
European Journal of Operational Research 284 (2020) 227–239

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Stochastics and Statistics

On the dynamic allocation of assets subject to failure

Stephen Ford

a , ∗, Michael P. Atkinson

b , Kevin Glazebrook

c , Peter Jacko

c

a STOR-i Centre for Doctoral Training, Lancaster University, United Kingdom

b Operations Research Department, Naval Postgraduate School, United States
c Department of Management Science, Lancaster University, United Kingdom

a r t i c l e i n f o

Article history:

Received 18 June 2019

Accepted 10 December 2019

Available online 13 December 2019

Keywords:

Control

Dynamic programming

Heuristics

Queueing

a b s t r a c t

Motivated by situations arising in surveillance, search and monitoring, in this paper we study dynamic

allocation of assets which tend to fail, requiring replenishment before once again being available for op-

eration on one of the available tasks. We cast the problem as a closed-system continuous-time Markov

decision process with impulsive controls, maximising the long-term time-average sum of per-task reward

rates. We then formulate an open-system continuous-time approximative model, whose Lagrangian relax-

ation yields a decomposition (innovatively extending the restless bandits approach), from which we de-

rive the corresponding Whittle index. We propose two ways of adapting the Whittle index derived from

the open-system model to the original closed-system model, a naïve one and a cleverly modified one. We

carry out extensive numerical performance evaluation of the original closed-system model, which indi-

cates that the cleverly modified Whittle index rule is nearly optimal, being within 1.6% (0.4%, 0.0%) of the

optimal reward rate 75% (50%, 25%) of the time, and significantly superior to uniformly random alloca-

tion which is within 22.0% (16.2%, 10.7%) of the optimal reward rate. Our numerical results also suggest

that the Whittle index must be cleverly modified when adapting it from the open-system, as the naïve

Whittle index rule is not superior to a myopic greedy policy.

© 2019 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

1

p

n

r

t

e

t

s

e

e

t

2

c

p

a

t

r

h

c

t

a

1

t

A

t

a

h

0

. Introduction

The allocation of assets in an efficient way is an omnipresent

roblem. It is challenging because of the typical feature that the

umber of available assets is limited; such limited assets usually

efer to a workforce or machines available to perform a particular

ask.

When assets are relatively simple machines connected to an en-

rgy supply, such as computers, it is reasonable to assume that

hey are available for continuous operation. Allocation of such as-

ets to tasks has been extensively studied in the performance

valuation literature employing queueing theory techniques (see

.g. Harchol-Balter, 2013) and in the stochastic optimization litera-

ure employing dynamic programming techniques (see, e.g., Powell,

007; Stidham & Weber, 1993).

However, considering a human workforce or cutting-edge ma-

hine technology, assets are rarely available for continuous oper-
∗ Corresponding author.

E-mail addresses: s.ford1@lancaster.ac.uk (S. Ford), mpatkins@nps.edu

(M.P. Atkinson), k.glazebrook@lancaster.ac.uk (K. Glazebrook),

.jacko@lancaster.ac.uk (P. Jacko).

o

t

n

i

p

s

ttps://doi.org/10.1016/j.ejor.2019.12.018

377-2217/© 2019 The Authors. Published by Elsevier B.V. This is an open access article u
tion. Such assets may be complex and hence failure-prone and

ime-consuming to repair, specialised and hence hard to quickly

eplace in case of an abandonment, or of limited endurance and

ence regularly require recharging/refuelling. In this paper we fo-

us on the allocation of such assets that tend to fail and must go

hrough a replenishment process before they are once again avail-

ble for operation.

.1. Motivating examples

There is a broad range of situations in which assets are subject

o failure.

Surveillance and patrolling: Consider a number of Unmanned

erial Vehicles (UAVs) deployed to monitor a large area. The con-

roller may want to keep surveillance at all times, so as not to

llow gaps that could be exploited by an adversary. In this kind

f situation, one could easily have tens to hundreds of UAVs, with

ime-scales stretching from minutes to days. The UAVs have a fi-

ite endurance and so must periodically return to base for refuel-

ng and maintenance. For a review of the general UAV surveillance

roblem, see Nigam (2014) ; a similar situation arises in patrolling,

ee, e.g., Lin, Atkinson, and Glazebrook (2014) .
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.ejor.2019.12.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.12.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.ford1@lancaster.ac.uk
mailto:mpatkins@nps.edu
mailto:k.glazebrook@lancaster.ac.uk
mailto:p.jacko@lancaster.ac.uk
https://doi.org/10.1016/j.ejor.2019.12.018
http://creativecommons.org/licenses/by/4.0/

228 S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239

s

a

a

p

m

p

p

1

c

c

t

c

s

s

g

a

r

c

f

1

t

o

i

o

t

b

m

t

a

l

t

s

s

e

q

b

c

(

s

s

s

i

a

t

d

s

o

f

f

o

o

s

i

o

s

(

m

t

t
Search and rescue: Similar difficulties occur in search and res-

cue operations, with the added complication that the assets may

often be of different types such as foot teams, search dogs and he-

licopters. In this case, there may be only a small number of targets

to be found, and finding them quickly could be of extreme impor-

tance. One such situation arises in a naval context, where UAVs can

search for downed airmen in an ocean. See, for example (Cook,

2007; Waharte & Trigoni, 2010). Search assets cannot operate in-

definitely; they need to occasionally rest (for humans or animals)

or refuel (for vehicles).

Environment and wildlife monitoring: In environment and

wildlife monitoring the controller needs to monitor an area for

some time, either to get reliable readings or to ensure a sufficient

sample of the flora or fauna in question. These are an example of

why failure must inevitably be dealt with: it is simply impractical

to survey the entire areas at once, and so some form of higher-

level coordination is necessary. See, e.g., Casbeer, Beard, McLain, Li,

and Mehra (2005) and Gonzalez et al. (2016) .

Vehicle rental: The recent surge of sharing and short-term rent-

ing of environmentally-friendly vehicles (such as bicycles, drones,

electric scooters, cars, etc.) in mobility-on-demand systems brings

similar challenges. These vehicles are distributed to different loca-

tions where they wait (passively search) for customers. They fre-

quently require repairs, cleaning and relocation. See, e.g., Boyacı,

Zografos, and Geroliminis (2015) and Schuijbroek, Hampshire, and

Van Hoeve (2017) .

Queueing systems: More generically, consider a set of queues,

where the controller assigns servers (assets) to a number of queues

(tasks) to deal with arriving customers. The servers can only serve

so many customers before needing a break, giving rise to failure

and replenishment. Literature on queueing systems with server va-

cations and breakdowns is extensive (e.g. Doshi, 1986), but their

control has only been addressed in specific cases; see for example

Federgruen and So (1991) or Ke (2003) .

Project management. If assets are employees or contractors, a

manager needs to assign them to projects composed of tasks. Peo-

ple can only work for so long before needing a break, a rest or

taking a leave. Such features are typically ignored in the project

management literature (see Kerzner, 2017). There might be signifi-

cantly more tasks than assets and decisions are made on a scale of

weeks or months.

1.2. Problem description

In the rest of the paper we consider a generic problem in which

a number of interchangeable assets need to be allocated to a num-

ber of different tasks. Any asset is allocatable to any task and sev-

eral assets can be allocated concurrently to the same task.

An asset will fail after a random amount of time performing a

task. The failure may manifest itself as the asset breaking down,

draining its energy supply or being damaged. The failure requires

repair, which occurs via recharging, refuelling, taking a break or

replacement. The repair time is also random. During this repair

time the asset cannot be allocated to any task. Once an asset is

repaired, it is kept in reserve ready for allocation to any task,

either immediately or later. Assets cannot be freely moved from

one task to another, only allocated from the reserve to any of the

tasks.

Every task yields a reward at a rate depending on the num-

ber of deployed assets, which is assumed non-decreasing and con-

cave. The objective is to find a way of allocating assets to tasks that

will maximise the long-term time-average sum of per-task reward

rates.

It would be possible to formulate this problem without a re-

serve, and require that upon being repaired, an asset must be al-

located to one of the k tasks. While this would yield a smaller
tate-space, for many reward functions, particularly those which

re strongly concave, the optimal policy does keep a number of

ssets in the reserve. In Sections 3 and 4 we develop alternative

olicies that do not reserve assets. In Section 5 we perform a nu-

erical comparison of the optimal policy versus these alternative

olicies and find that while in most scenarios the reserve option

rovides little benefit, in some cases it is vital.

