). Because the tar-
get path is fixed, in our case
q(pt|pe—1, m¢) = h(p¢|ps—1). While we do not execute
a movement update via importance sampling, the
roughening procedure described in Section 3.4 that
perturbs the current paths performs a simi-
lar function.

Our particle filter is a variant of the sampling
importance resampling (SIR) filter. See Section V.B
of Arulampalam et al. (2002) or 4.1 of Doucet and
Johansen (2009) for more details. This algorithm
generates the following updated unnormalised
weight after every signal my:

W _ g(thDEi)) h (Pgi) |P§21)
u’ =
a(plp?,.m:)

For our specific of h(pipi—1) and
q(pt|pe—1,m¢), the unnormalised weight simplifies
greatly to ugi) = g(mt|p£i)). Thus the updated nor-
malised weight is proportional to the likelihood (see
Equation (66) of Arulampalam et al., 2002):

; ugi) g(mt|P§i>)
N () N -
S’ S g (o)

We use (12) to update the weight in Step 3 of the
algorithm listed at the end of Section 3.1.

There are a few modifications needed for imple-
mentation in our code. A path need not be active
for all time indices; for example a target might
depart at index 4. In our implementation we track

values

(12)

the status of a path by specifying x; = y, = —999
if t is an index prior to departure and x; = y; =
999 if t is an index after arrival. Additionally, for
notational simplicity above we assume a signal
occurs at every time index, but in practice most
signals will be vacuous reports of the form “no
information” and hence will not actually trigger
an update.

3.3. Measurement models

The measurement model is defined by its likelihood
function, and that likelihood function fully specifies
the updated weight wﬁ’) (see Equation (12)). In this
section, we update the weights {wi’) }Y, from a sen-
sor signal arriving at a specific time t. To avoid
notational clutter, we suppress the dependence on ¢
in this section. We present possible likelihood func-
tions for wupdating the weights on simulated
Brownian bridge particles. These schemes give more
weight to particles that closely align with the sensor
signal, but also account for sensor errors by giving
some weight to paths that do not match the intelli-
gence. For our case we rewrite the likelihood func-
tion g(mt|p£’>) in more specific terms to generate
the updated (unnormalised) weight:

ul) = P[ signal at f| target is particle i].

The weights represent the relative likelihood
that a specific particle triggers the sensor informa-
tion. In the example given in Figure 7, the
updated unnormalised weight assigned would be
ul) =1 if the particle aligns with the intelligence
at time t and u'Y) = 0 otherwise. In practice, the
likelihood is often just a function of the distance
between the particle and the sensor at the meas-
urement time ¢

u?(d) = P| signal at | distance between particle i

and sensor is d].

In this section when we refer to the location of
particle i, we formally mean the particle’s spatial
location (xgi), ygi)) at the measurement time f.
Similarly the distance between a sensor and particle
i is the distance between the sensor and the par-
ticle’s spatial location at the sensor’s measurement
time ¢.

Particles that are closer to the sensor at time ¢
will have a larger weight if the sensor delivers a
positive update and will have a smaller weight if the
sensor delivers a negative update. The cookie-cutter
example in Figure 7 falls under this category if we
measure distance using a modified /., norm rather
than the standard ¢, norm (see Equation (13)). For
cookie-cutter sensors, the weight function sets
u(d) =1 if the particle is within the sensor
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Figure 8. lllustration of roughening procedure.

bounds for a positive signal, and zero otherwise. For
a negative signal, u()(d) = 0 if the particle is within
the sensor bounds and is 1 otherwise.

Assume the intelligence sensor box is centred at
(0, ¥0) and has width W and height H, and the par-
ticle’s location at time ¢ is (x(), y(). We define the
distance from the centre of the box to the particle at
time t using a modified normalised infinity norm
distance:

. 2 2
d¥ = maX<W|x(’) —X0|7E|)’(l) _)’0|>- (13)

If the particle is on the edge of the box, then
d? = 1. If it is inside the box, d/<1 with d¥) =0
at the centre of the box. Particles outside the box
have d)>1. The value of d”) is the same over con-
centric rectangles around the centre. We can define
various weight functions that depend on d), for
example a linear weight function for positive and
negative signals where 0<a<1:

ug)(d(i)) =1-u min(d(i), 1)7 ux)(d(i)) = amin(d(i), 1).
(14)

For any particle i with distance greater than 1
(i.e., outside the box), the weight for a positive sig-
nal is constant at 1—o, which can be viewed as the
false positive probability produced by particles out-
side the sensor area. Inside the box more weight is
given to particles close to the centre. A three-dimen-
sional plot of ug)(d(”) in (14) for d<1 produces a
pyramid with the box as the base and the centre of
the box as the top. For a negative signal, particles
outside the box receive weight «, and those inside
the box receive less weight when closer to the
centre. Another weighting example is an exponential
function with > 0:

0.6 0.8 1.0

ug)(d(i)) = exp (—(dw)ﬂ),

W(d0) = 1- exp (—(d(i))ﬁ>.

