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Abstract

A common network security approach is to create a De-Militarized Zone (DMZ)
comprising two layers of network defense. The DMZ structure provides an extra layer
of security between the sensitive information in a network (e.g., research and devel-
opment files) and the component of the network that must interface with the general
internet (e.g., the mail server). We consider a cyber-attack on a DMZ network where
both attacker and defender have limited resources and capabilities to attack and defend,
respectively. We study two optimization problems and one game-theoretic problem.
Given that the attacker (defender) knows the potential capabilities of the defender (at-
tacker) in the two layers, we obtain the optimal allocation of resources for the attacker
(defender). The two optimization problems are not symmetrical. Absent any knowledge
regarding the allocation of the adversary’s resources, we solve a game-theoretic prob-
lem and obtain some operational insights regarding the effect of combat (e.g., cyber)
capabilities and their optimal allocation.
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1 Introduction

Layered defense is a key concept in computer networks defense [1]. Specifically, a common
network security approach is to utilize a De-Militarized Zone (DMZ) structure [2][3], which
generates two layers of network defense. The DMZ itself consists of the portions of the en-
terprise network between the internet and the enterprise’s intranet [3]. The intranet contains
sensitive files such as personal information, financial records, and research and development
plans. The DMZ contains the parts of the network that must interface with the internet
(e.g., mail server). We focus on the two defensive layers of the DMZ that border the DMZ –
the outer layer facing the internet, and the inner layer facing the intranet. A cyber-attacker,
attempting to penetrate a computer network of the enterprise and access its intranet, needs
to successfully breach these two layers of defense, without being detected by the defender,
in order to successfully achieve its attacking goal. More generally, we consider a conflict
situation in which the attacker (Red) proceeds to sequentially infiltrate the defender’s (Blue)
two layers of defense. Red prevails as the victor if it wins both battles. Otherwise, Blue
wins. This conflict situation is modeled as a one-on-two combat model, where a single Red
attacker engages two layers of Blue defense and Red must sequentially beat them both in
order to win. Given that Red (Blue) has limited attack (defense) resources, the question is
how should the two sides allocate their respective resources, where Red wants to maximize
the probability of a win, and Blue wishes to minimize it.

While we focus on the cyber domain as our motivating case in this paper, our model is
also appropriate for other scenarios. For example, physical locations (e.g., military bases,
banks, museums) protected by layers of security that require different skills and/or tools
to penetrate. In the museum scenario the attacker would need to first breach the exterior
defenses of the museum (e.g., locks, patrollers), and then would need to avoid detection by
guards, cameras, and sensors in the interior of the museum to successfully steal the artifact.

Mathematical models representing related armed conflicts comprise a large body of re-
search that ranges between aggregate combat models, i.e., Lanchester models, which address
large-formation engagements [4][5][6][7], and more detailed probabilistic models, i.e., stochas-
tic duels, which describe small-scale engagements [8],[9],[10][11][12].

Colonel Blotto games consider a similar scenario where Red and Blue allocate resources
across multiple battlefields [13, 14, 15]. While both our model and Blotto games are resource
allocation models, there are several important differences. In contrast to our setting, most
Blotto models assume the battlefields are homogenous and contested simultaneously, Red
and Blue have equivalent capabilities, and the resources are discrete (e.g., military units).
While Blotto assumes all battlefields are engaged in parallel, our setting can be viewed as
a series-system from Red’s perspective as Red must succeed in both layers to prevail. [16]
examines game theoretic interactions in a series-system, however there are many differences
between our scenario and the one in [16]. For example, only Red would choose their resource
allocation under the framework in [16], whereas both Red and Blue make resource allocation
decisions in our model.

Our setting is similar to missile defense where Red fires at Blue targets and Blue responds
by launching a series of salvos to intercept the Red threats [17, 18, 19]. Red must sequentially
penetrate several layers of Blue defense (interception salvos at long, medium, short range)
to hit the targets. Blue only needs to successfully intercept Red in one of the salvos. While
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most of the work in missile defense is prescriptive, there are some descriptive models that
analyze the number of threats that survive each layer [20, 21, 22, 23]. There are some crucial
differences between our setting and the missile defense scenario. The missile defense problem
is usually analyzed from Blue’s perspective. While Red may have a decision about which
targets to fire at, Red does not allocate resources across the defensive layers. Furthermore,
most work in missile defense examines the weapon target assignment (WTA) problem, which
considers the assignment of specific interceptors against specific threats at specific ranges
[24, 25, 26]. The WTA is a nonlinear integer optimization problem, and most research
focuses on developing heuristics [27]. Our model is much simpler and provides insight into
the resource allocation of both Red and Blue across the two layers, and how that allocation
varies with key input parameters.

Traditionally, combat models have been applied to violent “kinetic” conflicts where at-
tacks are conducted with lethal weapons and attrition is physical. However, combat models
can also be applied to “soft kill” settings, such as cyber-warfare, where missiles and bullets
are replaced by lines of code. In such situations attrition is manifested in loss of valuable
information and/or disruptions in the operation of the computer network. Cyber warfare has
drawn the attention of the research community [28][29], and in particular, its potential im-
pact on kinetic warfare [30][31]. Moreover, the operations-research community has addressed
cyber-related modeling challenges by combining combat and epidemic models [31][32][33],
analyzing the development and employment of munitions against exploits [34], and applying
exploration-exploitation models [35]. A recent survey paper [36] reviews studies that apply
optimization to the design of cyber infrastructure.

Game-theoretic approaches for modeling cyber warfare are reported in [37] and references
therein. The setting in [38] is similar to ours with two layers of a cyber defense. However,
the model in [38] considers many discrete attack and defense options with varying costs,
which leads to an intractable non-zero-sum game that is analyzed with various heuristics. In
contrast, we derive analytic results that provide insight into how the inputs drive the results.

Unlike most of the work reported in the cyber-warfare literature, we explicitly address
the layered-defense feature that characterizes many computer networks in the form of the
DMZ structure. The question we study in this paper is that of resource allocation, both
by the Red and Blue, between the two layers of defense. This study also naturally leads to
game-theoretic situations.

The rest of the paper is organized as follows. We describe the model in Section 2 and
present results in 3–5 for various scenarios where either Blue or Red or both make resource
allocation decisions. Sections 6–7 consider extensions to the model where Red does not need
to necessarily penetrate both layers to accomplish its objectives. Section 8 expands the game
theoretic results from Section 5 to N layers

2 Model

We base our model on the fundamental stochastic duel, where one Blue shooter and one Red
shooter repeatedly fire at each other until one is hit [8]. There are many extensions to the
basic model, including multiple shooters and tactical considerations [9],[10][11][12]. In most
duel models the time until a shooter scores a successful hit follows an exponential distribution
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[9],[10][11]. Our problem can be viewed as two sequential duels – one at each layer. Red,
the attacker, wins if it successfully penetrates the two layers. Blue wins if it detects Red
in one of the layers. As in the duel literature, we model Red’s penetration time and Blue’s
detection time as exponential random variables.

Although we later on somewhat relax it, we assume that the two layers of defense require
different attack and defense capabilities. For example, hacking layer 1 requires a much
different set of skills than hacking layer 2. Therefore, both Red and Blue have to decide how
to allocate their respective cyber-resources (money and manpower) between the two layers.
Obviously, Red must allocate non-zero resources to each one of the two layers in order to
have a non-zero probability to win.

If Blue and Red allocate xi and yi of their respective resources to attack and defend layer
i, i = 1, 2,, respectively, then the expected time until Red penetrates layer i and Blue detects
the attack on that layer, are 1

µiyi
and 1

λixi
, respectively. We normalize resources to unitless

parameters such that 0 ≤ xi, yi ≤ 1, i = 1, 2. and x1 + x2 = y1 + y2 = 1. The last condition
simply says that not utilizing all of one’s resources is a dominated strategy. Otherwise, Red
(Blue) should simply allocate the remaining resources to either layer and the probability of
successful penetration will increase (decrease).