.3. Contributions and paper structure

In Section 2 we formulate this problem as a closed-system

ontinuous-time Markov decision problem (MDP) with impulsive

ontrols. To overcome the theoretical issues with impulsive con-

rols, we reformulate it equivalently by replacing the impulsive

ontrols with actions that do not immediately lead to system tran-

itions, and further uniformise and discretise the problem. The re-

ulting formulation allows for numerical solution by dynamic pro-

ramming of small problem instances. It also allows for defining

 greedy policy which myopically maximises the sum of reward

ates.

Relevant to this formulation is research on optimisation of

losed systems with multiple tasks. Many papers have used the

ramework of queueing networks (see, e.g., Stidham & Weber,

993), but these allow or even require assets to move between

asks and only one asset is allowed to be active at a task (the

ther assets wait in a queue). In terms of optimisation, the focus

s mainly on queue scheduling disciplines (which does not apply in

ur model) and on service rate control (which is somewhat related

o our model as the number of allocated assets to a task affects

oth the failure rate and the reward).

For any reasonably-sized problem, standard dynamic program-

ing techniques are computationally infeasible. In Section 3 we

herefore develop an alternative formulation of the problem as

n open-system approximation to the original closed-system prob-

em. This open-system imagines that assets depart from the sys-

em when they fail and new assets arrive independently to the

ystem, as if from the repair process. This model is related to the

tandard problem of routing/dispatching to parallel queues (see,

.g. Hyytiä, 2013), in which assets correspond to jobs and tasks to

ueues with servers, with the difference that each task is shared

y all the allocated assets rather than following a queueing dis-

ipline. We innovatively extend the restless bandits approach of

 Whittle, 1988) to derive its Lagrangian relaxation and decompo-

ition, which leads to a parametric single-task problem that can be

een as a problem of admission control to a multi-server queueing

ystem. Section 3.2 is then devoted to the derivation of the Whittle

ndex. A similar model and solution approach appeared in Borkar

nd Pattathil (2017) , with the difference that the reward from the

ask is constant in the number of assets deployed.

In Section 4 we describe two ways of adapting the Whittle in-

ex derived from the open-system model to the original closed-

ystem model, a naïve one and a cleverly modified one. To the best

f our knowledge these are both novel. In order to prepare ground

or numerical evaluation of these index rules, we describe the uni-

ormly random policy and the greedy policy, and explain how the

ptimal policy can be found when it is practical to do so.

Section 5 then describes comprehensive numerical experiments

f performance evaluation of these policies in the original closed-

ystem model, which indicates that the cleverly modified Whittle

ndex rule is nearly optimal, being within 1.6% (0.4%, 0.0%) of the

ptimal reward rate 75% (50%, 25%) of the time, and significantly

uperior to uniformly random allocation which is within 22.0%

16.2%, 10.7%) of the optimal reward rate (see Table 1). Our nu-

erical results also suggest that it is crucial for the Whittle index

o be cleverly modified when adapting it from the open-system to

he closed-system model, since the naïve Whittle index rule is not

S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239 229

Table 1

Mean and five-number summary given as the relative suboptimality gap (in percent).

Policy Mean Min. 5 th Percentile Lower Quartile Median Upper Quartile Max.

Uniformly Random 17.1 52.1 34.1 22.0 16.2 10.7 0.0

Greedy 3.6 58.3 18.4 3.7 0.5 0.0 0.0

Naïve Whittle 4.6 60.6 14.5 6.3 2.3 0.0 0.0

Clever Whittle 1.3 26.6 5.4 1.6 0.4 0.0 0.0

s

t

o

d

a

2

o

(

c

a

2

i

a

1

t

o

b

n

A

–

s

x

m

h

a

i

c

l

t

a

i

x

c

a

s

s

(

a

N

t

o

f

t

p

e

v

t

f

i

λ

r

t

x

i

f

e

i

f

i

g

i

o

R

a

w

i

a

b

o

o

V

a

t

c

uperior to the greedy policy which is obtained by myopically op-

imising the original closed-system model.

Section 6 presents limitations and concludes with a discussion

f possible extensions of this work. A single overly long proof is

eferred to Appendix A , while pseudocode for the policy iteration

lgorithm to optimally solve the MDP is given in Appendix B .

. The problem formulation

In this section we formalise the problem outlined in the previ-

us section as a continuous-time Markov decision process (MDP)

see Puterman, 2014 , chapter 11); that is, for the dynamics we fo-

us on the Markovian case. There are N interchangeable assets to

llocate to K different tasks.

.1. Markov decision process model

A continuous-time MDP operating over time 0 ≤ t ≤ H , where H

s the time horizon, is defined by its states, actions, transition rates,

nd reward rates.

States: We denote the current number of assets at task k =
 , . . . , K by x k . For notational convenience, we write x K+1 for

he number of assets under repair, and x K+2 for the number

f assets currently repaired but not yet allocated – the num-

er currently reserved. The reserve does in fact sometimes prove

ecessary, especially if the reward functions are very concave.

ssets are discrete so that x k ∈ N 0 – the non-negative integers

for all k = 1 , . . . , K + 2 , and the total number of assets is con-

tant so that
∑ K+2

k =1
x k = N. We denote the current overall state by

 = (x 1 , x 2 , ..., x K+2) , and the space of possible states by X .

Actions: After it reaches the reserve task, any asset can then im-

ediately be allocated from the reserve to any of the tasks, or be

eld back for later allocation. The actions a are the allocations of

ssets from reserves to tasks k = 1 , . . . , K, which move the state

nstantaneously from x to x + a . We write A (x) for the space of

urrently feasible actions when in state x ; it is defined by the fol-

owing four constraints:

(i) a k ≥ 0 , k = 1 , . . . , K + 1 ; previously allocated assets or assets

that are being repaired may not be reallocated;

(ii) −x K+2 ≤ a K+2 ≤ 0 ; assets from the reserve can be allocated

up to the number currently there;

(iii)
∑ K+2

k =1
a k = 0 ; the total number of assets is constant;

(iv) a k ∈ Z ∀ k ; assets are discrete.

Note that we may take the action 0 even if we have assets in

he reserve: we do not have to allocate all the immediately avail-

ble assets.

We specify the actions to be chosen for each state by a pol-

cy u . A policy u is a map, possibly non-deterministic, from states

 ∈ X to actions a ∈ A . The family of admissible policies U in-

ludes all non-anticipating policies prescribing actions satisfying

 ∈ A (x) . We will in particular restrict ourselves to deterministic

tationary policies, which always take the same action when in the

ame state. This can be done without loss of generality for MDPs

 Puterman, 2014).

Transition rates: Apart from those caused by our actions, there

re two types of transition: due to a failure and due to a repair.
either the failure transition nor the repair transition depends on

he current action. Failures happen on a per-asset basis, depending

nly on the task the asset is allocated to; we denote the failure rate

or an asset allocated to task k by μk , with the natural constraint

hat all μk > 0. Any asset that fails immediately joins the repair

rocess, i.e. a failure in task k causes a transition from x to x − e k +
 K+1 . Here e k is the k th standard (K + 2) -dimensional unit basis

ector.

The repair process produces ready-to-allocate assets one at a

ime at some non-decreasing state-dependent rate λ(x K+1) . The

unction λ(x) is a function defined on N 0 , satisfying the follow-

ng two constraints: λ(0) = 0 so no assets means no repairs, and

(x) must be non-decreasing so more assets being repaired makes

epairs more likely to happen. After an asset is repaired, it transi-

ions to the reserve status: repairs, which can happen as long as

 K+1 ≥ 1 , cause a transition from x to x − e K+1 + e K+2 .

The assets’ time to failure and the time until the next asset

s repaired both follow an exponential distribution. The times-to-

ailure are independent for each asset and independent of anything

lse, such as the overall state of the system. The repair process is

ndependent of anything else as well.

Reward rates: Since the actions move the state instantaneously,

or our purposes it is sufficient to consider reward rates that are

ndependent of actions. We write that in state x , the controller

ains reward at a rate R (x). We impose that the rewards are gained

ndependently from each task; that is, the reward-rate function is

f the following form:

 (x) =

K ∑

k =1

g k (x k) (1)

The functions g k represent the reward obtained from allocating

ssets to task k = 1 , . . . , K. We impose three conditions of the g k ,

hich we expect to hold in practice:

(i) g k (x) is non-decreasing; more assets allocated to a task pro-

duces no less reward;

(ii) g k (x) is concave in x ; there are diminishing marginal re-

wards;

(iii) g k (0) = 0 ; no assets allocated gives no reward.

Note that there is no reward gained for assets under repair or

n reserve.

