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We develop a new measure of reliability for the mean behavior of a process by calculating
the probability the cumulative sample mean will stay within a given distance from the true
mean over a period of time. This probability is derived using boundary-crossing properties
of Brownian bridges. We derive finite sample results for independent and identically dis-
tributed normal data, limiting results for data meeting a functional central limit theorem,
and draw parallels to standard normal confidence intervals. We deliver numerical results
for i.i.d., dependent, and queueing processes.
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1. INTRODUCTION

We calculate the probability the sample mean of a time series stays within some fixed
distance from its long-term mean over a given period of time. We derive separate results
for two variants of the “long-term mean”: the sample mean calculated after m observations
have been collected, Y m, and the “true” process mean µ. That is, given a time series Yi for
i = 1, 2, . . ., we define two expressions:

Pm := P

⎛

⎝
⋂

k≤j≤m

{∣∣∣∣∣
1
m

m∑

i=1

Yi −
1
j

j∑

i=1

Yi

∣∣∣∣∣ ≤ δ

}⎞

⎠ , P := P

⎛

⎝
⋂

j≥k

{∣∣∣∣∣µ − 1
j

j∑

i=1

Yi

∣∣∣∣∣ ≤ δ

}⎞

⎠ ,

(1.1)

for some 1 ≤ k < m. The parameter m denotes the number of samples used to calculate
the long-term mean, and the first expression of (1.1), Pm, is the probability the cumulative
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2 D. I. Singham and M. P. Atkinson

sample mean between samples k and m stays within distance δ from Y m. The second
expression, P , represents the probability that the sample mean stays within distance δ from
its true mean µ after an initial sample size k. We also remove the absolute value signs from
(1.1) and derive the probability the sample mean stays within a given distance from the
true mean in one direction.

These expressions Pm and P have parallels to confidence intervals, which deliver an
interval with a specified coverage probability for the true mean using one fixed sample
size. P is the probability an interval centered at the true mean will contain the cumula-
tive sample mean path for an infinite sample size. In practice, stability of the cumulative
sample mean over time is a more conservative risk metric than a confidence interval
based on a fixed sample size. P and Pm capture the probability of short term devia-
tions of the sample mean from the true mean and help determine sample sizes needed
for the cumulative mean to stabilize according to some desired precision δ. Being able
to deliver consistent performance close to the true mean is often just as important as
having a good long-term mean, which may or may not be realized in the short-term. Cer-
tainly in many settings such as healthcare and defense, poor short-term performance is
not acceptable even if long-term average performance is good. A conservative practitioner
should ensure a high value of P in addition to a high value of µ estimated by a confidence
interval.

Confidence intervals can calibrate the calculation of P by providing a good estimate
of µ. A stochastic process will not constantly exhibit mean performance µ due to random
variation, but there may be some range of mean performance µ ± δ that can be managed.
For example, suppose a factory manufactures W units of a product each day to serve a
random demand of Yi units per day, where Yi is independent and identically distributed
(i.i.d.) with mean µ and variance σ2. If demand is smaller than W on a given day, excess
inventory can be held to meet demand at a later date. Shortages are unacceptable and the
manager wants to control the probability that this occurs. Suppose the system starts on
day one with no inventory. If on any day i, the realized cumulative mean demand Y i is
greater than W , demand has not been met on at least one of the days. Given that µ can
be estimated and µ < W , then in the long run the factory can meet demand on average,
but not necessarily every day. Using δ = W − µ, P estimates the probability a shortage will
occur after the kth day. This information can be used to determine if the manufacturer
should invest in better technology to boost production, or supplement the initial inventory
to cover daily variation in early days. Other applications include whether a reservoir serving
a community will run out of water, or the possibility a firm will need to pay overtime given
current staffing levels and work requirements.

In calculating P and Pm, we assume the underlying time series {Yi, i ≥ 1} meets the
conditions for a functional central limit theorem (FCLT). For i.i.d. normal data, we derive
exact results for all possible values of k and m. For FCLT data we derive conditions to
obtain limiting probabilities as k,m → ∞, and display numerical results for dependent and
non-normal data to demonstrate this convergence in the limit. We evaluate P and Pm by
rewriting them as functions of a standardized time series, which under some conditions
converges to a Brownian bridge. Modifying the standardization function enables adaptation
of boundary-crossing results for Brownian bridges to derive a closed-form lower bound
for (1.1). The lower bound occurs from discretization error, and this error can be made
arbitrarily small with larger sample sizes.

We summarize the contributions of the paper. Section 2 derives lower bounds for Pm

and P when Yi is i.i.d. normal. We demonstrate a relationship between P and the standard
normal confidence interval coverage probability 1 − α and find the probability the cumula-
tive sample mean stays within δ of the true mean is approximately 1 − 2α. Section 3 derives

�*��!��!���(��((%'��+++���"�&�����$&���$&��(�&"'���((%'����$��$&�����������������	��������
�$+#!$������&$"��((%'��+++���"�&�����$&���$&���������&�''����������������$#������&�������(��
��
�	
��')� ��(�($�(�����"�&������$&��(�&"'�$��)'��

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026996481700002X
https:/www.cambridge.org/core
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limiting expressions for (1.1) for FCLT data, and includes numerical analysis for different
stochastic processes to illustrate convergence. Section 4 concludes.

2. CALCULATING P m AND P

In this section, we derive lower bounds for P and Pm when the underlying data are i.i.d.
normal, and compare the results to confidence interval coverage probabilities.

2.1. Preliminaries

We rely on the standardization technique introduced by Schruben [15] primarily used for
developing conference interval estimators for the mean, µ. Schruben constructed standard-
ized time series and proved that they converge to a Brownian bridge using Billingsley [5].
Many researchers have used standardized time series methods to estimate the mean and
variance of data that have some degree of serial dependency (Batur, Goldsman, and Kim
[4], Goldsman, Meketon, and Schruben [9]). We take a different approach and exploit the
properties of Brownian bridges to derive the probability the cumulative mean stays within
some distance from the long-term mean and the true mean. When deriving properties of P
and Pm, we assume a known variance σ2. If δ is expressed as δ′σ for some δ′ > 0, then σ
will cancel from the final expression. We acknowledge that obtaining a consistent estimate
of the variance can be difficult for dependent data. Much effort has been devoted to obtain-
ing variance estimates of dependent data, and we refer the reader to Alexopoulos [2] for a
review.

We assume the data, Y1, . . . , Ym, is stationary with E[Yi] = µ and V ar[Yi] = σ2
Y . Define

the sample mean for each k = 1, . . . , m as Y k = (1/k)
∑k

i=1 Yi. Let σ2 be the asymptotic
variance constant defined in Glynn and Iglehart [8] as limk→∞ kVar [Y k ]. Assume 0 < σ2 <
∞, and denote Rj as the autocovariance of Yi and Yi+j for all i > 0. The following expresses
the relationship between these terms:

σ2 = σ2
Y + 2

∞∑

j=1

Rj . (2.1)

Schruben [15] defines a standardized time series as

Xm(t) =
⌊mt⌋

(
(1/m)

∑m
i=1 Yi − (1/⌊mt⌋)

∑⌊mt⌋
i=1 Yi

)

σ
√

m
, t ∈ [0, 1]. (2.2)

We require the following FCLT assumption.