The parameters λi and µi incorporate two factors. The first is Blue’s (Red’s) intrinsic, or
“per-capita”, effectiveness (e.g., cyber qualifications and experience of individual computer
analysts) in layer i. As mentioned earlier, the characteristics of the two layers might be
very different, and so Blue could be effective at defending one layer but not the other (e.g.,
λ1 � λ2). The second factor is the overall level of resources (e.g., number of computer
analysts) at Blue’s (Red’s) disposal. Recall that we normalize resources to lie within [0,1]
and so while xi = 0.5 and yi = 0.5 are equivalent from a relative standpoint, they might
differ substantially from an absolute perspective. The units of λi and µi are 1/(time) since
the resources xi and yi are unitless. 1

λi
( 1
µi

) is the expected amount of time for Blue (Red)

to defend (penetrate) layer i when Blue (Red) utilizes all available resources in layer i. In
this paper, we only consider linear functions of resources: λixi and µiyi. We leave for future
work analysis of non-linear relationships between resources and the rates.

Recall that the engagement is asymmetric: Red must successfully defeat both layers to
achieve its objective, whereas Blue only needs to detect Red in one layer. Assuming the
layers are independent, the probability Red wins is:

P [Red wins] =
µ1y1

µ1y1 + λ1x1
× µ2y2
µ2y2 + λ2x2

=
α1y1

α1y1 + x1
× α2y2
α2y2 + x2

(1)

where αi ≡ µi
λi

is the Red-Blue effectiveness ratio at layer i, i = 1, 2. Recall from the discus-
sion above that the αi ratio incorporates both the quality and quantity aspects of the two
adversaries. Note also that if yi = 0, in some layer, then P [Red wins] = 0 regardless of what
Blue does.

Recall we assume the two layers of defense require different types of resources (e.g., cyber
skills or tools). However, this may not always be the case; cyber personnel who successfully
hack layer 1 may be able to also hack layer 2. Although we primarily focus on the situation
where resources cannot be reused (x1 + x2 = 1, y1 + y2 = 1 ), we will show some numerical
examples where one side, say Blue, can fully reuse its resources (e.g., x1 = x2 = 1)
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We first consider one-sided situations in Sections 3–4 where we fix yi (xi) and optimize xi
(yi) and then study a simultaneous game in Section 5. We conclude this section by presenting
a table of model parameters.

Symbol Range Description
λi (0,∞) Blue defensive effectiveness in layer i

µi (0,∞) Red offensive effectiveness in layer i

αi (0,∞) αi ≡ µi
λi

: Red-Blue effectiveness ratio at layer i

C (0,∞) C ≡ α1

α2
: the effectiveness ratio in layer 1 relative to layer 2

D (0, 1) Partial reward for Red when Red stops after layer 1 (Section 6 only)

q (0, 1) Probability Red wins immediately after penetrating layer 1 (Section 7 only)

xi [0, 1] Blue’s defensive resource allocation in layer i

yi [0, 1] Red’s offensive resource allocation in layer i

x [0, 1] When x appears without a subscript, it is Blue’s allocation in layer 1.
In this case Blue allocates 1− x to layer 2

y [0, 1] Red’s allocation in layer 1. In this case Red allocates 1− y to layer 2

b(x; y1, y2) [0, 1] Red win-probability when Blue allocates x in layer 1 and (1− x) in layer 2
and Red allocates yi to layer i (Section 3 only)

r(y;x1, x2) [0, 1] Red win-probability when Blue allocates xi to layer i and Red allocates
y in layer 1 and (1− y) in layer 2 (Section 4 only)

g(x, y) [0, 1] Red win-probability when Blue allocates x in layer 1 and (1− x) in layer 2
and Red allocates y in layer 1 and (1− y) in layer 2 (Section 5 only)

Table 1: Model Parameters

3 Blue’s Defense Allocation

In this section we assume Red’s allocation is fixed to y1 and y2, and Blue knows the values
of µ1y1 and µ2y2. Blue optimizes the allocation x to layer 1, which determines the allocation
1 − x to layer 2, such that its detection and threat-elimination rates are λ1x and λ2(1 − x)
for layers 1 and 2, respectively. We first rewrite the Red win-probability in (1) to highlight
the functional dependence on x:

P [Red wins] ≡ b(x; y1, y2) =
α1y1

α1y1 + x
× α2y2
α2y2 + (1− x)

(2)

Blue wishes to minimize b(x; y1, y2) subject to x ∈ [0, 1]. This is equivalent to minimizing
log b(x; y1, y2):

log b(x; y1, y2) = logα1y1 − log(α1y1 + x) + logα2y2 − log(α2y2 + (1− x)). (3)
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It is easily seen that log b(x; y1, y2) is convex in x. Setting the derivative of log b(x) to 0 yields
the unconstrained minimizer of b(x; y1, y2):

x̂ =
α2y2 − α1y1 + 1

2
. (4)

Note that there are boundary conditions for x̂ that are affected by the effectiveness ratios
αi, i = 1, 2. Intuitively, Blue should concentrate its resources where it has a better chance of
detecting Red. Specifically, if α1y1 ≥ 1 + α2y2, then Blue should invest all its resources in
protecting layer 2. Conversely, if α2y2 ≥ 1 + α1y1, then Blue should only focus on layer 1.
When α1y1 and α2y2 are more similar (−1 < α2y2 − α1y1 < 1) the interior solution x̂ given
by (4) is optimal, and Blue allocates resources to both layers. We summarize Blue’s optimal
allocation in the following proposition:

Proposition 1. Blue’s optimal defense allocation for layer 1 is

x∗ = min(max(x̂, 0), 1). (5)

where x̂ is defined by (4).

The constrained minimizer x∗ in Proposition 1 follows by combining the unconstrained
minimizer x̂ with the convexity of log b(x; y1, y2).

We conclude this section by examining the worst case scenario for Blue, when Red is
able to reuse all of its resources allocated to layer 1 in layer 2, that is, y1 = y2 = 1. As
discussed in Section 2, this could occur if Red is able to use the same personnel or tools
to hack both layers. We do not have data to estimate the parameters – they are typically
classified – however, fortunately, we only need the relative quantities αi, which should be
easier to estimate compared to individual parameters. Arguably, α1 ≥ α2; as Red penetrates
deeper into the network, it becomes more vulnerable to Blue’s detection capabilities. Figure
1 presents the optimal allocation x∗ for Blue, as a function of α1 for several values of C ≡ α1

α2
.

The parameter ranges we consider in Figure 1 and the rest of the paper correspond to
moderate settings where Blue and Red have similar capabilities (i.e., αi do not assume
extreme values) and one layer is not significantly more difficult to penetrate than the other
(i.e., α1 and α2 have the same magnitude). For small values of α1 the optimal allocation x∗

is the unconstrained minimizer x̂, which by inspection of (4) is just a line with an intercept
of 1

2
and a slope of 1

2
( 1
C
−1). Notice, as trivially observed from (4), that if the two layers have

equal effectiveness ratios (C = 1), Blue should equally split its resources between the two
layers, regardless of the actual value of the effectiveness ratio α1. As C increases (i.e., the
effectiveness ratio in layer 1 increases compared to layer 2), the fraction of Blue’s resources
directed to layer 1 decreases. For a given C > 1, as α1 increases (i.e., Red becomes more
effective compared to Blue in layer 1) x∗ decreases to the point where Blue should abandon
layer 1 and put all of its resources in layer 2 (e.g., when C = 5 and α1 ≥ 1.25).