Objective: The MDP is characterised by the state process X (·)

nd the action process A (·), induced by the transition rates and

y the chosen policy u . We consider the long-term time-average

bjective for the MDP over an infinite horizon. We define V as the

ptimal long-term time-average reward rate, so that:

 = max
u ∈U

lim inf
H→∞

1

H

E

u

[∫ H

0

R (X (t)) dt

]
(2)

This expression is well defined because the state-space is finite

nd the reward rates are non-negative and bounded above, since

here is a finite number of assets. In particular, for stationary poli-

ies we will have that lim ≡ lim inf in the equation above.

230 S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239

V

t

f

v

t

a

R

c

w

t

i

t

d

e

U

t

c

n

m

w

t

n

l

3

t

b

o

d

t

b

p

d

d

t

a

o

s

t

c

a

3

t

t

2.2. Solution by dynamic programming

The type of actions defined above are known as impulsive con-

trols for continuous-time MDPs. The main difficulty with dealing

with impulsive control models is that the process can take several

different values at the same time moment, which makes the clas-

sical theory of MDPs inapplicable.

The structure of our MDP model allows for a reformulation in

which impulsive actions are replaced by actions that do not imme-

diately lead to system transitions, by making both the transition

rates and reward rates dependent on the action, as in Dufour and

Piunovskiy (2015) . This reformulation results in a merging of the

state transition caused by the impulsive action with the next state

transition due to failure or repair. Rather than viewing the system

as transitioning instantaneously from x to x + a , we frame the sys-

tem as remaining in state x with rewards and transitions dictated

by x + a .

In particular, a failure of an asset allocated to task k while a

prevails occurs at rate (x k + a k) μk and causes a transition from

x to x + a − e k + e K+1 . Similarly while a prevails, a repair occurs

at rate λ(x K+1 + a K+1) and causes a transition from x to x + a −
e K+1 + e K+2 . Finally, while a prevails in state x the controller gains

reward at a rate R (x + a) .

Note that as we have instant controls, applying two actions a 1
and then a 2 is equivalent to applying a 1 + a 2 .

We can uniformise the problem, transforming the reformulated

continuous-time model into an equivalent discrete-time model.

Define B = λ(N) + N max μk , as an upper bound on the transi-

tion rate out of all states. Consider a related Markov decision pro-

cess that transitions out of every state with rate B . For this re-

lated process, with probability (x k + a k) μk /B an asset in task k

fails and with probability λ(x K+1 + a K+1) /B an asset is repaired.

With the remaining probability [B − λ(x K+1 + a K+1) −
∑ K

k =1 (x k +
a k) μk] /B the dummy transition moves the system to state x + a .

During uniformisation the dummy transition usually has the sys-

tem return to its current state; because of our impulsive action re-

formulation described in the previous paragraph, the dummy tran-

sition here goes to x + a . For more details on uniformisation, see

Puterman (2014 , Section 11.5).

This uniformisation results in a discrete-time MDP. We can

present the optimality equation for the discrete-time MDP with a

long-term time-average objective, utilising standard MDP machin-

ery; see Puterman (2014 , Chapters 8 and 11) for more details. We

define φ(x) as the relative value of a state x . This relative value is

also referred to as the bias (see Puterman, 2014 , Chapter 8), and is

a measure of how much the controller prefers starting the system

in one state compared to some reference state.

We obtain the following dynamic programming optimality

equation, which is satisfied by the optimal value V for our prob-

lem:

 + φ(x)

= max
a ∈A (x)

1

B

(

R (x + a) + λ(x K+1 + a K+1) φ(x + a − e K+1 + e K+2)

+

K ∑

k =1

(x k + a k) μk φ(x + a − e k + e K+1)

+

(

B −λ(x K+1 + a K+1) −
K ∑

k =1

(x k + a k) μk

)

φ(x + a)

)

∀ x ∈ X

(3)

This is a set of | X | equations for | X| + 1 unknowns - the φ(x)

and V . We hence choose some reference state x (in practice
0
(0 , 0 , . . . , N)) and set φ(x 0) = 0 . We can then solve the set of equa-

ions to find the optimal policy, and the optimal value V .

For definiteness, we define φ(x) = 0 for all x such that x k < 0

or any k = 1 , . . . , K + 2 : for all ineligible x the terms disappear.

On the LHS of (3) , we have the optimal value plus the relative

alue of the current state. On the RHS, we choose the control a

o maximise the sum of four terms. The first term is the immedi-

te expected reward received in state x while a prevails. Note that

 (x + a) is a rate, and hence R (x + a) /B is the expected reward ac-

umulated before the next transition.

The second term captures the expected future reward obtained

hen a repair transition occurs next. The third term represents

he expected reward from all failure transitions. The fourth term

s the expected reward from the dummy transition where the sys-

em moves to state x + a .

In theory, we can compute the optimal V from (3) using stan-

ard MDP solution techniques such as policy iteration, value it-

ration, or linear programming (see Puterman, 2014 chapter 8).

nfortunately, in practice such exact methods quickly become in-

ractable even for relatively small problems.

The state space for our problem has size |X | =

(
N+ K+1

K+1

)
be-

ause the controller distributes N identical assets among K + 2

on-identical tasks. For instance, if N = 15 and K = 10 , then |X | is
ore than 7.7 million. Given this, computing the optimal solution

ill only be feasible for small problems, as standard policy itera-

ion requires us to form a matrix of size |X | + 1 by |X | + 1 . We

ow turn to approximative methods, in particular one that will al-

ow us to consider the tasks separately.

. A Restless bandit approximation

Restless bandits Whittle (1988) provide a framework applicable

o our problem. A generalisation of the well-known multi-armed

andit problem Gittins (1979) , a restless bandit is a specific type

f MDP.

In a restless bandit problem there are K bandits, which are in-

ependent Markov decision processes with binary action space:

he controller can choose to activate the bandit, or not to. Each

andit has its own state x k and generates rewards at a rate de-

ending only on its own state. The control is quite simple: at each

ecision point, the controller can activate up to M < K of the ban-

its; the controller gains reward according to both the state of all

he bandits and the actions taken. Taking the active action is usu-

lly better in some way, either providing more immediate reward,

r charging up the bandit.

The restlessness is as follows: even the bandits not activated

till evolve stochastically, usually decaying in some way. This con-

rasts with a classic bandit problem of the Gittins type, where the

ontroller can only activate one bandit at a time, and the non-

ctivated bandits remain in the same states.

.1. The approximating system

We now formulate an approximating system, which modifies

he original problem in three respects:

(i) We remove the repair process, and have assets arriving for

allocation to tasks at a constant rate � independently of the

system’s state: assets arrive according to a Poisson process

with rate �.

(ii) Failing assets depart the system entirely, as opposed to going

to a repair buffer.

(iii) We remove the reserve, so arriving assets are immediately

allocated.

The diagrams in Figs. 1 and 2 illustrate the difference between

he original system and the approximating system.

S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239 231

Fig. 1. A diagram of the problem. Assets fail, are repaired, and are then allocated

to tasks, possibly via a sojourn in the reserve.

Fig. 2. A diagram of the restless bandit approximation. Assets arrive at a constant

rate, and there is no reserve or repair process.

e

a

s

a

t

t

s

i

p

a

p

p

G

e

V

y

m

t

l

a

b

u

b

t

t

s

a

o

Fig. 3. A diagram of a single task of the restless bandit approximation.

a

G

U

P

t

a

s

L

G

e

G

m

t

K

t

t

c

G

w

G

n

i

o

l

p

o

r

w

t

p

f

G

The approximating system is a continuous-time MDP with the

lements as follows. We write x k for the number of assets currently

t task k = 1 , . . . , K. The number of assets is unbounded and the

tate space is N

K ≥ 0 – a vector of K non-negative integers. Each

rriving asset is immediately allocated to one of K tasks. Assets at

ask k fail at rate μk independently of each other, and of every-

hing else in the system. The aggregate asset failure rate in system

tate x = (x 1 , x 2 , . . . , x K) is given by
∑ K

k =1 μk x k . Rewar ds are earned

n state x at a rate R (x) =

∑ K
k =1 g k (x k) .