Assumption 2.1: (FCLT): Define

C(t,m) =
mtµ −

∑⌊mt⌋
i=1 Yi

σ
√

m
, t ≥ 0

as a function in Skorohod space D[0,∞], which consists of right continuous functions with
left limits. Then, C(t,m) converges weakly to standard Brownian motion as m → ∞. See
Section 4.4 of Whitt [18] for details.

Schruben [15] proves that under the assumptions of a FCLT, Xm(t) converges weakly
to B(t) as m → ∞, where B(t) is a standard Brownian bridge. Examples of data that meet
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4 D. I. Singham and M. P. Atkinson

the assumptions of a FCLT include strictly stationary φ-mixing data, where observations
relatively far apart are independent (see Billingsley [5]) and strictly stationary strong mixing
data (see Glynn and Iglehart [8]).

While Assumption 2.1 is mild, producing exact results for Pm using finite values of k
and m requires that the joint distribution of the points Xm(j/m), j = 1, . . . , m have the
same joint distribution as the points B(j/m) of a standard Brownian bridge. This occurs
when the data are i.i.d. normal (see Singham and Atkinson [16] for a proof). The next
subsection derives lower bounds for Pm and P when the data are i.i.d. normal. Section 3
derives the limiting probabilities when the data satisfies Assumption 2.1.

2.2. Lower Bound Derivation

In this section, we derive lower bound expressions for P and Pm. Figure 1 illustrates cumu-
lative mean behavior relative to δ. Using (2.2) in conjunction with the i.i.d. normal data
assumption, we rewrite the left expression in (1.1) in terms of a standardized time series
Xm(t) and a Brownian bridge B(t):

Pm = P

⎛

⎝
⋂

k≤j≤m

{∣∣∣∣σXm(
j

m
)
√

m

j

∣∣∣∣ ≤ δ

}⎞

⎠ = P

⎛

⎝
⋂

k≤j≤m

{∣∣∣∣σXm(
j

m
)
∣∣∣∣ ≤ δ

j√
m

}⎞

⎠ (2.3)

= P

⎛

⎝
⋂

k≤j≤m

{∣∣∣∣σB(
j

m
)
∣∣∣∣ ≤ δ

j√
m

}⎞

⎠ (2.4)

≥ P

⎛

⎝
⋂

t∈[(k/m),1]

{
|σB(t)| ≤ δ

√
mt
}
⎞

⎠ ≡ Pm
L . (2.5)

With i.i.d. normal data, (2.3) to (2.4) holds because the joint distribution of the points
Xm(j/m), j = k, . . . ,m has the same distribution as the points B(j/m) of a standard
Brownian bridge.

To move from (2.4) to (2.5), note that the events in (2.4) are a subset of the events in
(2.5) as (2.4) evaluates the crossing condition for discrete points only. We denote the lower
bound in (2.5) Pm

L , which is a conservative estimate of Pm when evaluating process risk. It
is important to note that we produce a lower bound rather than an equality only because

Figure 1. Given an initial sample size k, P is the probability that the cumulative sample
mean stays within distance δ from the true mean µ (the bounds are the dashed lines).
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BOUNDARY CROSSING PROBABILITIES FOR THE CUMULATIVE SAMPLE MEAN 5

of the discretization error as we move from a discrete process in (2.4) to a continuous one in
(2.5). The value of the lower bound in (2.5) is calculated analytically, and is easier to obtain
than estimating Pm directly. Section 3 presents the limiting results for Pm as k,m → ∞,
δ → 0, and discusses the order of the discretization error.

The calculation of (2.5) builds on previous work that studies linear boundary-crossing
probabilities for Brownian bridges such as Abundo [1] and Scheike [14]. Abundo [1] derives
the probability a Brownian bridge ever leaves two symmetric linear bounds that have non-
zero intercepts at t = 0. In our case, the slope of these linear bounds is ±δ

√
m. Whereas the

intercept at t = 0 is zero, we start the process at t = k/m, which yields a non-zero intercept.
In practice, an experiment would require some initial k samples to calculate an estimate
of the sample mean. For a general reference on boundary-crossing problems for Brownian
motion, see Karatzas and Shreve [10].

To calculate (2.5), condition on the value of σB(k/m) and make this the starting point of
a new Brownian bridge. Moving forward from time k/m, the process can be viewed as a new
Brownian bridge with initial position x and final position zero. Let Bk/m

x (t) be a Brownian
bridge over [0, 1 − k/m] that starts at x/σ and ends at zero. The unconditional starting
position of σB(k/m) is normally distributed with mean 0 and variance σ2 k

m (1 − k
m ). The

bounds for the cumulative mean in (2.5) have non-zero intercepts ±δk/
√

m at t = k/m, and
the time range for the Brownian bridge is now [0, 1 − k/m]. We compute Pm

L by integrating
over the possible initial position x at time k/m:

Pm
L =

∫ δk/
√

m

x=−δk/
√

m
P

⎛

⎝
⋂

t∈[0,1−(k/m)]

{|σBk/m
x (t)| ≤ δk/

√
m + δ

√
mt}

⎞

⎠

× N

(
x, 0,σ2 k

m

(
1 − k

m

))
dx, (2.6)

where N(x, µ,σ2) is the normal probability density function with mean µ and variance
σ2 evaluated at x. We write Pm

L as Pm
L (δ,σ, k,m) to denote dependence on the problem

parameters. For brevity, all proofs appear in the appendix. The first theorem gives the direct
evaluation of (2.6). Let Φ be the cumulative distribution function of the standard normal
distribution.

Theorem 2.2: Under the assumption of i.i.d. normal data, the probability that the sample
mean stays within distance δ from its long-term mean Y m over the range j = k, . . . ,m has
a lower bound

Pm
L (δ,σ, k,m) ≤ P

⎛

⎝
⋂

k≤j≤m

{∣∣∣∣∣
1
m

m∑

i=1

Yi −
1
j

j∑

i=1

Yi

∣∣∣∣∣ ≤ δ

}⎞

⎠

where

Pm
L (δ,σ, k,m) = 1 − 4

∞∑

i=1

⎛

⎝Φ

⎛

⎝ δ
√

k

σ
√

1 − k
m

(4i − 1)

⎞

⎠− Φ

⎛

⎝ δ
√

k

σ
√

1 − k
m

(4i − 3)

⎞

⎠

⎞

⎠ . (2.7)

The proof of Theorem 2.2 appears in Appendix A. In the next theorem we state the
parallel lower bound PL for P and use the notation PL(δ,σ, k) to remove the dependence
on m. As expected, Pm

L → PL as m → ∞.
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6 D. I. Singham and M. P. Atkinson

Figure 2. Calculation of (2.8) showing PL for a range of values of k and δ/σ.