As mentioned above, it is most likely that C ≥ 1. The case C < 1 is presented in the
plot just as a reference.
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Figure 1: Blue’s optimal allocation at layer 1, x∗, as a function of α1 for several values of
C ≡ α1

α2
. Red is able to reuse all its resources from layer 1 in layer 2: y1 = y2 = 1

4 Red’s Attack Allocation

We now assume that Blue’s allocation is fixed at x1 and x2 and Red optimizes its resource
allocation while knowing the values of λ1x1 and λ2x2. Red optimizes y to layer 1 and 1− y
to layer 2. Thus, Red’s problem is to choose y that maximizes

P [Red wins] ≡ r(y;x1, x2) =
α1y

α1y + x1
× α2(1− y)

α2(1− y) + x2
. (6)

Equation (6) is a special case of (1). Note that r(0;x1, x2) = r(1;x1, x2) = 0 for any
x1, x2 ∈ [0, 1], whereas r(y;x1, x2) > 0 for any 0 < y < 1. Hence unlike Blue, who might
optimally concentrate all of its resources only in one layer (see Section 3), Red must allocate
positive effort to each layer because otherwise P [Red wins] = 0. Thus, the optimal allocation
must lie in the interior: y∗ ∈ (0, 1). The following proposition presents the optimal allocation.

Proposition 2. Red’s optimal attack allocation to layer 1 is

y∗ =
−x1(α2 + x2) +

√
x1x2(α1 + x1)(α2 + x2)

α1x2 − α2x1
for

α1

x1
6= α2

x2
(7)

When the denominator of (7) is 0 (α1

x1
= α2

x2
), y∗ = 0.5.

The proof for Proposition 2 proceeds in a similar fashion to the logic in Section 3 for
Blue’s defense allocation. We show that r(y;x1, x2) is a concave function of y and y∗ in
(7) satisfies the first order condition. Full details of the proof for Proposition 2 appears in
Appendix B.2.
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As with Figure 1, Figure 2 displays the optimal resource allocation y∗ for Red as a function
of α1 for six values of C ≡ α1

α2
. Similarly to Figure 1, we assume a worst case for Red where

Blue can fully reuse its resources in layer 2: x1 = x2 = 1. In the special case when the two
layers are equal in terms of effectiveness ratios (C = 1), the optimal allocation is to equally
split the resources between the two layers. Also, notice from Figure 2 that, unlike the case
for Blue in Figure 1, Red’s resource allocation is quite insensitive to both the effectiveness
ratios αi and the relative effectiveness between the two layers C. As observed above, Red
has to engage in both layers to succeed, but Figure 2 shows that Red’s level of engagement
in the two layers is close to parity, unless both α1 and C are very large.

Figure 2: Red’s optimal allocation at layer 1, y∗, as a function of α1 for several values of
C ≡ α1

α2
. Blue is able to reuse all its resources from layer 1 in layer 2: x1 = x2 = 1

5 Simultaneous Allocation

In the previous two sections we assume that Blue (Red) allocates its finite resource against
a fixed Red (Blue) allocation. Suppose now that both sides choose how to allocate their
limited resources between the two layers simultaneously. As in Sections 3–4, we assume that
resources in layer 1 cannot be reused in layer 2: x1 + x2 = y1 + y2 = 1. Hence Blue (Red)
only needs to choose its allocation x (y) in layer 1, with the remaining 1 − x (1 − y) going
to layer 2. Both Blue and Red know the effectiveness ratios α1, α2, but do not know the
allocation of effort (y, x) in the opposite side. In this case, equation (1) can be written as

P [Red wins] ≡ g(x, y) =
α1y

α1y + x
× α2(1− y)

α2(1− y) + (1− x)
. (8)

Red wishes to maximize g(x, y) while Blue wants to minimize it. Examining the second
derivative of g(x, y) reveals that g(x, y) is a strictly convex function of x for a fixed y, and
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strictly concave function of y for a fixed x. Therefore, we have a concave-convex game (see
Section 5.2 of [39]), which implies g(x, y) has a saddle point, which is the solution of the
allocation game of the cyber resources.

Proposition 3. The unique solution of the simultaneous zero-sum allocation game between
Red and Blue is

x∗ = y∗ =
1

1 + α1+1
α2+1

(9)

The value of the game – the probability that Red wins – is

v∗ =
α1

α1 + 1
× α2

α2 + 1
. (10)

Because we have a concave-convex game, we just need to verify that (x∗, y∗) in (9) satisfies
the first order conditions. The complete proof of Proposition 3 appears in Appendix B.3.

Figure 3 shows the layer 1 resource allocation for both Blue and Red. As in the one-sided
cases, we see that if the effectiveness ratios are the same in both layers (C = 1) then the
allocation is equal in the two layers, regardless of the actual value of the ratio α1. When
the effectiveness ratio tilts, as one would expect, toward Blue at the second layer (i.e., C
increases), the allocation of resources also tilts towards layer 2, albeit in moderate manner,
as shown in Figure 3. The minimum fraction of resources Red (and Blue) must put in layer
1 is 1

1+C
(when C > 1). Even if α1 >> α2 Red must still allocate some resources to layer 1

to penetrate it.

Figure 3: Blue and Red’s optimal allocation at layer 1 as a function of α1 for several values
of C ≡ α1

α2
.
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6 Partial Reward for Red

Thus far we assume a binary situation: either Red successfully penetrates undetected the
two defense layers of Blue, in which case Red is the winner, or Red is intercepted by Blue,
either in layer 1 or layer 2, and Blue is the winner. Now suppose that Red can choose to
stop after penetrating layer 1 and collect some partial reward D < 1. For example a hacker
can stop after penetrating the DMZ and just download email messages. If Red decides to
continue to layer 2 after successfully penetrating layer 1, Red will collect a reward of 1 if not
intercepted by Blue in layer 2. Red receives a reward of 0 if Blue intercepts Red in either
layer. That is, Red forfeits the D collected in layer 1 if Red continues to layer 2 and Blue
intercepts Red at layer 2. So, the question here is regarding Red’s stopping rule: shall Red
stop after penetrating layer 1 or should Red continue to layer 2. Now in addition to Red and
Blue choosing their resource allocations, Red must also choose whether to stop after layer
1. More specifically, we consider the simultaneous game situation where Blue decides on the
value of x, and Red chooses both the value of y and whether to stop after layer 1 or proceed
to layer 2. We use the nomenclature “choose layer 1” or “choose layer 2” to denote Red’s
options for its stop/continue decision.

Define fi(x, y) as the game payoff (Red expected reward) if Red chooses layer i with
allocation y and Blue uses allocation x.

f1(x, y) ≡ α1y

α1y + x
D (11)

f2(x, y) ≡ α1y

α1y + x

α2(1− y)

α2(1− y) + (1− x)
(12)

For a small value of D, Red gains little benefit from stopping after layer 1 and thus Red
chooses layer 2; therefore the solution is the same as in Proposition 3. For larger values of D,
Red plays a mixed strategy; with some probability Red only attacks layer 1 and obviously
puts all its resources in that layer. Otherwise, Red plans to attack layer 2 too and allocates
resources to both layers.

Proposition 4. If

D <
α2

α2 + 1
× α1 + α2 + 1

α1 + α2 + 2
(13)

then the solution of the game is the same as in Proposition 3. That is, Red chooses layer
2 and the resource allocation between the two layers will be the same for Red and Blue as in
Equation (9). Otherwise, Red plays a mixed strategy across two options:

� With probability p∗ Red chooses to allocate all of its resources to layer 1 (y = 1).

� With probability 1− p∗ Red chooses layer 2 and only allocates a fraction y∗ to layer 1.