We now write u : N

K → { 1 , 2 , . . . , K } for a stationary allocation

olicy; when the approximating system is in state x , an arriving

sset is assigned to task u (x). We define U as the set of all such

olicies. We will write the optimum allocation problem for the ap-

roximating system as:

opt = max
u ∈U

K ∑

k =1

V

u
k (4)

Here we write V u
k

for the long-term time-average reward rate

arned by task k under allocation policy u ∈ U , i.e.:

u
k := lim

H→∞

1

H

E

u

[∫ H

0

g k (X k (t)) dt

]
. (5)

Even this simplified version of our original problem lies be-

ond the scope of analysis via conventional dynamic program-

ing. However, we can make progress by using ideas which have

heir origins in the Whittle (1988) description of a class of rest-

ess bandit problems. We create a Lagrangian relaxation of the

bove allocation problem as follows: first extend the class of feasi-

le policies from U to a class U ′ ⊇ U . Any u ∈ U ′ is given by a map

 : N

K → 2 { 1 , 2 , ... ,K } . Under u ∈ U ′ we allow each incoming asset to

e allocated to all tasks in any subset (including the empty set) of

he task set { 1 , 2 , . . . , K } , with the total number of assets assigned

o each task in the nominated subset incrementing by one. Con-

equently, the arrival of one asset to the system can result in the

llocation of up to K assets (one asset per task) for a policy u ∈ U ′ .
We write �k (u) for the long-term time-average allocation rate

f assets to task k under u ∈ U ′ . We develop a relaxation of the
bove allocation problem in (4) as follows. Define:

opt ′ = max
u ∈U ′ (�)

K ∑

k =1

V

u
k (6)

The maximum is taken over the policy set U ′ (�) given by:

′ (�) =

{

u ∈ U

′ ;
K ∑

k =1

�k (u) ≤ �

}

(7)

roblem (6) allows us to use the extended policy class U ′ , but our

otal asset allocation rate is constrained by the arrival rate � of

ssets.

We now relax the problem in (4) further by dropping the con-

traint in (7) and instead incorporating it into the objective in a

agrangian fashion to obtain

opt (W) = max
u ∈U ′

{

K ∑

k =1

(V

u
k − W �k (u))

}

+ W � (8)

The multiplier W has an interpretation as a charge levied when-

ver an asset is allocated to a task. It is plain that

opt (W) ≥ G

opt ′ ≥ G

opt , W ≥ 0 , (9)

Further, it can be shown by a standard argument that:

in

W ≥0
G

opt (W) = G

opt ′ (10)

Further inspection of the problem in (8) makes it plain that due

o independence of the tasks, the problem can be decomposed into

 independent asset-allocation problems, given the Lagrange mul-

iplier W .

See Fig. 3 for a diagram of the single-task problem. We will say

hat the single task problem is in a state x if there are x assets

urrently at the task. We write:

opt (W) =

K ∑

k =1

G k (W) + W �, (11)

here:

 k (W) = max
u k ∈{ 0 , 1 } N

(
V

u k
k

− W �k (u k)
)
, 1 ≤ k ≤ K. (12)

The { 0 , 1 } N in (12) is a way to represent a policy u k as an infi-

ite dimensional binary vector where the policy assigns an incom-

ng asset to task k in state i if index i of the binary vector is a 1,

therwise the policy declines the incoming asset if index i is 0.

The problem in (12) concerns task k only. It seeks an optimal al-

ocation policy when assets arrive at task k according to a Poisson

rocess of rate � and are either allocated to the task (action 1),

r not (action 0) dependent upon the task’s current state. Reward

ates for task k are as in the original problem in (4) , but now re-

ards are earned net of charges levied at a rate of W per alloca-

ion.

We can now focus attention on this parametric single-task

roblem, and until further notice shall drop the task identifier k

rom the notation. We thus write the single task problem as:

 (W) = max
u ∈{ 0 , 1 } N (

V

u − W �u) (13)

232 S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239

W

R

m

n

a

π

w

i

(

t

T

i

a

I

c

t

i

a

F

o

fi

T

c

g

P

P

w

f

i

b

g

0

t

G

a

e

G

w

G

d

c

G
We write u (W) for an optimal allocation policy for the sub-

problem in (13) . We seek optimal policies of simple structure for

the Lagrangian relaxation in (8) by looking for simplicity of struc-

ture in u (W). The following notion (Whittle, 1988) is key:

Definition 1. The approximating system is indexable if there exist

optimal policies u (W) for all parametric single-task problems for

which the activation sets:

A (W) = { x | x ∈ N and u (W, x) = 1 } (14)

are decreasing in W .

We prove in the following subsection that the approximating

system is indexable and derive the corresponding Whittle index.

3.2. Indexability

Indexability is the natural requirement that, for each task, as

the allocation charge W increases, the set of states in which it is

optimal to allocate an incoming asset to the task decreases. Since

the following result has a proof along the lines of a corresponding

result in Glazebrook, Kirkbride, and Ouenniche (2009) for a differ-

ent system, we shall provide a sketch only.

Proposition 1. The approximating system is indexable.

Proof. First, it is trivial to show that there exists optimal poli-

cies u (W) of threshold type, namely whose corresponding alloca-

tion sets take the form:

A (W) = { 0 , 1 , . . . , T (W) − 1 } (15)

for some T (W) ∈ N . Hence T (W) is the minimal state for which the

optimal policy dictates that an incoming asset should be rejected.

Define π T (W) (x) as the stationary probability of being in state x ,

given a policy with threshold T (W). For such a policy we have a

long-term time-average rate of allocation of incoming assets equal

to:

�(u (W)) = �
{

1 − πT (W) (T (W))
}

(16)

Here π T (W) (T (W)) is the stationary probability that the task

operating under policy u (W) has its maximal number of assets

present, namely T (W). The dynamics of the task under this policy

are a M / M / ∞ queue, truncated at T (W), and so:

πT (T) =

1
T !

(�μ) T ∑ T
x =0

1
x !

(�μ) x
(17)

which is decreasing in T . We now remark that G (W), being the up-

per envelope of a set of linear functions, must be convex in W .

It then follows that �(u (W)) must be decreasing in W and hence

from (16) , π T (W) (T (W)) must be increasing in W . It then follows

that T (W) and A (W) must be decreasing in W . This establishes in-

dexability, and so completes the proof. �

Remark 1. Note that the reward function g plays no role in the

proof of the above proposition. Hence the approximating system is

indexable whatever the functional form the rewards take. However,

as we develop stronger notions of indexability, the increasing con-

cave nature of g will come into play. We now proceed to define the

indices which the indexability of the approximating system make

possible.

Definition 2. An index function W : N → R

+ for a task with asso-

ciated optimal acceptance sets

{ A (W) = { 0 , 1 , . . . , T (W) − 1 } , W ∈ R

+ } is defined by

 (x) = sup

{
W | W ∈ R

+ and x ∈ A (W)
}

(18)

Definition 3. The approximating system is strictly indexable if, for

all tasks, the mapping T : R

+ → N which takes W to T (W) is onto

N .
emark 2. We already know from the above proposition that the

apping T is non-increasing.

Before proceeding further, we extend the notation in (17) by

oting that the stationary distribution for the number of assets at

 task operating under acceptance set { 0 , 1 , . . . , T − 1 } is given by

T (x) =

1
x !

(�μ) x ∑ T
y =0

1
y !

(�μ) y
, 0 ≤ x ≤ T (19)

We now introduce the key quantities w (x) , x ∈ N , given by

 (x) =

∑ x +1
y =0 g(y) πx +1 (y) − ∑ x

y =0 g(y) πx (y)

�(πx (x) − πx +1 (x + 1))
(20)

The quantity w (x) has a natural interpretation as follows: imag-

ne that the decision maker facing the single task problem in

13) is committed to accepting newly arriving assets provided

here are no more than x − 1 of them currently present at the task.

he question arises of the effect of expanding the acceptance set to

nclude x as well.

The numerator in (20) is the increase in reward rate thus

chieved while the denominator is the increase in acceptance rate.

t is the case that when this marginal quantity is less than W (the

harge per unit asset accepted) then the expansion of the accep-

ance rate proposed leads to a decrease in the overall reward rate

n (13) .