Theorem 2.3: Under the assumption of i.i.d. normal data, the probability that the sample
mean stays within distance δ from its true mean µ for all j ≥ k has a lower bound

PL(δ,σ, k) ≤ P

⎛

⎝
⋂

j≥k

{∣∣∣∣∣µ − 1
j

j∑

i=1

Yi

∣∣∣∣∣ ≤ δ

}⎞

⎠

where

PL(δ,σ, k) = 1 − 4
∞∑

i=1

(
Φ

(
δ
√

k

σ
(4i − 1)

)
− Φ

(
δ
√

k

σ
(4i − 3)

))
. (2.8)

The proof of Theorem 2.3 appears in Appendix A. As in Theorem 2.2, the lower bound
results only from the discretization error.

Like confidence intervals, important tradeoffs for P exist between δ,σ and k. Figure 2
plots several contours of PL, calculated using (2.8) for a variety of combinations of k and
δ/σ. Because δ and σ only appear as δ/σ in (2.8) we condense them to one term, and δ
could be defined as δ′σ for δ′ > 0 to avoid estimating the variance directly. On the x-axis,
as k increases, PL increases because the sample mean is less likely to deviate from the true
mean at larger sample sizes. On the y-axis, PL increases with the ratio δ/σ because we have
a larger bound relative to the variance. As σ increases, this ratio decreases and PL also
decreases. Inspection of (2.8) reveals that δ

√
k

σ remains constant for a given contour, and
thus one must scale δ proportional to 1/

√
k to maintain a desired value of PL.

2.3. Parallels to confidence intervals

Next, we present a simple, analytically tractable approximation for PL that has a negligible
error for realistic scenarios and allows for parallels to confidence intervals.
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Corollary 2.4: The values of Pm
L and PL in Theorems 2.2 and 2.3 have lower bounds

4Φ

⎛

⎝ δ
√

k

σ
√

1 − k
m

⎞

⎠− 3 ≤ Pm
L (δ,σ, k,m), and 4Φ

(
δ
√

k

σ

)
− 3 ≤ PL(δ,σ, k). (2.9)

The upper bound on the difference between Pm
L , PL and these lower bounds are

4

⎛

⎝1 − Φ

⎛

⎝3
δ
√

k

σ
√

1 − k
m

⎞

⎠

⎞

⎠ , and 4

(
1 − Φ

(
3
δ
√

k

σ

))
(2.10)

respectively.

The proof of Corollary 2.4 appears in Appendix B. The lower bound gap in (2.10)
is extremely small for large values of PL. If PL(δ,σ, k) = 0.3, the gap is within 0.011; if
PL(δ,σ, k) = 0.5, the gap is less than 0.0011; if PL(δ,σ, k) = 0.8, the gap is less than 2 ×
10−6. In realistic applications, PL should be close to 1, and thus for all practical purposes
these lower bounds can be used in place of PL.

We next consider the one-sided boundary to compute the probability that Y j will ever
be less than its long-term mean, or greater than its long-term mean, with allowed deviation δ
in one direction. That is, the sample mean should stay within [Y m − δ,∞] or [−∞, Y m + δ].
In the limiting case, these bounds are [µ − δ,∞] or [−∞, µ + δ]. We denote the one-sided
lower bounds P ′

L to distinguish them from the two-sided bounds PL. Under the assumption
of i.i.d. normal data, the probability that the sample mean stays within distance δ (on one
side) from its long-term mean Y m over the range j = k, . . . ,m has a lower bound

P ′
L(δ,σ, k,m) = 2Φ

⎛

⎝ δ
√

k

σ
√

1 − k
m

⎞

⎠− 1 ≤ P

⎛

⎝
⋂

k≤j≤m

{
1
m

m∑

i=1

Yi −
1
j

j∑

i=1

Yi ≤ δ

}⎞

⎠ .

The probability that the sample mean stays within distance δ (on one side) from µ for
all j ≥ k has a lower bound

P ′
L(δ,σ, k) = 2Φ

(
δ
√

k

σ

)
− 1 ≤ P

⎛

⎝
⋂

j≥k

{
µ − 1

j

j∑

i=1

Yi ≤ δ

}⎞

⎠ . (2.11)

The proof deriving P ′
L appears in Singham and Atkinson [16]. We highlight two inter-

esting relationships related to the one-sided expression in (2.11). First, P ′
L(δ,σ, k) equals

the two-sided confidence interval coverage probability for a sample size of k

CI(δ,σ, k) ≡ P

(∣∣∣∣∣µ − 1
k

k∑

i=1

Yi

∣∣∣∣∣ ≤ δ

)
.

Second, the relationship between the one-sided result in (2.11) and the two-sided lower
bound in Corollary 2.4 yields:

PL(δ,σ, k) ≈ 2P ′
L(δ,σ, k) − 1.

This is the same functional relationship between one-sided and two-sided confidence
intervals. Furthermore, since P ′

L(δ,σ, k) = CI(δ,σ, k) we can connect a confidence interval
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to P using the relationship PL(δ,σ, k) ≈ 2CI(δ,σ, k) − 1. Given a sample size k, variance
σ2, and precision δ that produces a 1 − α confidence interval, the same parameters would
generate a PL probability of 1 − 2α.

When the variance of the data is known, a fixed-sample size that will deliver a confidence
interval with desired coverage 1 − α and precision smaller than δ can be chosen using the
formula

k ≥
(

Φ−1(1 − (α/2))σ
δ

)2

, (2.12)

where Φ−1 is the inverse cumulative distribution function of the standard normal distri-
bution. In a similar fashion, PL can be used to estimate the number of samples needed to
obtain a probabilistic guarantee on the cumulative sample mean staying within a given dis-
tance from µ. In particular Corollary 2.4 produces a similar expression to (2.12) for choosing
a sample size k to obtain a probability that the sample mean will continue to stay within δ
of µ:

k ≥
(

Φ−1(1 − (α/4))σ
δ

)2

. (2.13)

Computing the sample size to obtain a PL guarantee is equivalent to computing the sample
size required for a confidence interval coverage probability guarantee using α/2. Because
the two-sided measure is more strict than a standard confidence interval, condition (2.13)
requires a larger starting sample size than condition (2.12). In the one-sided case, the value
of k (using P ′

L from (2.11)) is the same as the value needed to satisfy (2.12).

3. LIMITING RESULTS

In this section, we derive a limiting value of Pm and P for FCLT data. For dependent
and non-normal data with finite sample sizes, the joint distributions of Xm(j/m) and
B(j/m), j = 1, . . . ,m will not be the same as moving from (2.3) to (2.4) requires. We
describe how k and δ must behave as m → ∞ to obtain a limiting value of Pm. Exam-
ination of (2.3)–(2.5) reveals that if the empirical process crosses the boundary, it will likely
do so close to time k/m because the slope of the boundary scales with

√
m. Thus we need

Xm(t) to approximate a Brownian bridge reasonably well over small time scales (i.e., close
to sample k). This implies it is not merely enough to have large m, we must also have
large k. To derive an interesting limiting result with both m → ∞ and k → ∞, we also send
δ → 0. Otherwise, for fixed δ, Pm

L and Pm will both approach 1 as k,m → ∞. In the next
theorem we give the conditions for a limiting result to hold.