Blue uses a pure strategy and allocates x∗ to layer 1. The triple (x∗, y∗, p∗) satisfies the
following simultaneous equations
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y =
−x(α2 + (1− x)) +

√
x(1− x)(α1 + x)(α2 + (1− x))

α1(1− x)− α2x
(14)

p =
α2y(1− y)(α1 + x)2((α1y + x)− (α2(1− y) + (1− x)))

α2y(1− y)(α1 + x)2((α1y + x)− (α2(1− y) + (1− x))) +D(α1y + x)2(α2(1− y) + (1− x))2
(15)

D(α1y + x)(α2(1− y) + (1− x)) = α2y(1− y)(α1 + x) (16)

The proof of Proposition 4 appears in Appendix A. Equation (14) determines Red’s
best allocation y when choosing layer 2 if Blue allocates x. Equation (15) dictates Blue’s
best response to Red mixing with probability p and allocating y when Red chooses layer
2. Equation (16) equalizes the payoff between choosing layer 1 and layer 2 (f1(x

∗, 1) =
f2(x

∗, y∗)), which allows for a Red mixed strategy to be optimal.
The threshold for D in (13) that determines whether Red solely chooses layer 2 is driven

primarily by α2. When Red is very effective in layer 2 (large α2), then Red will attempt to
penetrate layer 2 unless D is close to 1. For smaller values of α2, Red is more likely to be
satisfied with collecting D and stopping at layer 1.

While there is no closed form solution for (x∗, y∗, p∗) in (14)–(16), solving for these three
parameters numerically is very straightforward as we only need to perform a grid-search over
x, which fully determines the solutions for y and p via (14)–(15). We describe the grid-search
approach in Appendix A.2.1. Figure 4 plots (x∗, y∗, p∗) from (14)–(16) vs. D for different
values of α1 and α2. The curves are flat when D is less than the threshold in (13) and the
solution is given by Proposition 3. As D increases, layer 1 becomes more enticing for Red
as there is little marginal benefit to risking layer 2. However, as Proposition 4 reveals, Red
never fully commits to layer 1 for D < 1. Figure 4 illustrates that, while theoretically Red
never fully commits to layer 1 with certainty, practically, Red (and Blue) do put all the effort
into layer 1 as D → 1 since x∗, y∗, p∗ → 1.

x∗ and y∗ no longer equal each other once D increases beyond the threshold specified in
(13). x∗ more quickly increases to 1 than y∗. This occurs partly because x∗ needs to account
for Blue’s response to Red choosing either layer 1 or layer 2, whereas y∗ is the solution
conditioned on Red choosing layer 2. Red also shifts its focus to layer 1 via its mixing
probability p∗ as D increases. x∗ increases more quickly also because of the asymmetric
nature of the engagement: Blue only needs to intercept in one layer, whereas Red needs to
succeed in both, so Red cannot be as aggressive shifting toward layer 1.

11



(a) x∗ vs. D (b) y∗ vs. D (c) p∗ vs. D

Figure 4: Blue (x∗) and Red’s (y∗, p∗) optimal strategy as a function of D for several combi-
nations of (α1, α2)

7 Early Victory

We consider here a similar situation to the one described in Section 6. Instead of partial
reward D, we assume that there is a probability q that Red wins – it attains its attack goals
– immediately after penetrating layer 1. In that case, Red does not need to proceed to layer
2, in which a successful attack guarantees a win. In the cyber DMZ scenario this could
occur if a critical file, targeted by Red, is mistakenly moved by Blue into the DMZ. Such a
situation could occur, for example, when an individual needs to work at home and emails
themselves the critical file; once the file is on the email server, Red can gain access to it
without penetrating layer 2. For the museum scenario, Red’s target artifact has been moved
to a less secure location in the museum for cleaning. This early victory setting represents
Red getting lucky and only needing to exploit the outermost layer to win. For arbitrary Blue
allocation (x1, x2) and Red allocation (y1, y2) the Red win-probability in (1) generalizes to:

P [Red wins] =
α1y1

α1y1 + x1

(
q + (1− q) α2y2

α2y2 + x2

)
(17)

The term outside the parentheses is the probability Red is successful in layer 1; Red still
must penetrate layer 1 to win. If Red succeeds in layer 1, then with probability q Red wins,
otherwise Red proceeds to layer 2 and must succeed in layer 2 to win. We assume that q is
a fixed constant; future work could examine the situation where Red or Blue could modify q
via resource allocation.

We extend the results from Section 3–5 in the following three subsections.

7.1 Blue’s Defense Problem

Given fixed Red allocation (y1, y2), Blue’s problem is to minimize

P [Red wins] =
α1y1

α1y1 + x

(
q + (1− q) α2y2

α2y2 + (1− x)

)
(18)

Define:

x̃ =
q + α2y2 −

√
α2y2(1− q)(q(1 + α1y1) + α2y2)

q
. (19)
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Proposition 5. Blue’s optimal defense allocation for layer 1 is

x∗ = min(max(x̃, 0), 1). (20)

where x̃ is defined by (19).

The proof of Proposition 5 appears in Appendix B.1.

7.2 Red’s Attack Problem

Given fixed Blue allocation (x1, x2), Red’s problem is to maximize

P [Red wins] =
α1y

α1y + x1

(
q + (1− q) α2(1− y)

α2(1− y) + x2

)
(21)

Define:

ỹ =
α2x1(α2 + x2)−

√
α2x1x2(α2 + x2)(1− q)(α1x2q + (α1 + x1)α2)

α2(α2x1 − α1x2(1− q))
. (22)

In the special case when the denominator of (22) equals 0, ỹ simplifies to

ỹ =
1

2
+
x2q

2α2

(23)

Proposition 6. Red’s optimal attack allocation for layer 1 is

y∗ = min(ỹ, 1). (24)

where ỹ is defined by (22)–(23).

The proof of Proposition 6 appears in Appendix B.2. In the original formulation with
q = 0 in Section 4, Red had to optimally allocate a positive amount to both layers. With
q > 0, Red must still allocate a positive amount to layer 1. However, if q is large enough, Red
might neglect layer 2 and allocate everything to layer 1 in the hope that the early victory
occurs.

7.3 Simultaneous Allocation

When both Blue and Red optimally allocate their resources, then Red and Blue are engaged
in a zero-sum game: Red wants to maximize and Blue minimize the following value

P [Red wins] =
α1y

α1y + x

(
q + (1− q) α2(1− y)

α2(1− y) + (1− x)

)
(25)
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Proposition 7. The unique solution of the simultaneous zero-sum game is

x∗ = y∗ =
q(α2 + 1)2 + (1− q)α2(α2 + 1))

q(α2 + 1)2 + (1− q)α2(α1 + α2 + 2)
(26)

The game value (Red win-probability) is:

v∗ =
α1

α1 + 1

(
q + (1− q) α2

α2 + 1

)
(27)

The proof of Proposition 7 appears in Appendix B.3. Figure 5 plots the relationship
between x∗, y∗ and q for different values of α1 and α2. x

∗ and y∗ start at the solution given in
Proposition 3 at q = 0 and increase toward 1 in a near linear fashion. In particular, linearity
is attained in the case of parity, α1 = α2 = 1, where the allocation is x∗ = y∗ = q+1

2
, and

the probability Red wins is v∗ = q+1
4

. More generally, the relationship is linear whenever
α2 = 1

α1
, in which case x∗ = y∗ = q + (1− q) 1

α1+1
.

Figure 5: Blue and Red’s optimal allocation at layer 1 as a function of q for several combi-
nations of (α1, α2)

8 N-layer Simultaneous Game

In this section we extend the game theoretic model from Section 5 to N layers. Blue allocates
x = (x1, x2, . . . , xN) to defend the layers and Red allocates y = (y1, y2, . . . , yN) to attack.
Equation (1) generalizes to

g(x,y) ≡ P [Red wins] =
N∏
i=1

αiyi
αiyi + xi

(28)

14



We assume resources cannot be reused across layers, that is,
∑N

i=1 xi =
∑N

i=1 yi = 1, xi, yi ≥ 0.
As in Section 5, the game payoff in (28) generates a concave-convex game and yields the
following saddle point solution.

Proposition 8. The unique optimal solution of the simultaneous zero-sum game is

x∗i = y∗i =
1

αi+1∑N
j=1

1
αj+1

(29)

The game value (Red win-probability) is:

v∗ =
N∏
i=1

αi
αi + 1

(30)

The proof of Proposition 8 appears in Appendix C. Proposition 8 generalizes Proposition
5.