We note that when f§ = oo this function gives the
cookie-cutter sensor, setting weights to 1 when par-
ticles match the intelligence, and 0 otherwise.

(15)

3.4. Roughening procedure

One major issue with particle filters is degeneracy
resulting from a smaller subset of particles receiving
a higher proportion of the overall weight over time.
Resampling with replacement ensures that there will
always be N particles, but N unique particles will
not necessarily be sampled at each iteration. As
more updates occur, the number of unique par-
ticles decreases.

If we use the updating procedure described above
Figure 7 with perfect sensors, it is not uncommon
to see a loss of over 95% of the particles with three
sensor updates because only a small proportion of
the originally simulated particles will meet all the
intelligence. This leads to a poor approximation of
the distribution because it is based on a small num-
ber of particles and increasing the number of initial
particles may not be computationally feasible.

Gordon, Salmond, and Smith (1993) suggest per-
turbing each resampled particle with a Gaussian jit-
ter to mitigate degeneracy. However, due to the
Markovian nature of the Brownian bridge, we
implement a more effective roughening procedure.
Suppose f is the time of the current intelligence
update and we resamp(l;e particle i. Particle 7’s cur-

i

rent position is (x%i), y;') and it arrives to its final
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Figure 9. Heatmaps using a linear weighting function as in (14) with oo = 0.95.

location (xgi), ygi)) at time ) < T. In between its
current position and final position, particle i evolves
according to a Brownian bridge. Consequently, to
roughen particle i we simulate a new Brownian
bridge between (xéi), y%i),f) and (x,(li>, y((li),t‘(f)). This
procedure generates a new particle with the same
distributional properties as the originally sampled
particle i. Figure 8 shows a one-dimensional illustra-
tion of this roughening procedure for f =0.2. As
discussed in Section 3.2, this roughening procedure
is similar to having a movement model in the par-
ticle filter where a state “moves” from one path to
another path after one time period.

3.5. Particle filter algorithm

We now present the details of the particle filter
algorithm applied to the TBBM, which employs the
roughening procedure described above. Initially N
particle paths are generated for all time periods t =
1,...,T using the simulated model described in
Section 3.1 and all particles are equally weighted:
wgi) =4 Vi. The weights associated with these

simulated particles are updated according to the
likelihood function (see Equation (12)) when the
first intelligence signal is received.

Suppose we have particles i=1,..N, and the
identity of particle i at time ¢ is pgi). Let [)Ei) be the
new particle i sampled from the set of particles P; =
{pgl), pﬁ”,..., pEN)} after the arrival of new intelli-
gence at time t. Finally, denote f)ﬁ’j as the roughened
version of ﬁgi). The following summarises the par-
ticle filter algorithm which is implemented each
time new intelligence arrives from the sensors.

1. Let P, = {pﬁ”,p?),...,pﬁm} be the particles at
the current time .
2. Update the weights of all particles according to

Equation (12) to yield W, =
{wgl), wgz), - WEN)} based on sensor intelligence
at time .

3. Resample the particles according to the weights
W, with replacement, vyielding samples

p, = {ﬁgl),f)?), ...,ﬁEN>}, each with wei%ht 1/N.

4. Transform the resampled particle [75 to the

roughened particle ﬁgi), for i =1,...N, using the
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Figure 10. Heatmaps using an exponential weight function as in (15) with f=2.

4. E

roughening method in Section 3.4 to generate
new Brownian bridges over the remaining
time periods.

Proceed to the next time step setting par-
ticles PE?A —p\.

Xperiments

There are a variety of sensor types available to col-

lect

information on moving targets, and the specific

implementation details of the particle filter will
depend on the nature of incoming intelligence. The
properties of the individual sensor determine the

area

of coverage and the quality of the information

within a given region. Some sensors may have a
decaying quality as the distance from the sensor
increases, so a linear or exponential weight function

can

be used. Because intelligence can come in many

forms, the nature of the weight functions should be
changed accordingly. Human intelligence could spe-

cify

may

that the target is present in a given region, but
not specify the exact location, in which case a

uniform weighting across a region can be used.

Finally, we note that sensor regions do not need to
be rectangular, and the algorithm can be modified
to be flexible to the sensor type.

We implement the TBBM with a particle filter in

MATLAB (The MathWorks, 2016) to assess the per-
formance of the results. Each experiment begins
with 20,000 simulated Brownian bridges, each of
which has 500 time steps simulated between the
sampled start and end points. Generating a sequence
of heatmaps can take anywhere from 10seconds to
a few minutes (using a single processor) depending
on the number of sensor updates and time steps
used. The particle filter model resamples each time
a new piece of intelligence is observed, and the
weight function can be easily changed to allow for
modelling flexibility.