Theorem 3.1: Let Assumption 2.1 hold. For k(m) = sm for some s ∈ (0, 1) and δ(m) =
θ√
m

for some θ > 0,

lim
m→∞

P

⎛

⎝
⋂

k(m)≤j≤m

{∣∣∣∣∣
1
m

m∑

i=1

Yi −
1
j

j∑

i=1

Yi

∣∣∣∣∣ ≤ δ(m)

}⎞

⎠ = PL

(
θ,σ,

s

1 − s

)
. (3.1)

The proof of Theorem 3.1 appears in Appendix C. For finite m, Theorem 3.1 allows
us to approximate Pm for data meeting a FCLT. The inputs δ, k, and m enable the cal-
culation of the auxiliary variables s = k/m and θ = δ

√
m. Using these auxiliary variables

implies PL(θ,σ, (s/1 − s)) = Pm
L (δ,σ, k,m) for any m. Thus the practical implication of
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Theorem 3.1 is that Pm
L (δ,σ, k,m) should closely approximate Pm for dependent and/or

non-normal data that satisfy the FCLT, provided that m and k are large enough. We next
provide the analogous result for P .

Theorem 3.2: Let Assumption 2.1 hold. For δ(k) = (α/
√

k) for some α > 0,

lim
k→∞

P

⎛

⎝
⋂

j≥k

{∣∣∣∣∣µ − 1
j

j∑

i=1

Yi

∣∣∣∣∣ ≤ δ(k)

}⎞

⎠ = PL(α,σ, 1). (3.2)

The proof of Theorem 3.2 appears in Appendix C. The practical implication of
Theorem 3.2 is that PL(δ,σ, k) approximates P for FCLT data, provided k is large enough.

We briefly discuss of the effect of discretization error on the difference between Pm
L

(PL) and Pm (P ) for finite sample sizes. When choosing δ = θ/
√

m in Theorem 3.1, the
boundaries δ

√
mt become fixed at θt. Prior research exists on the order of the error between

the probability a discrete skeleton of a Brownian motion crosses linear bounds and the
probability a continuous Brownian motion crosses the same bounds. This error decreases at
rate O(m−1/2) (Nagaev [13], Lerche and Siegmund [12], Fu and Wu [7]). Consequently when
δ, k, and m change at the appropriate rates, the error associated with using Pm

L instead of
Pm is O(m−1/2) (or O(k−1/2) as k must increase as well).

The rest of the section applies Theorem 3.1 to show the convergence for different data
types. We compute Pm numerically by simulating Yi and determining whether the cumu-
lative mean crosses the boundary. The results reveal the effects of discretization error,
non-normality, dependence and sample size.

The i.i.d. normal results isolate the effect of the lower bound discretization error by
removing any distributional or finite-sample issues. Figure 3 shows plots of Pm

L and Pm for
m=100,000 and different values of δ. Each plot displays four different calculations across
different values of k. The solid line is Pm

L as calculated according to (2.7). The remaining
dashed lines show Pm calculated using normal, lognormal and Pareto distributions. Tests
with exponential and uniform data yielded Pm values very close to those for normal data.

For small values of k, Pm is close to zero; as k increases, the values of Pm increase
and approach one. The lower bound gap due to discretization error is demonstrated in the
difference between Pm

L and Pm for normally distributed data, and is noticeable for small k.
As we increase k by a factor of 10 and decrease δ by a factor of

√
10 in each plot, we observe

Figure 3. Values of Pm
L and Pm for independent data, with m = 100,000. We

have δ = 0.20σ (left), δ = 0.0632σ (center), and δ = 0.02σ (right). The Pm lines
are from simulated data, all with σ = 1: N(0, 1), Lognormal(µ̂ = 0, σ̂ = 0.693) and
Pareto(scale = 1, shape = 2.84).
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10 D. I. Singham and M. P. Atkinson

convergence to the limiting result as suggested by Theorem 3.1. The Pareto distribution is
highly non-normal and hence takes much longer to converge than the other distributions.

Next, we consider highly-dependent processes. Figure 4 displays Pm
L for AR(1) data

with ϵi as i.i.d. normal, m = 1,000,000 and several values of ρ and k. As suggested by
Theorem 3.1, we decrease δ as we increase k by keeping the product δ

√
k constant as we move

from left to right. We display results for high auto-correlation coefficients ρ ∈ {±0.5,±0.9}
to demonstrate worst-case conditions. In addition to discretization issues, the dependence
leads to Pm

L being a poor approximation for Pm for small k. Furthermore, for negative
values of ρ it is possible that Pm is actually less than Pm

L . Pm
L is only guaranteed to be a

lower bound of P for i.i.d. normal data. For small values of k and significant dependence,
a Brownian bridge does not approximate the standardized time series well. Computing
simple confidence intervals for data of this type is also difficult, and we refer the reader
to Tafazzoli and Wilson [17] for confidence interval estimation methods for difficult data
types. The main point of this analysis is that while crossing probabilities can be calculated
in the limit when the standardized time series has true Brownian properties, it becomes
more difficult in smaller sample sizes without making distributional assumptions.

We conclude with a similar analysis for the waiting times in an M/M/1 queue. Cus-
tomers arrive according to a Poisson process with rate λ and service times are i.i.d.
exponential random variables with mean 1/µ. The traffic intensity ρ = λ

µ ∈ (0, 1) drives
the dependence structure of the data. Figure 5 displays the results for m=10,000,000 in a

Figure 4. Values of Pm
L and Pm for AR(1) data with ρ = ±0.5, 0.9 and m = 1,000,000.

We have δ = 0.20σ (left), δ = 0.0632σ (center), and δ = 0.02σ (right). The parameter k
increases by a factor of 10 for each figure moving left to right.

Figure 5. Values of PL and P for the waiting times of an M/M/1 queue with
ρ = 0.5, 0.7, 0.9, 0.95 and m = 10,000,000. We have δ = 0.02σ (left), δ = 0.00632σ (center),
and δ = 0.002σ (right). The parameter k increases by a factor of 10 for each figure moving
left to right.
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similar format to Figure 4. For k ∈ [103, 104], Pm
L is a reasonable fit for ρ = 0.5, 0.7, although

a nontrivial gap exists between the two curves and the Pm
L curve. The difference between

Pm
L and Pm is very large for ρ = 0.9, 0.95. As we increase k and decrease δ, the P curves

converge to the Pm
L curve. For k ∈ [105, 106], the curves for ρ = 0.5, 0.7, 0.9 nearly coincide

with the Pm
L curve, and the ρ = 0.95 curve has a relatively minor deviation. Given the

highly correlated nature of waiting times, it is not surprising that we need a very large
value of k as ρ approaches 1 for Pm

L to be a good approximation for Pm. The results of this
section suggest that Pm

L may be a lower bound for Pm for positively correlated data, which
could prove useful for smaller sample sizes.

4. CONCLUSION

We introduce a measure of reliability for mean process behavior by deriving the probability
that the cumulative sample mean stays within a given distance from its long-term mean
over a period of time beginning at time k, where the long-term mean can be Y m or µ.
We compute a lower bound on this probability, where the lower bound occurs because of
discretization error. If the data is i.i.d. normal, then the lower bound applies for finite sample
sizes. As k and m approach infinity, this lower bound becomes exact for data meeting a
FCLT.