If αi is large compared to αj, j 6= i, then the optimal allocation x∗i (y∗i ) is close to 0 for
layer i. In this case Red is very effective relative to Blue in layer i, and so Blue essentially
concedes layer i. If αi is small compared to αj, j 6= i, (i.e., Blue is very effective relative to
Red in layer i), then the resource allocations (x∗i , y

∗
i ) increase, but do not approach 1. Red

has to successfully penetrate every layer, so cannot allocate too much to any one layer. For
example, if αi ≈ 0, and αj ≡ α are equal across the remaining layers j 6= i, equation (29)
simplifies to

x∗j = y∗j =

{
α+1
N+α

if j = i
1

N+α
if j 6= i

(31)

The resource allocation in layer i (where Red is ineffective) is α + 1 times greater than
the allocation in any of the other layers. For example, with N = 7 layers and α = 8, Blue
and Red allocate x∗i = y∗i = 0.6 to layer i, which leaves a substantial amount of resources for
the other layers.

9 Conclusion

As in any contest, resource allocation in cyber warfare may determine the outcome of the
confrontation. Specifically, when cyber resources, either offensive or defensive, are limited,
actors engaged in cyber warfare must optimize the deployment of those resources and/or
modify their tactics. In this paper we formulate a base model where Red needs to successfully
penetrate both layers to achieve victory, whereas Blue only needs to detect Red in one
of the layers. We also consider extensions where Red may achieve its objective without
penetrating both layers. In the situation where Blue optimizes its allocation for a fixed Red
allocation, Blue focuses all its resources on the layer where it has the advantage unless the
relative effectiveness levels in the two layers are similar. This contrasts with the scenario
when Red is the sole decision-maker against a fixed Blue allocation: Red always allocates
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resources to both layers in a nearly equal split that is fairly insensitive to the effectiveness
of Red and Blue. In the game where both Red and Blue allocate resources, the allocation
is symmetric and usually of moderate value; the allocation only approaches 0 or 1 when the
two layers significantly differ in their effectiveness ratios. When Red can obtain rewards for
just penetrating layer 1, both Red and Blue shift resources to layer 1. The models presented
in this paper, combined with controlled Red Team/ Blue Team exercises and wargames, can
guide cyber combat developers in determining where would be the highest “bang for the
buck” in allocating resources in cyber attack or defense.

There are many avenues for future research. One could examine the notion of reusable
resources more carefully. For example, the resources could be split into three bins: those that
apply solely to layer 1, those that apply solely to layer 2, and those that apply to both layer 1
and layer 2. Presumably, the resources that specialize to only one layer are more effective than
the general resources that can be used in both. Another possible extension is to generalize
the fixed early-victory parameter q in Section 7 to account for resources that may affect its
value. Red might be easier to detect when Red allocates more resources to a layer. Therefore,
Blue’s overall defensive rate may depend upon yi in addition to xi. Another related approach
would have Red allocate its resources between a speed component and a stealth component
of its attack plan. We assume complete information framework where both sides know all
parameters. Future work could develop a Bayesian game for an incomplete information
setting. If Red repeatedly attacks, a learning component could be incorporated where Blue
and Red update their beliefs about their opponent’s parameters after each round. Cyber
data sets exist (e.g., [40]), however most are meant to be benchmarks for machine learning
classifiers trying to detect cyber intrusions. Future work could perform an empirical exercise
to examine our model by collecting data via experiments or cyber competitions.
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APPENDIX

A Partial Reward for Red

This section covers Proposition 4 from Section 6. A solution to the game exists. This follows
because Blue and Red both have compact strategy spaces. See [42] and Theorem 2.7.1 and
remark 2.7.2 of [43]. We first discuss pure-strategy equilibria and then cover mixed-strategies.

A.1 Pure Strategies

A pure strategy solution has Blue choose one x and Red chooses one layer and one corre-
sponding y. There is no pure-strategy equilibrium where Red chooses layer 1. If there were
such an equilibrium, then x∗ = y∗ = 1, otherwise Blue and Red would both have incentive
to shift resources to layer 1 because the game would not proceed beyond layer 1. However,
if x∗ = y∗ = 1, then Red would have incentive to choose layer 2 by shifting ε resources to
layer 2 (i.e., y∗ = 1− ε) and increase its reward from D to 1. This follows because layer 2 is
unguarded by Blue (x∗ = 1) and hence Red can effectively win layer 2 for free by shifting ε
and increase its reward.

We now show that it is possible to have a pure-strategy equilibrium where Red chooses
layer 2. If Red chooses layer 2, then the interaction is identical to Section 5 and hence x∗ and
y∗ are defined in (9) of Proposition 3. Blue has no incentive to deviate from this solution by
the same logic as in Proposition 3. However, Red may have incentive to shift to layer 1. If
Red shifts to layer 1, it would also allocate all resources to layer 1 (y = 1). Hence, if Blue
remains at x∗ from (9), the best Red could do by shifting to layer 1 is

vr ≡
α1

α1 + x∗
D (A.1)

If vr in (A.1) exceeds the layer-2 solution, v∗ from (10), then Red has incentive to deviate.
Otherwise if vr < v∗, Red is satisfied with the solution and Proposition 3 provides the
equilibrium. Examining vr in (A.1) and v∗ from (10) yields the following condition

α1

α1 + x∗
D <

α1

α1 + 1
× α2

α2 + 1
(A.2)

Substituting in x∗ from (9) and going through the algebra yields the threshold in (13) of
Proposition 4.

A.2 Mixed Strategies

If (13) does not hold, then no pure-strategy solution exists. Recall the definition of fi(x, y)
from (11)–(12): fi(x, y) is payoff if Red chooses layer i with allocation y and Blue chooses x.

We first examine Red’s mixed strategy. Assume Red chooses layer 1 with probability p
and layer 2 with probability 1 − p. Since f1(x, y) in (11) increases in y for any fixed x, the
Red strategy (layer 1, y = 1) dominates (layer 1, y < 1). Hence, any optimal mixed strategy
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must use allocation y = 1 whenever layer 1 is chosen. There is no dominance for layer 2,
other than y must lie in the interior y ∈ (0, 1). Therefore, we specify that Red allocates y
in layer 2 according to the density r2(y). If Red uses the mixed strategy described in this
paragraph against a fixed x, the payoff is

v(x) = pf1(x, 1) + (1− p)
∫ 1

0

r2(y)f2(x, y)dy (A.3)

Turning to Blue’s strategy, we note that v(x) is a convex function over x ∈ [0, 1] because
both f1(x, y) and f2(x, y) are convex in x (see section 3.2.1 in [41]). Furthermore, because of
the f1(x, 1) term in (A.3), v(x) is a strongly convex function over x ∈ [0, 1], and hence there
is unique minimizer for Blue. Consequently, for any equilibrium with a Red mixed-strategy,
Blue will use a pure strategy x that minimizes v(x) in (A.3).

We have argued that an equilibrium must have the following properties: Blue plays pure
strategy x and Red chooses the tuple (p, r2(y)). However, f2(x, y) is concave in y for fixed
x (we showed this in Section 4). Therefore if Blue plays pure strategy x at equilibrium,
Red would not mix in layer 2 according to density r2(y), but would just use the one y that
maximizes f2(x, y).

Putting the pieces together, a valid equilibrium must have: Blue plays x, Red chooses
layer 1 with probability p (with all resources allocated to layer 1), and Red allocates y when
choosing layer 2 (with probability 1− p). The game value in (A.3) can now be written as a
function of the triple (x, y, p)

v(x, y, p) = pf1(x, 1) + (1− p)f2(x, y) (A.4)

To determine an (x∗, y∗, p∗) that generates an equilibrium, we have to show neither Red nor
Blue will deviate. We start with Red. If Red mixes between layer 1 and layer 2, then Red
must be indifferent between the two:

f1(x
∗, 1) = f2(x

∗, y∗) (A.5)

Condition (A.5) is equivalent to (16) in Proposition 4.
In order for Red to not deviate from y∗ when choosing layer 2, y∗ must be the best

response to Blue x∗. Section 4 examines the one-sided decision when Red chooses y for a
fixed Blue allocation (x1, x2). If we substitute in x1 = x and x2 = (1 − x) in (7), we get
Red’s best response, which is a necessary condition for an equilibrium. This modification of
(7) yields (14) in Proposition 4.