Should W be less than w (x) , then the reverse conclusion holds

nd the expansion proposed improves the overall reward rate.

rom these considerations it follows that, under suitable conditions

n the reward function g , w (x) coincides with the index W (x) de-

ned above. We now outline a proof of this key result.

heorem 3. If the reward function g is increasing and strictly con-

ave, then the approximating system is strictly indexable with index

iven by W (x) = w (x) , x ∈ N .

roof. We introduce the quantities:

 x =

x ∑

y =0

(
�
μ

)y

y !
, x ∈ N (21)

In Appendix A , we prove the identity:

 (x) =

∑ x
y =0 P y (g(y + 1) − g(y))

μ
∑ x

y =0 P y
(22)

rom which it follows that w (x) is strictly decreasing in x when g is

ncreasing and strictly concave. We also note that w (0) =

g(1)
μ and

ecause g is concave, each asset considered separately can only

ive a reward of at most g(1)
μ . We can therefore write:

 ≤ lim

x →∞

(g(x + 1) − g(x)) ≤ lim

x →∞

w (x) ≤ g(1)

μ
(23)

We now write G x (W) for the reward rate achieved in (13) when

he acceptance set is { 0 , 1 , . . . , x } . We have

 x (W) =

x +1 ∑

y =0

g(y) π(y | x + 1) − W �(1 − π(x + 1 | x + 1)) (24)

nd we then obtain W = w (x) as the unique W −solution to the

quation:

 x (W) = G x −1 (W) , x ∈ N (25)

ith the natural interpretation for the case x = 0 . Further, each

 x (W) is linear in W with a gradient which is negative, and which

ecreases as x increases. From these facts it follows that for all

hoices of x ∈ N :

 x (W) < G y (W) , y ≤ x − 1 , W ≥ w (x) (26)

S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239 233

a

G

c

G

A

w

A

T

a

T

t

i

W

a

F

f

s

i

t

a

p

x

W

l

s

b

∑

t

a

t

i

a

i

a

4

p

p

p

c

e

t

t

4

W

m

p

f

1

w

a

π

w

r

c

t

t

u

i

m

r

c

a

m

w

ρ

W

p

c

m

c

f

p

g

a

p

k

w

C

m

n

r

a

c

t

t

a

t

r

�
k
nd

 x +1 (W) < G y (W) , y ≤ x, W ≤ w (x + 1) (27)

From these inequalities and the fact that w (x) is strictly de-

reasing in x , we can deduce that for any x ∈ N :

 x (W) > max
y � = x

G y (W) , w (x + 1) ≤ W ≤ w (x) , (28)

Hence:

 (W) = { 0 , 1 , . . . , x } , w (x + 1) ≤ W ≤ w (x) (29)

ith

 (w (x)) ∈ [{ 0 , 1 , . . . , x − 1 } , { 0 , 1 , . . . , x }] (30)

The corresponding rejection thresholds are given by:

 (W) = x + 1 , w (x + 1) ≤ W ≤ w (x) (31)

nd

 (w (x)) ∈ { x, x + 1 } . (32)

It now follows from the above that the map T is onto N , that

he approximating system is strictly indexable, and that the index

s given by:

 (x) = sup

{
W | W ∈ R

+ and x ∈ A (W)
}

= w (x) (33)

s required. This concludes the proof. �

To continue the discussion, we now restore the task identifier k .

rom the above discussion, under the assumption that all reward

unctions g k are increasing and strictly concave, the approximating

ystem is strictly indexable, and associated with each task k is an

ndex function W k : N → R

+ given by a suitable form of the quan-

ity in (20) .

It is an immediate consequence of the above discussion that

n optimal policy for the Lagrangian relaxation in (8) may be ex-

ressed as follows: when the approximating system is in state

 , an arriving asset should be allocated to those tasks for which

 k (x k) > W . Denote this policy by Index (W). Plainly the asset al-

ocation rate associated with Index (W) is decreasing in W . It is

traightforward to show that the relaxed problem in (6) is solved

y Index (W �), where W � is such that:

K

k =1

�k (Index (W �)) = � (34)

Please note that to achieve equality in (34) it may be necessary

o introduce randomisation into the operation of Index (W �) when

 task-state pair for which W k (x k) = W � is encountered. In light of

hese optimal policies of index structure, we follow (Whittle, 1988)

n proposing a solution for (4) in the form of an index rule for the

pproximating system as follows: when the approximating system

s in state x an arriving asset should be allocated to any task l ∈
rg max k W k (x k) .

. Policies

To evaluate how well the Whittle index rule works on exam-

le problems, we will compare it against the optimal policy, when

ossible. However, as discussed earlier, it is only possible to com-

ute the optimal value for smaller problems. Therefore, we also

ompare the Whittle index rule to two other policies which could

asily be applied to larger problems. We now expound briefly on

he policies, including how to actually apply the Whittle index rule

o the original closed-system problem.
.1. The Whittle index rule

Although we provide a full derivation and explanation of the

hittle index above, we touched only briefly on how to use this to

ake decisions for a given instance of the original closed-system

roblem. Recall from (20) that the formula for the Whittle index

or task k which has x k assets is (dropping the initial constant

/ �):

 k (x k) =

∑ x k +1
x =0

πx k +1 (x) g k (x) − ∑ x k
x =0

πx k (x) g(x)

πx k (x k) − πx k +1 (x k + 1)
(35)

Defining ρk ≡ �
μk

for the open-system, we rewrite the station-

ry distribution from (19)

x k (x) =

ρx
k
/x ! ∑ x k

y =0
ρy

k
/y !

(36)

The key input to compute the index w k (x k) is the ratio ρk ,

hich appears in (35) via the stationary distribution in (36) . This

atio is not well defined in the original closed-system problem be-

ause � is not a parameter in that system. Consequently we need

o define ρk more concretely for the original system. We examine

wo different Whittle index variants corresponding to different val-

es for ρk ; we denote one the naïve index and the other the clever

ndex.

The naïve index sets ρk =

λ(x K+1 +1)
μk

. This definition directly

imics the open-system definition of ρk by replacing the arrival

ate � with the repair rate λ(x K+1 + 1) , which is reasonable be-

ause assets arrive for allocation in the original system following

 repair. We use x K+1 + 1 instead of x K+1 because repaired assets

ove immediately to the reserve, and hence x K+1 could be zero

hen the allocation decision is made.

The clever index sets

k =

λ(x K+1 + 1)

λ(x K+1 + 1) + μk

. (37)

e choose this value of ρk for two reasons. First this value of ρk

roduces the optimal solution for the original closed-system in the

ase with N = 1 asset. As the rewards are unchanging, the opti-

al policy is to always allocate the asset to the same task. If the

ontroller always allocates to task k , the asset is at that task for a

raction of the time λ(1) / (μk + λ(1)) . The controller gets a reward

er unit time of

 k (1)
λ(1)

λ(1) + μk

, (38)

nd the optimal policy allocates to the task which makes the ex-

ression in (38) the largest. In this case, the Whittle index for task

 for the state x k = 0 can be found from Eqs. (35) and (36)

 k (0) =

π(1 | 1) g k (1)

1 − π(1 | 1)
= g k (1)

ρk

1+ ρk

1 − ρk

1+ ρk

= g k (1) ρk (39)

omparing (39) to (38) , the Whittle index rule produces the opti-

al policy if we define ρk according to Eq. (37) .

The second justification for the ρk defined in (37) is that the

aïve index is obviously not capturing the system dynamics cor-

ectly when λ(x K+1 + 1) μk . In this case, the naïve index makes

ssignments believing that future assets will be arriving for allo-

ation rapidly and indefinitely; in reality the actual arrival rate in

he closed-system is constrained by the finite number of assets in

he system. The clever index addresses this issue by replacing the

rrival rate � in the open-system not just with the repair rate as

he naïve index does, but with a throttled version of the the repair

ate:

← λ(x K+1 + 1)
μk

λ(x K+1 + 1) + μ
. (40)

234 S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239

f

R

A

f

a

μ

t

o

o

m

e

t

i

5

p

a

r

t

t

t

w

V x ∈X

Fig. 4. Policy performance for each quantile.
We then define ρk =

�
μk

as in the open-system, which pro-

duces the desired quantity in (37) . We can view (40) as stating

the arrival rate to the approximation system (�) is the repair

rate (λ(x K+1 + 1)) multiplied by a rough estimate of the fraction

of time an asset is under repair, assuming an alternating renewal

framework specifically,
μk

λ(x K+1 +1)+ μk
.

Regardless of how ρk is chosen, the procedure for using the

Whittle index rule is as follows. Suppose the system is in state x :

the Whittle index rule does not keep a reserve, so the controller

must wait until a repair completes to make a decision. We then

proceed as follows:

Step 1: For each task k , note the number x k of assets at that task;

Step 2: Set ρk , using either the naïve or clever approach de-

scribed above.

Step 3: Calculate w k (x k) using Eq. (35) , using ρk in the calculation

of the stationary probabilities in (36) .

Step 4: Allocate the asset to the task with the highest calculated

Whittle index w k (x k) ; in case of ties choose the task first

in the ordering.

4.2. Policies for comparison

We shall compare the two Whittle index rule variants with

three other policies: uniformly random allocation, greedy alloca-

tion, and where possible the optimal policy.

Uniformly random allocation is the simplest: whenever there

are assets in the reserve, the controller allocates them randomly,

with equal probability for each task. This policy is not intended

to be a sensible option, but instead acts as a basic benchmark:

random allocation is what we might resort to if we knew nothing

about the system state, and so any decent state-dependent policy

should do better.