The probability is a function of the allowable distance from the true mean, the variance
of the underlying data, and the initial number of samples taken. We quantify the trade-
offs between these different parameters and draw parallels to confidence interval coverage
probabilities. This measure enables evaluation of the relative stability of sample mean per-
formance by assessing process behavior over a range of time, rather than just at a snapshot
in time.
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APPENDIX A: PROOF OF THEOREM 2.2 AND 2.3

The lower bounds Pm
L and PL for i.i.d. normal data are derived in the following sections.

Proof of Theorem 2.2: First, rewrite Pm
L in (2.5) through conditioning on the location of B(t)

at time t = k/m as done in (2.6):

Pm
L (δ, σ, k, m) = P

⎛

⎜⎝
⋂

t∈[ k
m ,1]

{
|σB(t)| ≤ δ

√
mt
}
⎞

⎟⎠

=

∫

x
P

⎛

⎝
⋂

t∈[(k/m),1]

{|σB(t)| ≤ δ
√

mt|σB(k/m) = x}

⎞

⎠N

(
x, 0, σ2 k

m

(
1 − k

m

))
dx

=

∫ δk√
m

− δk√
m

P

⎛

⎝
⋂

t∈[0,1−(k/m)]

{
|σB

k/m
x (t)| ≤ δk√

m
+ δ

√
mt

}⎞

⎠

× N

(
x, 0, σ2 k

m

(
1 − k

m

))
dx. (A.1)

The remainder of this section simplifies (A.1) to

Pm
L (δ, σ, k, m) = 1 − 4

∞∑

j=1

(
Φ

(
δ
√

k

σ
√

1 − (k/m)
(4j − 1)

)
− Φ

(
δ
√

k

σ
√

1 − (k/m)
(4j − 3)

))
.

(A.2)
We rely on a result from Doob [6] that computes the probability a one-dimensional standard

Brownian motion stays between two lines for all time. This result defines a function G(·, ·, ·, ·) as

G(α, β, γ, λ) = 1 −
∞∑

j=1

(e−2Aj + e−2Bj − e−2Cj − e−2Dj ), (A.3)

with

Aj = j2γλ + (j − 1)2αβ + j(j − 1)(γβ + λα),

Bj = (j − 1)2γλ + j2αβ + j(j − 1)(γβ + λα),

Cj = j2(γλ + αβ) + j(j − 1)γβ + j(j + 1)λα,

Dj = j2(γλ + αβ) + j(j + 1)γβ + j(j − 1)λα. (A.4)

�*��!��!���(��((%'��+++���"�&�����$&���$&��(�&"'���((%'����$��$&�����������������	��������
�$+#!$������&$"��((%'��+++���"�&�����$&���$&���������&�''����������������$#������&�������(��
��
�	
��')� ��(�($�(�����"�&������$&��(�&"'�$��)'��

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026996481700002X
https:/www.cambridge.org/core


BOUNDARY CROSSING PROBABILITIES FOR THE CUMULATIVE SAMPLE MEAN 13

Doob’s result also appears as Theorem 3.1 in Abundo [1]. For α, β, γ, λ > 0, Doob [6] proves

P

⎛

⎝
⋂

t≥0

{−(αt + β) ≤ W (t) ≤ γt + λ}

⎞

⎠ = G(α, β, γ, λ), (A.5)

where W (t) is a standard Brownian motion. Atkinson and Singham [3] derive a similar relationship
for the probability that a Brownian bridge that starts at location −β < x0 < λ at time 0, ends at
location −(αT + β) < xT < (γT + λ) at time T , and having variance parameter σ2 stays between
two asymmetric linear boundaries, −(αt + β) and γt + λ. If we denote B̃(t) as the Brownian bridge
with the properties described in the previous sentence, then we have the following probability of
interest

P

⎛

⎝
⋂

t∈[0,T ]

{−(αt + β) ≤ B̃(t) ≤ γt + λ}

⎞

⎠ = G

(
λ − x0

σ
,
λ + γT − xT

σT
,
x0 + β

σ
,
xT + β + αT

σT

)
.

The symmetric case appears in Abundo [1]. We use this result to substitute the following into (A.1)

P

⎛

⎝
⋂

t∈[0,1−(k/m)]

{
|σB

k/m
x (t)| ≤ δk√

m
+ δ

√
mt

}⎞

⎠

= G

(
(δk/

√
m) − x
σ

,
δ
√

m
σ(1 − (k/m))

,
x + (δk/

√
m)

σ
,

δ
√

m
σ(1 − (k/m))

)
.

Therefore, we can now rewrite (A.1) as

PL(δ, σ, k, m) =

∫ (δk/
√

m)

−(δk/
√

m)
G

(
(δk/

√
m) − x
σ

,
δ
√

m
σ(1 − (k/m))

,
x + (δk/

√
m)

σ
,

δ
√

m
σ(1 − (k/m))

)

× N

(
x, 0, σ2 k

m

(
1 − k

m

))
dx.

Next, we change variables via the relationship x = (δk/
√

m)u where u varies in [−1, 1]. This
not only changes the limits of integration, but it changes the variance of the normal density we are
integrating against so that

PL(δ, σ, k, m)

=

∫ 1

−1
G

(
((δk/

√
m) − (δk/

√
m)u)

σ
,

δ
√

m
σ(1 − (k/m))

,
((δk/

√
m)u + (δk/

√
m))

σ
,

δ
√

m
σ(1 − (k/m))

)

× N

(
δk√
m

u, 0, σ2 k
m

(
1 − k

m

))
δk√
m

du

=

∫ 1

−1
G

(
(δk/

√
m)(1 − u)
σ

,
δ
√

m
σ(1 − (k/m))

,
(δk/

√
m)(1 + u)
σ

,
δ
√

m
σ(1 − (k/m))

)

× N

(
u, 0,

σ2

δ2k

(
1 − k

m

))
du. (A.6)

We next focus on the G function. Note that the second and fourth arguments of G(·, ·, ·, ·) in (A.6)
are the same. By inspection of (A.3) and (A.4), we see that the G function consists of products of
two out of the four input arguments. Two of the six possible combinations do not appear: the first
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and third arguments and the second and fourth arguments. These characteristics of the G function
and its inputs allow us to rewrite (A.6) as

∫ 1

−1
G

(
δk(1 − u)

σ
,

δ
σ(1 − (k/m))

,
δk(1 + u)

σ
,

δ
σ(1 − (k/m))

)
N

(
u, 0,

σ2

δ2k

(
1 − k

m

))
du.