Turning to Blue, x∗ must be the minimizer of v(x, y∗, p∗). We first argue that neither
x = 0 nor x = 1 can be the minimizer. Assume x = 0 minimizes v(x, y∗, p∗). If x = 0 is part
of an equilibrium then either (x = 0, y = 1, layer 1) is the equilibrium or (x = 0, y = 0, layer
2); it depends upon the relationship between D and α2

α2+1
. However, neither (x = 0, y = 1,

layer 1) nor (x = 0, y = 0, layer 2) is a valid equilibrium because in both cases Blue has
incentive to increase x. Next assume x = 1 minimizes v(x, y∗, p∗). If x = 1 is part of an
equilibrium, then Red chooses layer 2 and sets y = 1 (or perhaps 1− ε to avoid 0/0 in layer
2). However (x = 1, y = 1, layer 2) cannot form an equilibrium because Blue would have
incentive to shift δ to layer 2 to detect Red with certainty. Hence the minimizer of v(x, y∗, p∗)
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lies in the interior of x ∈ (0, 1). Because v(x, y∗, p∗) is strictly convex, the minimizer satisfies

the first-order-condition. Setting dv(x,y∗,p∗)
dx

= 0 and rearranging terms yields (15).
Equations (14)-(16) generate necessary conditions for an equilibrium. Because the game

has a solution, there must exist a triple (x∗, y∗, p∗) that satisifes (14)-(16). This triple must
also be unique. Assume there exists another triple (x̂, ŷ, p̂) that satisfies (14)-(16). By the
same logic as above, (x̂, ŷ, p̂) would also be a solution to the game as neither Red nor Blue
would deviate. However, zero-sum games have unique game values so v(x∗, y∗, p∗) = v(x̂, ŷ, p̂).
The game value is

v(x∗, y∗, p∗) = f1(x
∗, 1) =

α1

α1 + x∗
(A.6)

Because the game value only depends upon x∗, x̂ = x∗. However, x uniquely determines y
by (14) and x and y jointly determine p by (14) . Therefore (x∗, y∗, p∗) = (x̂, ŷ, p̂) and the
solution to (14)-(16) generates the unique equilibrium of the game.

A.2.1 Solving for Optimal (x∗, y∗, p∗)

Equations (14)–(16) uniquely determine the optimal triple (x∗, y∗, p∗). Unfortunately there
is no closed form solution to (14)–(16). Solving for (x∗, y∗, p∗) numerically is straightforward
as we only need to perform a grid-search over x. A given x determines y via (14), and x and y
together determine p via (15). The grid search then determines which x (and corresponding
y and p) satisfy (16). More formally we present the grid-search algorithm below

1. Define xList as a vector of equally spaced numbers between 0 and 1 with spacing
epsilon

2. Initialize yList as a vector of y values corresponding to each x in xList

3. Initialize pList as a vector of p values corresponding to each x in xList

4. Initialize sqDevList as a vector measuring the difference between the left-hand side
and right-hand side of equation (16) for each x in xList

5. for i in length(xList)

(a) x = xList[i]

(b) Compute y via equation (14)

(c) yList[i] = y

(d) Compute p via equation (15)

(e) if p < 0 or p > 1: continue

(f) pList[i] = p

(g) Compute sqDev by taking the squared difference of the left-hand side and right-
hand side of equation (16)

(h) sqDevList[i] = sqDev

6. iBest = arg min sqDevList

7. return (xList[iBest], yList[iBest], pList[iBest])
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B Early Victory

This section covers the proofs for the results in Section 7. We examine the more general
version in the Appendix with both q1 and q2, where qi denotes the probability Red wins after
layer i. The results in Section 7 correspond to the special case of q1 = q and q2 = 1. The
model in Sections 3–5 corresponds to the special case of q1 = 0 and q2 = 1, so the proofs in
this section are valid for the results in Sections 3–5

B.1 Blue’s Defensive Allocation

This section covers Proposition 1 and Proposition 5. We first show the objective is convex
and then verify the optimality conditions. Blue desires to minimize the following objective:

b(x; y1, y2) ≡ P [Red wins] =
α1y1

α1y1 + x

(
q1 + (1− q1)

α2y2
α2y2 + 1− x

q2

)
(B.1)

For notational simplicity, we drop the dependence of b(·) on y1 and y2 for the remainder
of this section and just write b(x). We assume throughout that y1, y2 > 0. If y1 = 0 the
win-probability is 0 for all x and the problem is not interesting. If y2 = 0 the optimal solution
for Blue is trivial: x∗ = 1.

We compute the first and second derivative of b(x)

b′(x) =− q1
α1y1

(α1y1 + x)2
− α1y1

(α1y1 + x)2
(1− q1)

α2y2
α2y2 + 1− x

q2

+
α1y1

α1y1 + x
(1− q1)

α2y2
(α2y2 + 1− x)2

q2 (B.2)

and

b′′(x) =2q1
α1y1

(α1y1 + x)3

+ 2
α1y1

(α1y1 + x)3
(1− q1)

α2y2
α2y2 + 1− x

q2

− 2
α1y1

(α1y1 + x)2
(1− q1)

α2y2
(α2y2 + 1− x)2

q2

+ 2
α1y1

α1y1 + x
(1− q1)

α2y2
(α2y2 + 1− x)3

q2 (B.3)

We next show b′′(x) > 0 on x ∈ [0, 1] and thus b(x) is strictly convex on that domain.
The first line in (B.3) is non-negative (positive if q1 > 0). The last 3 lines of (B.3) can be
rewritten as

(1− q1)q2w(x)v(x)((u(x)− z(x))2 + u2(x) + z2(x)) > 0 (B.4)
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where

w(x, y) ≡ α1y1
α1y1 + x

> 0 (B.5)

v(x, y) ≡ α2y2
α2y2 + 1− x

> 0 (B.6)

u(x, y) ≡ 1

α1y1 + x
> 0 (B.7)

z(x, y) ≡ 1

α2y2 + 1− x
> 0 (B.8)

Consequently b(x) is strictly convex on x ∈ [0, 1]. Hence x∗ is either 0, 1, or an interior
point solution if b′(x∗) = 0 and x∗ ∈ (0, 1). Let us examine the derivative b′(x) from (B.2).
First we multiply through by positive quantity (α1y1 + x)2(α2y2 + 1 − x)2 to remove the
denominator; we will call this new expression c(x). c(x) has the same critical points as b(x)
and sign(b(x)) = sign(c(x)), so analyzing c(x) is equivalent to b(x) for our purposes.

b′(x) ∝ c(x) ≡− q1(α2y2 + 1− x)2 − (1− q1)α2y2(α2y2 + 1− x)q2

+ (α1y1 + x)(1− q1)α2y2q2 (B.9)

Moving from (B.2) to (B.9), we also factor out the positive constant α1y1. Using the quadratic
formula, we compute the two zeros of c(x):

x̃ =
q1(1 + α2y2) + α2y2q2(1− q1)−

√
α2y2q2(1− q1)(q1(1 + α1y1 + α2y2) + α2y2q2(1− q1))

q1
.

(B.10)

x̃2 =
q1(1 + α2y2) + α2y2q2(1− q1) +

√
α2y2q2(1− q1)(q1(1 + α1y1 + α2y2) + α2y2q2(1− q1))

q1
.

(B.11)

Because c(x) in (B.9) is a concave quadratic, we are interested in the smaller root x̃ in
(B.10), as b(x) increases as we increase past x̃. Furthermore, by inspection of (B.11) x̃2 > 1
and so we focus on x̃ in (B.10), which corresponds to (19) in Section 7 (when q1 = q and
q2 = 1). Because c(x) in (B.9) is a concave quadratic, if

� x̃ > 1, then b(x) is decreasing on [0, 1], and hence Blue’s best option is x∗ = 1.