Figure 9 shows an example of the particle filter

algorithm applied using the linear weight function
in (14) with o = 0.95. We only display the points
contained in the top 95% of the probability mass to
avoid plotting regions with a very small probability
of containing the target. We see at hour 40 that the
particles are concentrated around the centre of the
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Figure 11. Heatmaps using sensor fields that deliver a positive signal over hours 35-40 and a negative signal over hours

65-70, using a cookie-cutter sensor.

sensor, and some particles outside the sensor box
are resampled as well. At hour 70 with a negative
signal, weight within the sensor box is reduced,
while there is still significant weight around the
boundary of the sensor box.

Figure 10 displays heatmaps using the exponen-
tial weight function given in (15) with f=2. We see
again that positive weight is allocated to points out-
side the sensor box at hour 40, with a higher con-
centration of particles in the centre of the box. The
rate of decay in the weight is determined by the
choice of . For the negative signal at hour 70, there
is a partial reduction of particles in the box, with a
greater reduction close to the centre.

We can also explore the effect of a patrol, or a
sensor that collects information over a time interval
rather than at one specific time. For example, con-
sider a group of many sensors, such as a sonobuoy
field, which monitors for potential targets. The sen-
sor field reports either a positive signal that the tar-
get is present in the field or a negative signal that
the target is absent. If the sensor field reports a

target is present during a time interval, that would
provide more information than just observing the
target at one particular point in time. Additionally,
the sensor field could also fail to observe the target
over a range of time. Consider the cookie-cutter
sensor example given in Figure 7 with two sensor
fields. The southeast field is active over a 5-h time
range (hours 35-40) and reports positively that the
target is in the field for the entire 5h and shows an
increased concentration in location as time pro-
gresses. The northwest field is active over a different
5-h time range (hours 65-70) and fails to observe
the target over the entire 5h. Figure 11 plots the
heatmap at hours 35, 40, 65, and 70.

We see at time 35 that the positive signal excludes
particles outside the box. At time 40 we see a more
concentrated distribution of particles, given that the
target was observed in the box over times 35-40, com-
pared to the heatmap at time 40 in Figure 7 where the
positive signal was only observed at time 40. Similarly
with the negative signal, at time 65 the particles inside
the sensor box are removed as the first negative signal
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Figure 12. The first sensor switches from a positive to a negative signal in times 4 to 5, and the second sensor switches from

negative to positive in times 13 to 14.

is reported. As the target fails to appear within the sen-
sor box over times 65-70, the algorithm continues to
remove particles that appear within the box. This leads
to a heatmap that is concentrated around the south
and east of the box at time 70 and eliminates all targets
that could have been in the box just prior to time 70.

Figure 12 shows an example where a sensor’s
observed signal switches in adjacent time incre-
ments. In the top plots, the first sensor initially
reports a positive signal in hour 4 and then a nega-
tive signal at time 5. In the bottom plots, the second
sensor fails to see the target at hour 13, but then
observes the target at hour 14. Thus, the same sen-
sor can change its observation and the heatmap can
adjust to represent the updated information.

5. Conclusion

Many search methods rely on a model for a target’s
location over time that incorporates uncertainty. This
paper develops a robust model for target movement
that produces temporal heatmaps. The model requires

only the target’s starting and ending locations (with
some uncertainty), and does not assume straight-line
or deterministic movement, but approximates behav-
iour using Brownian bridges which can be calibrated
to capture variation in individual trajectories. An ana-
lytical model can be used to quickly estimate contain-
ment regions and crossing probabilities.

A simulated version of the model lends itself to
enhancements and updating based on new intelli-
gence. The distribution of the target’s locations at
midpoints can be easily updated when new intelli-
gence arrives using a particle filter, which weights
simulated paths according to a likelihood function.
Traditional degeneracy challenges are mitigated by
using roughening and resampling techniques
designed for Brownian bridges to ensure a complete
heatmap can be generated as time progresses.

The Brownian bridge model for target motion
has many advantages over other models. The uncer-
tainty incorporated is more realistic than models
that assume deterministic or straight paths, and the
analytical methods discussed in Section 2 can



604 J. A. NUNEZ ET AL.

provide quick metrics without requiring complex
numerical integration. The simulated model also
provides an intuitive method of updating the distri-
bution by aggregating weighted Brownian bridge
paths into heatmaps, and does not require paramet-
risation over a discretised location space in building
the model. Finally, the flexibility in the choice of
weight function allows for different types of intelli-
gence updates to be incorporated without affecting
the overall computational ease of the method.

We have developed many enhanced scenarios
using this model for practical analysis purposes,
which are not included here for brevity. For
example, the trajectory of the target can be more
complex with intermediate waypoints between start
and end points. Additionally, multiple possible tar-
get trajectories can be considered to create bimodal
heatmap distributions. More recently, we have com-
pared different sensor placement configurations
applied to the temporal heatmaps to improve the
probability of observing the target, and more formal
optimisation methods are part of our future work.
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