(A.7)
For the function G(α, β, γ, λ) in (A.7) we have

γλ = γβ =
δ2k(1 + u)

σ2(1 − (k/m))
= q(1 + u),

αβ = λα =
δ2k(1 − u)

σ2(1 − (k/m))
= q(1 − u),

where q = δ2k
σ2(1−(k/m)) . Next, substitute these values into (A.4) to obtain

Aj = j2q(1 + u) + (j − 1)2q(1 − u) + j(j − 1)q(1 + u) + j(j − 1)q(1 − u)

= j(2j − 1)q(1 + u) + (j − 1)(2j − 1)q(1 − u)

= (2j − 1) (jq(1 + u) + jq(1 − u) − q(1 − u))

= j(2j − 1) (q(1 + u) + q(1 − u)) − (2j − 1)q(1 − u)

= j(2j − 1)2q − (2j − 1)q(1 − u),

Bj = (j − 1)2q(1 + u) + j2q(1 − u) + j(j − 1)q(1 + u) + j(j − 1)q(1 − u)

= (j − 1)(2j − 1)q(1 + u) + j(2j − 1)j2q(1 − u)

= j(2j − 1)2q − (2j − 1)q(1 + u),

Cj = j2q(1 + u) + j2q(1 − u) + j(j − 1)q(1 + u) + j(j + 1)q(1 − u)

= j(2j − 1)q(1 + u) + j(2j + 1)q(1 − u)

= 2j2 (q(1 + u) + q(1 − u)) − jq(1 + u) + jq(1 − u)

= 2j2(2q) − 2jqu

= j(2j − 1)2q + 2jq − 2jqu

= j(2j − 1)2q + 2jq(1 − u),

Dj = j2q(1 + u) + j2q(1 − u) + j(j + 1)q(1 + u) + j(j − 1)q(1 − u)

= j(2j + 1)q(1 + u) + j(2j − 1)q(1 − u)

= 2j2 (2q) + 2jqu

= j(2j − 1)2q + 2jq(1 + u).

Writing out the G(·, ·, ·, ·) function explicitly from (A.7) gives

PL(δ, σ, k, m) =

∫ 1

−1

⎛

⎝1 −
∞∑

j=1

(e−2Aj + e−2Bj − e−2Cj − e−2Dj )

⎞

⎠N
(
u, 0, q−1

)
du. (A.8)
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By comparing expressions for Aj , Bj , Cj and Dj , we have

∫ 1

−1

∞∑

j=1

e−2Aj N
(
u, 0, q−1

)
du =

∫ 1

−1

∞∑

j=1

e−2Bj N
(
u, 0, q−1

)
du, (A.9)

∫ 1

−1

∞∑

j=1

e−2Cj N
(
u, 0, q−1

)
du =

∫ 1

−1

∞∑

j=1

e−2Dj N
(
u, 0, q−1

)
du. (A.10)

To prove these relationships, first interchange the sum and integration by the Fubini–Tonelli
theorem and write one term in the sum in (A.9) as

∫ 1

−1
e−2Aj N(u, 0, q−1)du =

∫ 1

−1
exp (−2 (j(2j − 1)2q − (2j − 1)q(1 − u)))

exp
(
−(u2/2q−1)

)

√
2πq−1

du.

If we define z = −u then we have

−
∫ −1

1
exp (−2 (j(2j − 1)2q − (2j − 1)q(1 + z)))

exp
(
−(z2/2q−1)

)

√
2πq−1

dz =

∫ 1

−1
e−2Bj N(z, 0, q−1)dz.

We can make the same argument with Cj and Dj to show (A.10). We can thus re-write (A.8) in
terms of only Aj and Cj so that

PL(δ, σ, k, m) =

∫ 1

−1

⎛

⎝1 − 2
∞∑

j=1

(e−2Aj − e−2Cj )

⎞

⎠N
(
u, 0, q−1

)
du

=

∫ 1

−1
N
(
u, 0, q−1

)
du −

∞∑

j=1

∫ 1

−1

(
2e−2Aj − 2e−2Cj

)
N
(
u, 0, q−1

)
du

= (2Φ (
√

q) − 1) − 2
∞∑

j=1

∫ 1

−1

(
e−2Aj − e−2Cj

) exp
(
−(u2/2q−1)

)

√
2πq−1

du. (A.11)

First, we examine the terms in (A.11) containing Aj :

∫ 1

−1
e−2Aj

exp
(
−(u2/2q−1)

)

√
2πq−1

du

=

∫ 1

−1
exp (−2 (j(2j − 1)2q − (2j − 1)q(1 − u)))

exp
(
−(u2/2q−1)

)

√
2πq−1

du

= exp
(
−2(2j − 1)2q

) ∫ 1

−1
exp (−2(2j − 1)qu)

exp
(
−(u2/2q−1)

)

√
2πq−1

du

= exp
(
−2(2j − 1)2q

) ∫ 1

−1
exp

(
−(2j − 1)

4u

2q−1

) exp
(
−(u2/2q−1)

)

√
2πq−1

du.
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16 D. I. Singham and M. P. Atkinson

Combining exponential terms in the integral yields

= exp
(
−2
(
(2j − 1)2q

)) ∫ 1

−1

exp
(
−(u2 + (2j − 1)4u)/2q−1

)

√
2πq−1

du

= exp
(
−2
(
(2j − 1)2q

)) ∫ 1

−1

exp
(
−((u + 2(2j − 1))2 − 4(2j − 1)2)/2q−1

)

√
2πq−1

du

= exp
(
−2
(
(2j − 1)2q

)) ∫ 1

−1

exp
(
−((u + 2(2j − 1))2)/2q−1

)
exp

(
4(2j − 1)2/2q−1

)

√
2πq−1

du.

The first and last exponential terms cancel, which produces the final expression for the Aj term:

∫ 1

−1

exp
(
−((u + 2(2j − 1))2)/2q−1

)

√
2πq−1

du = Φ (
√

q(1 + 2(2j − 1))) − Φ (
√

q(−1 + 2(2j − 1)))

= Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3)) .

Going through similar steps for the Cj term of of (A.11) yields

∫ 1

−1
e−2Cj

exp
(
−(u2/2q−1)

)

√
2πq−1

du =

∫ 1

−1
exp (−2 (j(2j − 1)2q + 2jq(1 − u)))

exp
(
−(u2/2q−1)

)

√
2πq−1

du

= exp
(
−2 (2j)2q

) ∫ 1

−1
exp

(
(2j)

4u

2q−1

) exp
(
−(u2/2q−1)

)

√
2πq−1

du.

Combining exponential terms in the integral again yields:

= exp
(
−2
(
(2j)2q

)) ∫ 1

−1

exp
(
−(u2 − (2j)4u)/2q−1

)

√
2πq−1

du

= exp
(
−2
(
(2j)2q

)) ∫ 1

−1

exp
(
−((u − 2(2j))2 − 4(2j)2)/2q−1

)

√
2πq−1

du

= exp
(
−2
(
(2j)2q

)) ∫ 1

−1

exp
(
−((u − 2(2j))2/2q−1)

)
exp

(
(4(2j)2/2q−1)

)

√
2πq−1

du

=

∫ 1

−1

exp
(
−((u − 2(2j))2/2q−1)

)

√
2πq−1

du = Φ (
√

q(1 − 2(2j))) − Φ (
√

q(−1 − 2(2j)))

= Φ (
√

q(1 − 4j)) − Φ (
√

q(−1 − 4j)) .