� x̃ < 0, then b(x) is increasing on [0, 1] (since x̃2 > 1), and hence Blue’s best option is
x∗ = 0.

� x̃ ∈ (0, 1), then x̃ is a local (and global) minimizer on [0, 1], and hence x∗ = x̃.

Putting the three cases together yields the final expression in Proposition 5. Note Propo-
sition 5 only presents the special case where q1 = q and q2 = 1.

The analysis simplifies greatly for Proposition 1 in Section 3 when q1 = 0 and q2 = 1.
The first order condition using (B.9) simplifies to

b′(x) ∝ c(x) ≡ (α2y2 + 1− x) + (α1y1 + x) = 0, (B.12)

which yields x̂ from (4).
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B.2 Red’s Offensive Allocation

This section covers Proposition 2 and Proposition 6. The proof proceeds in similar steps to
Appendix B.1: show concavity and then solve for the first order conditions. Red desires to
maximize the following objective:

r(y;x1, x2) ≡ P [Red wins] =
α1y

α1y + x1

(
q1 + (1− q1)

α2(1− y)

α2(1− y) + x2
q2

)
(B.13)

We drop the dependence of r(·) on x1 and x2 for the remainder of this section and just write
r(y). We assume max(x1, x2) > 0, otherwise the problem is trivial.

We compute the first and second derivative of r(y)

r′(y) =q1
α1x1

(α1y + x1)2
+ (1− q1)q2

α1x1
(α1y + x1)2

α2(1− y)

α2(1− y) + x2

− (1− q1)q2
α1y

α1y + x1

α2x2
(α2(1− y) + x2)2

(B.14)

and

r′′(y) =− 2q1
α2
1x1

(α1y + x1)3

− 2(1− q1)q2
α2
1x1

(α1y + x1)3
α2(1− y)

α2(1− y) + x2

− 2(1− q1)q2
α1x1

(α1y + x1)2
α2x2

(α2(1− y) + x2)2

− 2(1− q1)q2
α1y

α1y + x1

α2
2x2

(α2(1− y) + x2)3
(B.15)

r(y) is strictly concave on y ∈ [0, 1] as r′′(y) < 0 by inspection (B.15). To determine the
optimal allocation y∗, let us examine the derivative r′(y) from (B.14). First we multiply
through by positive quantity (α1y+x1)

2(α2(1−y)+x2)
2 to remove the denominator; we will

call this new expression d(y).

r′(y) ∝ d(y) ≡ q1x1(α2(1− y) + x2)2 + (1− q1)q2x1α2(1− y)(α2(1− y) + x2)

− (1− q1)q2α2x2y(α1y + x1) (B.16)

Moving from (B.15) to (B.16), we also factor out the positive constant α1. Rewriting (B.16)
in standard quadratic form:

d(y) = ay2 + by + c (B.17)

where

a = α2(α2x1(q1 + q2(1− q1))− α1x2q2(1− q1)) (B.18)

b = −2α2x1(α2 + x2)(q1 + q2(1− q1)) (B.19)

c = x1(α2 + x2)(α2(q1 + q2(1− q1)) + q1x2) (B.20)

We consider the general case of a 6= 0 separately from the special case of a = 0.
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B.2.1 a 6= 0

Using the quadratic formula we have two roots for d(y):

ỹ =
α2x1(α2 + x2)(q1 + q2(1− q1))−

√
α2x1x2(α2 + x2)(1− q1)q2(α1x2q1 + (α1 + x1)α2(q1 + q2(1− q1)))

α2(α2x1(q1 + q2(1− q1))− α1x2q2(1− q1))
(B.21)

ỹ2 =
α2x1(α2 + x2)(q1 + q2(1− q1)) +

√
α2x1x2(α2 + x2)(1− q1)q2(α1x2q1 + (α1 + x1)α2(q1 + q2(1− q1)))

α2(α2x1(q1 + q2(1− q1))− α1x2q2(1− q1))
(B.22)

Root ỹ in (B.21), which corresponds to (22) in Section 7 (when q1 = q and q2 = 1), is
the relevant one for our analysis. We argue this by examining the a > 0 and a < 0 case
separately, where a is defined in (B.18):

� When a > 0, d(y) is a convex quadratic and hence we care about the smaller root
because d(y) is positive prior to the first root and therefore r(y) is increasing on that
domain. Clearly ỹ < ỹ2 because the denominator of the roots is positive (a > 0 by
assumption) and ỹ subtracts the square-root. ỹ > 0 because d(y) is a convex quadratic
and d(0) = c > 0 by inspection of (B.20); the only other alternative for ỹ ≤ 0 would be
if y2 ≤ 0 but inspection of (B.22) reveals y2 > 0.

� When a < 0, d(y) is a concave quadratic and hence we care about the larger root because
d(y) is positive between the first and second root and therefore r(y) is increasing on
that domain. ỹ2 < 0 since the numerator is positive and the denominator is negative.
Because d(0) = c > 0, the second root must be positive because d(y) is a concave
quadratic. Therefore ỹ must be positive and thus ỹ > ỹ2, and ỹ is the desired larger
root.

We have shown that for a 6= 0, ỹ from (B.21) is the root that dictates Red’s optimal
allocation. We also showed that ỹ > 0. If ỹ > 1, then d(y) > 0 on y ∈ [0, 1] and hence r(y)
increases on that domain and Red chooses y∗ = 1. Otherwise if ỹ ∈ (0, 1), then ỹ is a local
(and global) maximizer of r(y) and y∗ = ỹ from (B.21). Substituting in q1 = q and q2 = 1
yields (22) in Proposition 6.

In the special case of Proposition 2 in Section 4, where q1 = 0 and q2 = 1, ỹ from (B.21)
simplifies to y∗ in (7). It can be easily verified that y∗ in (7) lies in (0,1). First assume that
α1x2 > α2x1. To verify y∗ > 0, we just need to check the numerator in (7) is positive because
the denominator is positive by α1x2 > α2x1:

y∗ > 0 (B.23)

⇐⇒
√
x2(α1 + x1)x1(α2 + x2) > x1(α2 + x2) (B.24)

Condition (B.24) holds when α1x2 > α2x1 because then x2(α1 +x1) > x1(α2 +x2). To verify
that y∗ < 1, algebraic manipulation of (7) yields

y∗ < 1 (B.25)

⇐⇒
√
x2(α1 + x1)x1(α2 + x2) < x2(α1 + x1) (B.26)
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Condition (B.26) holds when α1x2 > α2x1 . We derive similar conditions to (B.23)–(B.26)
when α1x2 < α2x1.

B.2.2 a = 0

In this case d(y) is just a linear function

d(y) = by + c (B.27)

Where b and c are defined in (B.19)–(B.20). The unique zero of d(y) is :

ỹ =
c

−b
=
x1(α2 + x2)(α2(q1 + q2(1− q1)) + q1x2)

2α2x1(α2 + x2)(q1 + q2(1− q1))
(B.28)

=
1

2
+

q1x2
2α2(q1 + q2(1− q1))

(B.29)

(B.29) corresponds to (23) in Section 7 (when q1 = q and q2 = 1). Note ỹ ≥ 1
2
. The slope

of the line in (B.27), b, is negative by (B.19). The intercept d(0) = c, is positive by (B.20).
Hence r(y) increases prior to ỹ and decreases after. If ỹ > 1 then y∗ = 1, otherwise ỹ ∈ [1

2
, 1)

is the local (and global) maximizer of r(y) and y∗ = ỹ.
In the special case of Proposition 2, where q1 = 0 and q2 = 1, we have ỹ = 1

2
by inspection

of (B.29). a = 0 in this case when α1

x1
= α2

x2
.