The second policy is the simple greedy policy: the controller

never keeps a reserve, and whenever there is an asset to allo-

cate, the controller puts it wherever results in the highest instanta-

neous reward rate. That is, the controller allocates the asset to task

l ∈ arg max k R (x + e k) . This policy is in many ways the simplest

sensible policy, and if we did not have to worry about failures and

replenishment would in fact be optimal. We examined other vari-

ants of the greedy policy (such as using l ∈ arg max k R (x + e k) /μk),

but none were markedly different to the greedy policy and so we

omit them.

The last policy we shall use for comparison is the optimal pol-

icy, which we compute by policy iteration (Puterman, 2014 , Sec-

tion 8.5). We provide pseudocode for our policy iteration algo-

rithm in Appendix B . As discussed earlier, the state-space grows

very quickly, and as such we are only able to calculate the optimal

policy for small values of N and K .

The optimal policy is the only policy we consider that makes

use of the reserves; all other policies immediately assign an asset

after repair. While we did consider allowing the other policies to

retain reserves, there is no natural way to do this, and the per-

formance of the clever Whittle policy is sufficient to make further

finesses unnecessary.

5. Numerical experiments

We now conduct numerical experiments to evaluate the perfor-

mance of the policies defined above. We first re-parametrise the

problem, so that the numerical experiments are more clear. We

have five main inputs to our model: N , K , g k (x k), λ(x k), and μk . We

specify the reward functions g k (x k) as follows. Recall that rewards

are gained independently: R (x) =

∑ K
k =1 g k (x k) . In this section we
ocus on the following special form:

 (x) =

K ∑

k =1

(
1 +

Ak

K

)
g(x k) (41)

That is, we have one reward function g (x), and one parameter

 > 0 that specifies how quickly reward rates increase with k .

We assume there is no queuing for repairs; as soon as an asset

ails it immediately begins the repair process. Therefore, λ(x) = lx

nd we normalise l = 1 throughout. The failure rates take the form

k = Mm k , where M is a constant we vary to control the magni-

ude of the failure rate, and the set (m 1 , m 2 , ..., m K) is a sequence

f values near 1; the crucial aspect is the ratios of the m k to each

ther. Specifically we look at four cases for the form of (m 1 , m 2 , ...,

 K)

Case 1: Constant m k : m k = 1 for all 1 ≤ k ≤ K

Case 2: m k increasing with k : m k = 0 . 5 +

k −1
K−1

Case 3: m k decreasing with k : m k = 1 . 5 − k −1
K−1

Case 4: m k oscillating in k , m k = 1 . 5 if k odd, m k = 0 . 5 if k is even.

Given the discussion above, we require the following six param-

ters to completely specify our problem: N , K , g (x), A , M , m k .

In our numerical experiments we examine all combinations of

he parameters within the following limits:

• N ∈ { 2 , . . . , 10 }
• K ∈ { 2 , . . . , 5 }
• g(x) ∈ { 1 − e x/ 5 , log (1 + x) ,

√

x , min (x, 2) }
• A ∈ {1, 2, 3, 4}
• M ∈ {0.1, 0.5, 1, 1.5, 2, 3, 5, 10}
• m k : the four cases described above

These parameter combinations produce 18,432 different scenar-

os.

.1. Policy evaluation

Owing to the continuous-time Markov process structure of the

roblem, we can compute the long-term time-average reward ex-

ctly for a fixed policy u . We denote the long-term time-average

eward V

u for policy u . Any policy u induces a transition ma-

rix Q

u on the state-space. We can find the stationary distribu-

ion πu from the balance equations πu Q

u = 0 , with a normaliza-

ion constraint to ensure that πu is a probability distribution. Once

e have πu , we compute the long-term time-average reward via

u =

∑

R (x) πu (x) .

S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239 235

5

a

a

1

0

t

i

q

a

r

c

i

o

t

s

0

t

r

μ

m

p

i

t

b

t

t

C

W

b

.2. Results

Our measure of performance is a policy’s long-term time-

verage reward rate relative to the optimal, measured as the rel-

tive suboptimality gap of policy u :

 − V

u

V

That is, for each set of parameters, we get a number between

 and 1, which we report as a percentage, where 0% is identical to

he optimal policy, and 100% equates to no reward at all. Note that

n the figures, performance improves as we move up the y -axis.

Overall performance: The curves in Fig. 4 show the performance

uantiles across all 18,432 parameter combinations. Table 1 gives

 statistical summary for this case. Not surprisingly the uniformly

andom policy performs poorly relative to the other three. The

lever Whittle index rule clearly dominates the other options, and

s significantly more robust: even in the 5th percentile, it is at
Fig. 5. Quantile plots, stratified
nly 5.4% underperformance. The greedy policy performs better

han the naïve Whittle index rule across most percentiles, but both

truggle significantly for some cases. The median performance is

.6% for greedy, 1.3 % for naïve Whittle, and 0.4% for clever Whit-

le.

Failure rates: The failure rate has a significant impact on the

esults. Recall we use two parameters to specify the failure rate

k = Mm k . M controls the magnitude of the failure rates, whereas

 k determines the form of the rates in k . Table 2 presents the 5th

ercentile performance for each of the 4 cases for m k (constant,

ncreasing, decreasing, oscillating) and Fig. 5 presents the quan-

ile plots. Greedy performs reasonably well in Case 1 and Case 3

ut not well in Case 2 and even worse in Case 4. The naïve Whit-

le index rule slightly dominates over greedy in Case 1 (even over

he clever Whittle), and very significantly across lower quantiles in

ase 4, but has a significantly worse performance in Case 2. Clever

hittle performs consistently well for all 4 cases, showing it is ro-

ust to changes in forms of failure rates.
by the failure rate forms.

236 S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239

Fig. 6. Quantile plots, stratified by the failure rate magnitude M .

Table 2

The 5th percentile for each policy, stratified by the failure rate forms.

Policy | Case Case 1 Case 2 Case 3 Case 4

(constant) (increasing) (decreasing) (oscillating)

Uniformly Random 27.2 27.6 42.8 38.9

Greedy 3.4 25.4 10.3 34.5

Naïve Whittle 2.5 30.3 9.4 15.7

Clever Whittle 3.4 7.1 5.6 5.6

f

c

K

f

m

a

n

m

s

i

r

a

c

c

a

t

6

6

t

g

o

c

r

i

m

t
We see similar behaviour in Table 3 and Fig. 6 as we vary

the magnitude M of the failure rates. Recall the repair rate has

the form λ(x) = x, so M = 10 (M = 0 . 1) corresponds to very large

(small) failure rates relative to repair. For large M , greedy performs

very well and naïve Whittle performs almost as poorly as the uni-

formly random policy. In these cases, assets spend most of the

time performing tasks, with only short repair times. It is not sur-

prising greedy does well as the greedy policy is optimal if the as-

sets never fail. However for small M when assets fail quickly, the

greedy performs almost as poorly as the uniformly random policy

and the naïve Whittle performs well, even better than the clever

Whittle. In this case the rapid barrage of failures produces a system

that more closely mimics the open-system approximation with a

constant arrival rate. Although the clever Whittle does not per-

form as well as either greedy or naïve Whittle in the extremes,

it is again very robust across all values of M .

Use of the reserve : The reserve is used in 33% of the scenarios. In

the most extreme cases, the system is in a state with an asset in

reserve 25% of the time. However, overall the reserve component

usually plays only a very minor role. Only 2% of the scenarios that

optimally use the reserve are in a reserve state more than 10% of

the time. The fact that our policies, which do not use reserves, per-
Table 3

The 5th percentile for each policy, stratified by the fa

Policy | M 10 2 1.43

Uniformly Random 28.6 26.9 25.8

Greedy 2.2 3.1 3.6

Naïve Whittle 27.0 24.5 21.5

Clever Whittle 4.2 4.3 4.6
orm so well illustrates that in general, the reserve does not serve a

ritical role. The reserve is more important for larger N and smaller

 . The reserve is also used more frequently for larger M (greater

ailure rate relative to repair rate). In this case a decision maker

ight prefer to wait for another imminent failure before allocating

n available asset to ensure the allocation is effective, because the

ext allocation opportunity may not be for a while.

Other Points: For the four reward function options, g(x) =
in (x, 2) most often produces the worst performance. This is not

urprising as none of our policies allows for reserves, and clearly

t is sub-optimal to allocate more than two assets per task for this

eward function. Consequently performance degrades for large N

nd small K for this reward function.