Combining everything into (A.11) gives Pm
L (δ, σ, k, m) =

(2Φ (
√

q) − 1) − 2
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3)))

+ 2
∞∑

j=1

(Φ (
√

q(1 − 4j)) − Φ (
√

q(−1 − 4j)))

�*��!��!���(��((%'��+++���"�&�����$&���$&��(�&"'���((%'����$��$&�����������������	��������
�$+#!$������&$"��((%'��+++���"�&�����$&���$&���������&�''����������������$#������&�������(��
��
�	
��')� ��(�($�(�����"�&������$&��(�&"'�$��)'��

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S026996481700002X
https:/www.cambridge.org/core
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= (2Φ (
√

q) − 1) − 2
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3)))

− 2
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j + 1)))

= (2Φ (
√

q) − 1) − 2
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3)))

− 2
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3))) − 2
∞∑

j=1

(Φ (
√

q(4j − 3)) − Φ (
√

q(4j + 1)))

= (2Φ (
√

q) − 1) − 4
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3)))

+ 2
∞∑

j=1

(Φ (
√

q(4j + 1)) − Φ (
√

q(4j − 3)))

= (2Φ (
√

q) − 1) − 4
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3)))

+ 2 lim
L→∞

(Φ (
√

q(4L + 1)) − Φ (
√

q(4 · 1 − 3)))

= (2Φ (
√

q) − 1) − 4
∞∑

j=1

(Φ (
√

q(4j − 1)) − Φ (
√

q(4j − 3))) + 2 (1 − Φ (
√

q)) .

Canceling terms and substituting for q produces the final answer

PL(δ, σ, k, m) = 1 − 4
∞∑

j=1

(
Φ

(
δ
√

k

σ
√

1 − (k/m)
(4j − 1)

)
− Φ

(
δ
√

k

σ
√

1 − (k/m)
(4j − 3)

))
. !

Proof of Theorem 2.3: We proceed in a similar fashion as the proof of Theorem 2.2. We first
define a similar empirical process to Xm(t) in (2.2):

Zk(t) =
⌊kt⌋

(
µ − (1/⌊kt⌋)

∑⌊kt⌋
i=1 Yi

)

σ
√

k
, t ≥ 0. (A.12)

By Donsker’s Theorem (e.g., Section 4.4 of Whitt [18]) Zk(·) converges to a standard Brownian
motion. Taking steps similar to (2.3)–(2.5) yields

P := P

⎛

⎝
⋂

j≥k

⎧
⎨

⎩

∣∣∣∣∣∣
µ − 1

j

j∑

i=1

Yi

∣∣∣∣∣∣
≤ δ

⎫
⎬

⎭

⎞

⎠ = P

⎛

⎝
⋂

j≥k

{∣∣∣∣∣σZk(
j
k

)

√
k

j

∣∣∣∣∣ ≤ δ

}⎞

⎠ (A.13)

= P

⎛

⎝
⋂

j≥k

{∣∣∣∣σZk(
j
k

)

∣∣∣∣ ≤ δ
j√
k

}⎞

⎠ (A.14)

= lim
N→∞

P

⎛

⎝
⋂

k≤j≤N

{∣∣∣∣σZk(
j
k

)

∣∣∣∣ ≤ δ
j√
k

}⎞

⎠ (A.15)
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18 D. I. Singham and M. P. Atkinson

= lim
N→∞

P

⎛

⎝
⋂

k≤j≤N

{∣∣∣∣σW (
j
k

)

∣∣∣∣ ≤ δ
j√
k

}⎞

⎠ (A.16)

≥ lim
N→∞

P

⎛

⎜⎝
⋂

t∈[1, N
k ]

{
|σW (t)| ≤ δ

√
kt
}
⎞

⎟⎠ (A.17)

= P

⎛

⎝
⋂

t≥1

{
|σW (t)| ≤ δ

√
kt
}
⎞

⎠ = PL(δ, σ, k). (A.18)

(A.15) follows from the dominated convergence theorem. The i.i.d. normality assumption allows
us to move from (A.15) to (A.16). (A.17) is a lower bound for (A.16) because of the discretization
bias. Finally (A.18) follows from the dominated convergence theorem. We now compute PL(δ, σ, k)
relying on parallel results from the proof of Theorem 2.2 where necessary:

PL(δ, σ, k) =

∫

x
P

⎛

⎝
⋂

t≥1

{|σW (t)| ≤ δ
√

kt | σW (1) = x}

⎞

⎠N
(
x, 0, σ2

)
dx

=

∫ δ
√

k

−δ
√

k
P

⎛

⎝
⋂

t≥0

{
|σWx(t)| ≤ δ

√
k + δ

√
kt
}
⎞

⎠N
(
x, 0, σ2

)
dx (A.19)

where Wx(t) denotes a standard Brownian motion that starts at x/σ at time 0. The unconditional
position at W (1) is normally distributed with mean 0 and variance σ2. We rewrite the first term
in the integral of (A.19)

P

⎛

⎝
⋂

t≥0

{
|σWx(t)| ≤ δ

√
k + δ

√
kt
}
⎞

⎠

= P

⎛

⎝
⋂

t≥0

{
−
(

δ
√

k + x
σ

+
δ
√

k
σ

t

)
≤ W (t) ≤ δ

√
k − x
σ

+
δ
√

k
σ

t

}⎞

⎠ . (A.20)

The right-hand side of (A.20) has the same form as (A.5). Consequently

P

⎛

⎝
⋂

t≥0

{
|σWx(t)| ≤ δ

√
k + δ

√
kt
}
⎞

⎠ = G

(
δ
√

k
σ

,
δ
√

k + x
σ

,
δ
√

k
σ

,
δ
√

k − x
σ

)
, (A.21)

where G(·, ·, ·, ·) is defined in (A.3)–(A.4). Substituting (A.21) into (A.19) and proceeding in the
same manner as in the proof of Theorem 2.2 yields

PL(δ, σ, k) =

∫ 1

−1
G

(
δ
σ

,
δk(1 + u)

σ
,
δ
σ

,
δk(1 − u)

σ

)
N

(
u, 0,

σ2

δ2k

)
du. (A.22)

Notice the strong similarities between (A.22) and (A.7). The identical steps from the proof of
Theorem 2.2 after equation (A.7) yield the desired result:

PL(δ, σ, k) = 1 − 4
∞∑

i=1

(
Φ

(
δ
√

k
σ

(4i − 1)

)
− Φ

(
δ
√

k
σ

(4i − 3)

))
.

!
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APPENDIX B: PROOF OF COROLLARY 2.4

Since the proof is the same for Pm
L and PL, we focus on PL. Re-write PL as

PL = 1 − 4
∞∑

i=1

(Φ (a(4i − 1)) − Φ (a(4i − 3))) , (B.23)

where a = (δ
√

k/σ). We will show that

4Φ(a) − 3 ≤ PL,

and bound the difference PL − (4Φ(a) − 3). First, pull the i = 1 term out from (B.23):

PL = 1 − 4Φ (3a) + 4Φ (a) − 4
∞∑

i=2

(Φ (a(4i − 1)) − Φ (a(4i − 3))) .

Next, rearrange terms and add and subtract 4 to obtain

PL = 4Φ (a) − 4 + 1 − 4Φ (3a) + 4 − 4
∞∑

i=2

(Φ (a(4i − 1)) − Φ (a(4i − 3))) .