B.3 Game Theoretic Model

This section covers Proposition 3 and Proposition 7. The proof builds on the steps in Ap-
pendices B.1 and B.2. We show that we have a concave-convex game and verify the proposed
solution is a saddle point by checking the KKT conditions (see Chapter 5.5 of [41]).

The game payoff is Red’s win probability

g(x, y) ≡ P [Red wins] =
α1y

α1y + x

(
q1 + (1− q1)

α2(1− y)

α2(1− y) + (1− x)
q2

)
(B.30)

g(x, y) is a strictly convex function of x for fixed y. We showed this in Appendix B.1.
Similarly, g(x, y) is a strictly concave function of y for fixed x following the steps in Appendix
B.2. We have a concave-convex game. We prove that solution (x∗, y∗) from (26) is a saddle
point by verifying the KKT conditions. Since x and y are single variables and our proposed
solution is in the interior, this simplifies to checking first order conditions: gx(x

∗, y∗) = 0 and
gy(x

∗, y∗) = 0
We first examine gx(x

∗, y∗). Appropriately modifying b′(x) from (B.2)

gx(x
∗, y∗) = −q1

α1y
∗

(α1y∗ + x∗)2
− α1y

∗

(α1y∗ + x∗)2
(1− q1)

α2(1− y∗)
α2(1− y∗) + 1− x∗

q2

+
α1y

∗

α1y∗ + x∗
(1− q1)

α2(1− y∗)
(α2(1− y∗) + 1− x∗)2

q2 (B.31)

27



Next we define βi as the probability Red wins layer i given equal allocation for Red and
Blue in layer i: xi = yi:

βi =
αi

αi + 1
(B.32)

Using βi from (B.32) and noting that our proposed solution in Proposition 7 has x∗ = y∗, we
rewrite (B.31)

gx(x
∗, y∗) = −q1β1(1− β1)

1

x∗
− (1− q1)q2β1(1− β1)β2

1

x∗

+ (1− q1)q2β1β2(1− β2)
1

1− x∗
(B.33)

Factoring out terms:

gx(x∗, y∗) =β1
1

x∗(1− x∗)
×

(−q1(1− β1)(1− x∗)− (1− q1)q2(1− β1)β2(1− x∗) + (1− q1)q2β2(1− β2)x∗) (B.34)

x∗ in (26) is defined such that second line in (B.34) is zero. To verify this, we set the second
line in (B.34) to zero and solve for x∗

x∗ =
q1(1− β1) + (1− q1)q2(1− β1)β2

q1(1− β1) + (1− q1)q2β2(1− β1 + 1− β2)
(B.35)

Substituting in the definition of βi from (B.32) into (B.35) and simplifying terms yields (26)
from Proposition 7 (when q1 = q and q2 = 1).

We next need to verify that gy(x
∗, y∗) = 0. Going through the steps of modifying r′(y)

from (B.14), we end up with gy(x
∗, y∗) = −gx(x∗, y∗) because x∗ = y∗. We omit the details

here. Hence, gy(x
∗, y∗) = gx(x

∗, y∗) = 0 and (x∗, y∗) from (26) is a saddle point solution.
We show uniqueness by contradiction. We assume there exists some other solution (x̃, ỹ) 6=

(x∗, y∗). The game value is unique and hence

g(x̃, ỹ) = g(x∗, y∗) (B.36)

Because g(x, y) is strictly convex (concave) in x (y) for fixed y (x), x̃ 6= x∗ and ỹ 6= y∗.
Consider the combination (x∗, ỹ). Because g(x, y) is strictly convex in x for fixed y, we have

g(x̃, ỹ) < g(x∗, ỹ) (B.37)

By similar reasoning, since y∗ is a best response to x∗ we also have

g(x∗, ỹ) < g(x∗, y∗) (B.38)

Conditions (B.37)–(B.38) imply g(x̃, ỹ) < g(x∗, y∗), which contradicts (B.36). Similar logic
reveals no mixed strategy solution exists because each side prefers playing its optimal pure
strategy over mixing with other solutions that are inferior.

In the case of Proposition 3 of Section 5, where q1 = 0 and q2 = 1, (B.35) reduces to

x∗ =
1− β1

1− β1 + 1− β2
(B.39)

which corresponds to (9) in Section 5 when we substitute for βi from (B.32) into (B.39)

28



C N-layer Simultaneous Game

This section covers Proposition 8. The proof is similar to the proof in Appendix B.3: show
that we have concave-convex game and verify the proposed solution is a saddle point by
checking the KKT conditions.

The game payoff is Red’s win probability

g(x,y) ≡ P [Red wins] =
N∏
i=1

αiyi
αiyi + xi

(C.1)

Since the payoff is a product, we examine the log win probability

gL(x,y) ≡ log g(x, y) =
N∑
i=1

log

(
αiyi

αiyi + xi

)
(C.2)

gL(x,y) is a strictly convex function of x for fixed y. This follows because gL(x,y) is additive
separable across the xi and gL(x,y) is strictly convex for each xi:

∂2gL(x,y)

∂x2i
=

1

(αiyi + xi)2
> 0 (C.3)

Similarly, gL(x,y) is a concave function of y for fixed x as gL(x,y) is concave for each yi:

∂2gL(x,y)

∂y2i
= −xi(2αiyi + xi)

y2i (αiyi + xi)2
≤ 0 (C.4)

We have a concave-convex game (see Section 5.2 of [39]), which implies the game has
a saddle point. To prove that our solution (x∗,y∗) from (29) is a saddle point we need to
show that x∗ is a minimizer of gL(x,y∗) and y∗ is a maximizer of gL(x∗,y). We proceed by
verifying the KKT conditions (see Chapter 5.5 of [41]).

We start by showing x∗ is a minimizer of gL(x,y∗). Since our proposed solution is in
the interior, the KKT multipliers on the non-negative constraints are 0 by complementary
slackness. The resource constraint (

∑N
i=1 xi ≤ 1) is tight, so the associated multiplier may be

positive. We denote δ as the KKT multiplier associated with the resource constraint. Thus
we need to verify that there exists a δ ≥ 0 that, in conjunction with our (x∗,y∗) from (29),
satisfies the first order KKT condition:

∂gL(x,y∗)

∂xi

∣∣∣∣
x=x∗

+ δ = 0 ∀1 ≤ i ≤ N (C.5)

Substituting the derivative into (C.5) yields

− 1

αiy∗i + x∗i
+ δ = 0 ∀1 ≤ i ≤ N (C.6)

Noting that x∗i = y∗i transforms (C.6) into

δ =
1

x∗i

1

αi + 1
∀1 ≤ i ≤ N (C.7)
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Substituting in x∗i from (29) into (C.7) yields the final expression for the KKT multiplier:

δ =
N∑
j=1

1

αj + 1
(C.8)

Note that δ in (C.8) does not depend upon i, and δ ≥ 0. Hence the triple of (x∗,y∗, δ)
defined by equations (29) and (C.8) satisfy the KKT conditions and therefore x∗ is a best
response to y∗.

Similar logic shows that y∗ is a maximizer of gL(x∗,y). (x∗,y∗) must satisfy the KKT
condition:

− ∂gL(x∗,y)

∂yi

∣∣∣∣
y=y∗

+ γ = 0 ∀1 ≤ i ≤ N (C.9)

For some KKT multiplier γ ≥ 0. Substituting the derivative into (C.9) yields

−
x∗i
y∗i

αy∗i + x∗i
+ γ = 0 ∀1 ≤ i ≤ N (C.10)

Noting that x∗i = y∗i simplifies (C.10)

γ =
1

x∗i

1

αi + 1
∀1 ≤ i ≤ N (C.11)

Expression (C.11) is the same as (C.7), and hence γ = δ and the triple (x∗,y∗, δ) defined by
equations (29) and (C.8) satisfy the KKT conditions and hence y∗ is a best response to x∗.
Therefore we have a saddle point solution: (x∗,y∗) .

Uniqueness follows by the same logic as in Appendix B.3
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