Finally, there is a slight degradation in performance of the poli-

ies as we increase the number of assets N . For the median, the

lever Whittle’s median relative suboptimality gap is 0.0% at N = 2

nd increases to 0.9% at N = 10 . The corresponding degradation at

he 5th percentile for the clever Whittle index rule is from 2.2% to

.4%.

. Conclusion

We have formulated a model for the allocation of assets when

he assets are subject to failure. We establish a solid theoretical

rounding for the Whittle index rule and examine the performance

f two Whittle index rule variants along with several other poli-

ies. From the numerical experiments, the clever Whittle index

ule performs well and appears to be a reasonable and robust pol-

cy to generally use in practice.

There are several avenues for future research to improve our

odel. Rewards may not accumulate independently across the

asks. One might need a critical mass of assets at each task before
ilure rate magnitude M .

1 0.5 0.33 0.2 0.1

25.1 26.4 28.9 32.1 46.6

4.3 8.1 12.3 17.3 45.7

19.4 14.0 11.0 8.0 5.0

4.5 4.5 5.1 6.0 11.2

S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239 237

t

w

d

p

w

b

s

d

o

e

t

p

M

s

c

r

t

b

t

e

c

a

w

t

c

s

s

s

c

a

a

b

s

w

w

m

A

e

s

o

A

w

w

ρ

i

c

∑

∑

∑

∑

=

∑

e

=

π

g

w

he controller can gain positive rewards. The restless bandit model

ould not apply to a more complex reward function with depen-

encies across tasks; both the Whittle index rule and the greedy

olicy would need to be modified.

The Markovian assumptions, while unrealistic for some real-

orld applications, are not easy to discard. In practice it may be

etter to model failure times as uniform or deterministic: each as-

et has a certain level of charge, which depletes in a fairly pre-

ictable way. A possible intermediate approach would be the use

f Erlang distributions, which are still simple enough to allow for

ffective calculations, while sufficiently complicated to model ac-

ual situations. One could also perform a simulation exercise to ap-

ly the policies formulated here for the Markovian case to a non-

arkovian setting.

There might be delays between assignment and when an assets

tarts performing a task, such as travel times. Some of this delay

an be absorbed into the repair process. We could also modify the

eward function to account for the delay cost.

We mentioned in Section 4.2 the possibility of adding a reserve

o the policies derived from the restless bandit model. This would

est be done by adding a reserve to the restless bandit model, al-

hough there is no simple way of doing this. In particular the pres-

nce of a reserve links the different tasks, something wholly im-

ompatible with a restless bandit model.

The assumption that assets cannot be moved from one task to

nother may be reasonable in certain situations in practice (e.g.

here the tasks are located too far away from each other or where

here are few specialized assets), but the range of potential appli-

ations would greatly expand if asset relocation was allowed, pos-

ibly incorporating a switching cost and/or delay. Whittle index for

uch models has however not be studied yet; only its special case,

o-called Gittins index, which does not apply in this context.

One last complication is rewards that are unknown a priori . The

ontroller would have to learn about the rewards gained per state

s she tries to stay in high-reward states. The framework here is

nalogous to a classic bandit problem (Gittins, Glazebrook, & We-

er, 2011). Unlike a bandit problem, we have a complicated state-

pace, and the dynamics are not entirely under our control. This

ould be particularly relevant to environmental monitoring cases,

here the controller might not initially know which locations are

ost important to observe.

cknowledgments

We would like to thank the reviewers for their helpful and rel-

vant comments, which have greatly improved this paper. This re-

earch was supported by an EPSRC Doctoral Training Grant, as part

f the STOR-i Centre for Doctoral Training.

ppendix A. Proving the identity

We wish to prove that:

 (x) =

∑ x
y =0 P y (g(y + 1) − g(y))

μ
∑ x

y =0 P y
(42)

Begin with the expression for w (x) :

 (x) =

∑ x +1
y =0 g(y) πx +1 (y) − ∑ x

y =0 g(y) πx (y)

�(πx (x) − πx +1 (x + 1))
(43)

Next we define

=

�

μ
(44)

Recall from Eq. (21) that P x =

∑ x
y =0 ρ

y /y ! , which is the normal-

sing constant for π x (x). The second sum in the numerator of w (x)
an be written as:

x

y =0

πx (y) g(y) =

1

P x

(

x ∑

y =0

ρy

y !
g(y)

)

(45)

Take out a term g (x) from the sum:

x

y =0

πx (y) g(y) =

1

P x

((

x ∑

y =0

ρy

y !

)

g(x) +

x −1 ∑

y =0

ρy

y !
(g(y) − g(x))

)

(46)

Using the definition of P x :

x

y =0

πx (y) g(y) =

1

P x

(

P x g(x) +

x −1 ∑

y =0

ρy

y !
(g(y) − g(x))

)

(47)

We can repeat what we just did:

x

y =0

πx (y) g(y)

=

1

P x

(

P x g(x) +

x −1 ∑

y =0

ρy

y !
(g(x −1) −g(x)) +

x −1 ∑

y =0

ρy

y !
(g(y) −g(x −1))

)

(48)

Rewrite, noting that the last term of the second sum is zero:

1

P x

(

P x g(x) + P x −1 (g(x − 1) − g(x)) +

x −2 ∑

y =0

ρy

y !
(g(y) − g(x − 1))

)

(49)

By doing this repeatedly, we can collapse the whole sum:

x

y =0

πx (y) g(y) =

1

P x

(

g(x) P x +

x −1 ∑

y =0

P y (g(y) − g(y + 1))

)

(50)

Now look at the numerator of the formula for w (x) . Using the

xpression just obtained, we can express it as:

1

P x +1

(

g(x + 1) P x +1 +

x ∑

y =0

P y (g(y) − g(y + 1))

)

− 1

P x

(

g(x) P x +

x −1 ∑

y =0

P y (g(y) − g(y + 1))

)

(51)

Joining the two sums together:

P x

P x
(g(x + 1) − g(x)) +

P x (g(x) − g(x + 1)

P x +1

+

(
1

P x +1

− 1

P x

) x −1 ∑

y =0

P y (g(y) − g(y + 1)) (52)

The numerator is therefore equal to:

P x +1 − P x

P x +1 P x

(

x ∑

y =0

P y (g(y + 1) − g(y))

)

(53)

For the denominator of w (x) , we can simplify directly:

x (x) − πx +1 (x + 1) =

P x − P x −1

P x
− P x +1 − P x

P x +1

=

P 2 x − P x +1 P x −1

P x +1 P x

(54)

We can now combine the two expressions we have obtained to

et a new form for w (x) , with a factor of P x P x +1 cancelling:

 (x) =

1

�

(P x +1 − P x)
(∑ x

y =0 P y (g(y + 1) − g(y))
)

P 2 − P x +1 P x −1

(55)

x

238 S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239

m

v

c

)
We can simplify the terms involving P x by rearranging as fol-

lows:

(P x +1 − P x)

P x
2 − P x +1 P x −1

=

ρx +1 / (x + 1)!

P 2 x − (P x − ρx

x !
)(P x +

ρx +1
(x +1)!

)
(56)

Multiply out the brackets on the bottom and cancel:

=

ρx +1 / (x + 1)!

P x (
ρx

x !
− ρx +1

(x +1)!
) +

ρx

x !
ρx +1

(x +1)!

(57)

Strip out a factor of ρx +1 / (x + 1)! from top and bottom:

=

1

P x (
x +1
ρ − 1) +

ρx

x !

=

1

P x
x +1
ρ − P x +

ρx

x !

=

1

P x
x +1
ρ − P x −1

(58)

Simplifying this expression requires us to prove a lemma.

Lemma. P x
x +1
ρ − P x −1 =

1
ρ

∑ x
y =0 P y .

Proof. We proceed by induction. For x = 1 we substitute in P 0 = 1

and P 1 = 1 + ρ:

(1 + ρ)
2

ρ
− 1 =

1

ρ
(1 + 1 + ρ) (59)

2

ρ
+ 2 − 1 =

1

ρ
+

1

ρ
+ 1 (60)

The two sides are equal, so we have our base case.

For the induction step, we assume the x − 1 case, that:

P x −1
x

ρ
− P x −2 =

1

ρ

x −1 ∑

y =0

P y (61)

When we go to the x case, we must add the same to both sides;

we must have that:

P x
x + 1

ρ
− P x −1

x

ρ
− ρx −1

(x − 1)!
=

1

ρ
P x (62)

We can manipulate the L.H.S as follows, beginning by taking out

a factor of ρ−1 :

1

ρ

((
P x −1 +

ρx

x !

)
(x + 1) − P x −1 x − ρx

(x − 1)!