Split the expression into three terms

PL = 4Φ (a) − 3

+ 4(1 − Φ (3a))

− 4
∞∑

i=2

(Φ (a(4i − 1)) − Φ (a(4i − 3))) . (B.24)

To show that 4Φ (a) − 3 is a lower bound, it suffices to show the sum of the second and third lines
is positive. First rewrite 1 − Φ (3a) as

1 − Φ (3a) =
∞∑

i=2

(Φ ((2i + 1)a) − Φ ((2i − 1)a))

=
∞∑

i=2,even

(Φ ((2i + 1)a) − Φ ((2i − 1)a)) +
∞∑

i=3,odd

(Φ ((2i + 1)a) − Φ ((2i − 1)a))

=
∞∑

i=2

(Φ ((4i − 3)a) − Φ ((4i − 5)a)) +
∞∑

i=2

(Φ ((4i − 1)a) − Φ ((4i − 3)a)). (B.25)

The second summation in (B.25) appears in the third line of (B.24). Substituting (B.25) into (B.24)
yields

PL = 4Φ (a) − 3

+ 4

( ∞∑

i=2

(Φ ((4i − 3)a) − Φ ((4i − 5)a)) +
∞∑

i=2

(Φ ((4i − 1)a) − Φ ((4i − 3)a))

)

− 4
∞∑

i=2

(Φ (a(4i − 1)) − Φ (a(4i − 3)))

= 4Φ (a) − 3 + 4

( ∞∑

i=2

(Φ ((4i − 3)a) − Φ ((4i − 5)a))

)
,

which delivers the result.
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APPENDIX C: PROOF OF THEOREMS 3.1 AND 3.2

The proofs for Theorems 3.1 and 3.2 are similar.

Proof of Theorem 3.1: The following Lemma is needed.

Lemma 3.1: For any σ, θ > 0 and s ∈ (0, 1)

lim
m→∞

P

⎛

⎝
⋂

t∈[s,1]

{|σXm(t)| ≤ θt}

⎞

⎠ = P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| ≤ θt}

⎞

⎠ . (C.26)

Proof: First note by examination of (2.5) and (2.7) that we can write

P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| ≤ θt}

⎞

⎠ = Pm
L (θ, σ, s, 1). (C.27)

We will next show that the strictness of the inequality does not impact our result, so

P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| ≤ θt}

⎞

⎠ = P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| < θt}

⎞

⎠ . (C.28)

To do this we note that Pm
L (θ, σ, s, 1) is continuous in θ by inspection of (2.7). This follows because

we can interchange limits and sums in (2.7) as the normal c.d.f. terms can be bounded by a decaying
exponential function of i. Using (C.27), create a sandwich inequality

Pm
L (θ − ϵ, σ, s, 1) ≤ P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| < θt}

⎞

⎠ ≤ Pm
L (θ + ϵ, σ, s, 1), (C.29)

for any ϵ > 0. Taking the limit of (C.29) as ϵ → 0 and leveraging the continuity of Pm
L (θ, σ, s, 1) in

θ yields (C.28).
The final step uses the Portmanteau theorem for equivalency of weak convergence (see, e.g.,

Chapter 13 of Klenke [11]). Because Xm(t) converges weakly to B(t), Portmanteau provides the
following two relationships

lim sup
m→∞

P

⎛

⎝
⋂

t∈[s,1]

{|σXm(t)| ≤ θt}

⎞

⎠ ≤ P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| ≤ θt}

⎞

⎠ (C.30)

lim inf
m→∞

P

⎛

⎝
⋂

t∈[s,1]

{|σXm(t)| < θt}

⎞

⎠ ≥ P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| < θt}

⎞

⎠ . (C.31)

By condition (C.28), conditions (C.30)–(C.31) form another sandwich inequality, which produces
the desired result

lim
m→∞

P

⎛

⎝
⋂

t∈[s,1]

{|σXm(t)| ≤ θt}

⎞

⎠ = P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| ≤ θt}

⎞

⎠ . (C.32)
!
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To prove Theorem 3.1 set k(m) = sm, δ(m) = θ√
m

, and manipulate the left-hand side of (3.1):

P

⎛

⎝
⋂

k(m)≤j≤m

{∣∣∣∣σXm(
j
m

)

∣∣∣∣ ≤ δ(m)
j√
m

}⎞

⎠ = P

⎛

⎜⎝
⋂

t∈[ k(m)
m ,1]

{|σXm(t)| ≤ δ(m)
√

mt}

⎞

⎟⎠ (C.33)

= P

⎛

⎝
⋂

t∈[s,1]

{|σXm(t)| ≤ θt}

⎞

⎠ . (C.34)

By Lemma 3.1 replace Xm(t) in (C.34) with B(t) in the limit:

lim
m→∞

P

⎛

⎝
⋂

k(m)≤j≤m

{∣∣∣∣σXm(
j
m

)

∣∣∣∣ ≤ δ(m)
j√
m

}⎞

⎠ = lim
m→∞

P

⎛

⎝
⋂

t∈[s,1]

{|σXm(t)| ≤ θt}

⎞

⎠

= P

⎛

⎝
⋂

t∈[s,1]

{|σB(t)| ≤ θt}

⎞

⎠ . (C.35)

Combining (C.35) with (C.27) yields

lim
m→∞

P

⎛

⎝
⋂

k(m)≤j≤m

⎧
⎨

⎩

∣∣∣∣∣∣
1
m

m∑

i=1

Yi −
1
j

j∑

i=1

Yi

∣∣∣∣∣∣
≤ δ(m)

⎫
⎬

⎭

⎞

⎠

= lim
m→∞

P

⎛

⎝
⋂

k(m)≤j≤m

{∣∣∣∣σXm(
j
m

)

∣∣∣∣ ≤ δ(m)
j√
m

}⎞

⎠ = Pm
L (θ, σ, s, 1). (C.36)

The final piece follows by inspection of (2.7) and (2.8), which reveals that Pm
L (θ, σ, s, 1) =

PL(θ, σ, (s/1 − s)). Substituting this into (C.36) completes the proof. !

Proof of Theorem 3.2: We omit the details that are similar to the previous proofs. Following
the proof of Theorem 2.3 in Appendix A, use the empirical process Zk(t) defined in (A.12) to
obtain

P

⎛

⎝
⋂

j≥k

⎧
⎨

⎩

∣∣∣∣∣∣
µ − 1

j

j∑

i=1

Yi

∣∣∣∣∣∣
≤ δ(k)

⎫
⎬

⎭

⎞

⎠ =

⎛

⎝
⋂

j≥k

{∣∣∣∣σZk(
j
k

)

∣∣∣∣ ≤ δ(k)
j√
k

}⎞

⎠

=

⎛

⎝
⋂

t≥1

{
|σZk(t)| ≤ δ(k)

√
kt
}
⎞

⎠

=

⎛

⎝
⋂

t≥1

{|σZk(t)| ≤ αt}

⎞

⎠ .

There exists a relationship parallel to (C.26) from Lemma 3.1:

lim
k→∞

P

⎛

⎝
⋂

t≥1

{|σZk(t)| ≤ αt}

⎞

⎠ = P

⎛

⎝
⋂

t≥1

{|σW (t)| ≤ αt}

⎞

⎠ = PL(α, σ, 1),

where the last equality follows by inspection of (A.18). The intermediary steps follow from the
proof of Theorem 3.1. !
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