)
=

1

ρ
P x (63)

Cancel the factor ρ−1 , and multiply out the brackets:

xP x −1 + P x −1 +

xρx

x !
+

ρx

x !
− P x −1 x − ρx

(x − 1)!
= P x (64)

P x −1 +

ρx

x !
+

ρx

(x − 1)!
− ρx

(x − 1)!
= P x (65)

P x −1 +

ρx

x !
= P x (66)

We have hence established the required identity.

We can now use this result and rewrite w x as:

w (x) =

1

μ

∑ x
y =0 P y (g(y + 1) − g(y) ∑ x

y =0 P y
(67)

This is the required identity. �

Appendix B. Pseudocode for policy iteration

Throughout, 0 is the vector of all zeros, and e i is the i th basis

vector, both in the appropriate number of dimensions. Comments

are indicated by two hashes: ##.

U is the policy, represented as a vector of the controls, in-

dexed by the states; U(x) = a is the control applied in state x .
ax_iterations is there in case the iteration takes too long to con-

erge, and is a hard cap on the number of times the central loop

an run.

PolicyIteration := function(U,max_iterations){

We need to set up a few things

First, the size of the state-space

| X| =

(
N + K + 1

K + 1

)
The relative value vector

φ = 0

Uniformisation constant

B = N ∗ max (μi) + λ(N)

Iteration cap

iteration_number=0

while(iteration_number < max_iterations){

Store the old controls

old_ U = U

A = 0 0 T ## I.e. an all zeroes matrix

r = 0

Evaluate the current control

for (x ∈ X) {

a = U(x) r(x) = R (x + a) /B

Self-transition, which returns us to x (this is fine

because the problem is

memoryless and so we’ll just apply the same control

again)

A [x, x] = −λ((x + a) K+1)) /B − (
∑ K

k =1 μk (x + a) k /B)

Repair transition

if((x + a) K+1 > 0){

p xy = λ((x + a) K+1) /B

y = x + a − e K+1 + e K+2

A [x, y] = −p xy

}

Failure transitions

for(k ∈ K s.t. (x + a) k > 0){

p xy = μk (x + a) k /B

y = x + a − e k + e K+1

A [x, y] = −p xy

}

Average reward

A [x, | X| + 1] = 1

}

Fixing condition: φ[1] = 0

A [| X| + 1 , 1] = 1

r[| X| + 1 + 1] = 0

φ = A

−1 r

Now solve for the optimal controls

for(x ∈ X s.t. x K+2 > 0){

v al = 0 , of length | U|
for(a ∈ U(x)){

Reward and self-transition

v al[a] = R (x + a) + φ(x)(B −λ((x + a) K + 1) −
∑ K

k = 1 μk (x + a) k
Repair transition

if(x K+1 > 0){

q xy = λ((x + a) K+1) /B

y = x + a − e K+1 + e K+2

v al[a] = v al[a] + q xy φ[y]

}

Failure transitions

for(k ∈ K s.t. (x + a) k > 0){

q xy = μk (x + a) k
y = x + a − e k + e K+1

v al[a] = v al[a] + q xy φ[y]

}

}

S. Ford, M.P. Atkinson and K. Glazebrook et al. / European Journal of Operational Research 284 (2020) 227–239 239

}

R

B

B

C

C

D

D

F

G

G

G

G

H

H

K

K

L

N

P

P

S

S

W

W
Pick the best control

U(x) = arg max v al

}

Check the termination condition

if(old_ U == U){

return (U)

}

iteration_number = iteration_number + 1

}

print(”Maximum Iterations Reached”)

return(U)

eferences

orkar, V. S. , & Pattathil, S. (2017). Whittle indexability in egalitarian processor shar-
ing systems. Annals of Operations Research, Online First .

oyacı, B. , Zografos, K. G. , & Geroliminis, N. (2015). An optimization framework for
the development of efficient one-way car-sharing systems. European Journal of

Operational Research, 240 (3), 718–733 .

asbeer, D. W. , Beard, R. W. , McLain, T. W. , Li, S.-M. , & Mehra, R. K. (2005). Forest
fire monitoring with multiple small UAVs. In Proceedings of the american control

conference .
ook, K. L. B. (2007). The silent force multiplier: The history and role of UAVs in

warfare. In Proceedings of the IEEE aerospace conference (pp. 1–7) .
oshi, B. T. (1986). Queueing systems with vacations: A survey. Queueing Systems, 1 ,

29–66 .
ufour, F. , & Piunovskiy, A. B. (2015). Impulsive control for continuous-time Markov

decision processes. Advances in Applied Probability, 47 (1), 106–127 .

edergruen, A. , & So, K. C. (1991). Optimality of threshold policies in single-server
queueing systems with server vacations. Advances in Applied Probability, 23 (2),

388–405 .
ittins, J. C. (1979). Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society. Series B (Methodological), 41 (2), 148–164 .
ittins, J. C. , Glazebrook, K. , & Weber, R. (2011). Multi-armed Bandit Allocation In-
dices . John Wiley & Sons .

lazebrook, K. , Kirkbride, C. , & Ouenniche, J. (2009). Index policies for the admission
control and routing of impatient customers to heterogeneous service stations.

Operations Research, 57 , 975–989 .
onzalez, L. F. , Montes, G. A. , Puig, E. , Johnson, S. , Mengersen, K. , & Gas-

ton, K. J. (2016). Unmanned aerial vehicles (UAVs) and artificial intelligence rev-
olutionizing wildlife monitoring and conservation. Sensors, 16 (1), 97 .

archol-Balter, M. (2013). Performance Modeling and Design of Computer Systems:

Queueing Theory in Action . Cambridge University Press .
yytiä, E. (2013). Optimal routing of fixed size jobs to two parallel servers. INFOR:

Information Systems and Operational Research, 51 (4), 215–224 .
e, J.-C. (2003). The optimal control of an M/G/1 queueing system with server

vacations, startup and breakdowns. Computers & Industrial Engineering, 44 (4),
567–579 .

erzner, H. (2017). Project Management: A Systems Approach to Planning, Scheduling,

and Controlling (10th ed.). John Wiley & Sons .
in, K. , Atkinson, M. , & Glazebrook, K. (2014). Optimal patrol to uncover threats in

time when detection is imperfect. Naval Research Logistics, 61 (8), 557–576 .
igam, N. (2014). The multiple unmanned air vehicle persistent surveillance prob-

lem: A review. Machines, 2 (1), 13–72 .
owell, W. B. (2007). Approximate Dynamic Programming: Solving the Curses of Di-

mensionality . John Wiley & Sons .

uterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming . John Wiley & Sons .

chuijbroek, J. , Hampshire, R. C. , & Van Hoeve, W.-J. (2017). Inventory rebalancing
and vehicle routing in bike sharing systems. European Journal of Operational Re-

search, 257 (3), 992–1004 .
tidham, S. , & Weber, R. (1993). A survey of Markov decision models for control of

networks of queues. Queueing systems, 13 (1–3), 291–314 .

aharte, S. , & Trigoni, N. (2010). Supporting search and rescue operations with
UAVs. In Proceedings of the International conference on emerging security tech-

nologies (est) (pp. 142–147) .
hittle, P. (1988). Restless bandits: Activity allocation in a changing world. Journal

of Applied Probability, 25 (A), 287–298 .

http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0001
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0001
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0001
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0001
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0002
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0002
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0002
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0002
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0002
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0003
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0004
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0004
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0005
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0005
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0006
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0006
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0006
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0006
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0007
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0007
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0007
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0007
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0008
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0008
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0009
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0009
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0009
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0009
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0009
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0010
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0010
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0010
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0010
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0010
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0011
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0012
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0012
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0013
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0013
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0014
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0014
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0015
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0015
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0016
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0016
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0016
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0016
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0016
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0017
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0017
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0018
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0018
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0019
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0019
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0020
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0020
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0020
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0020
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0020
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0021
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0021
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0021
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0021
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0022
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0022
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0022
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0022
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0023
http://refhub.elsevier.com/S0377-2217(19)31037-9/sbref0023

	On the dynamic allocation of assets subject to failure
	1 Introduction
	1.1 Motivating examples
	1.2 Problem description
	1.3 Contributions and paper structure

	2 The problem formulation
	2.1 Markov decision process model
	2.2 Solution by dynamic programming

	3 A Restless bandit approximation
	3.1 The approximating system
	3.2 Indexability

	4 Policies
	4.1 The Whittle index rule
	4.2 Policies for comparison

	5 Numerical experiments
	5.1 Policy evaluation
	5.2 Results

	6 Conclusion
	Acknowledgments
	Appendix A Proving the identity
	Appendix B Pseudocode for policy iteration
	References

