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Major revolts have recently erupted in parts of the Middle East with substantial international
repercussions. Predicting, coping with and winning those revolts have become a grave problem for many
regimes and for world powers. We propose a new model of such revolts that describes their evolution by
building on the classic Lanchester theory of combat. The model accounts for the split in the population
between those loyal to the regime and those favouring the rebels. We show that, contrary to classical
Lanchesterian insights regarding traditional force-on-force engagements, the outcome of a revolt is
independent of the initial force sizes; it only depends on the fraction of the population supporting each
side and their combat effectiveness. The model’s predictions are consistent with the situations currently
observed in Afghanistan, Libya and Syria (September 2011), and it points to how those situations might
evolve.
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Introduction

Recent (2011) events in Libya underscore the significant

impact of armed revolts on regional and global interests.

Armed revolts typically start with demonstrations and civic

unrest that quickly turn into local violence and then full-

scale combat. (The terms revolt, rebellion, and insurgency

are interchangeable in most senses and we use the term

revolt throughout for consistency.) As demonstrated in

Libya, the evolution of the armed revolt has a strong

spatial component; individuals in some regions (eg, parts

of Tripoli) may be loyal to the regime because of ideology

or economic and social incentives or fear, whereas other

regions (eg, Benghazi) become bastions of the rebels

powered by strong local popular support. Thus, armed

revolts, very much like conventional war, are about gaining

and controlling populated territory. However, unlike

conventional force-on-force engagements, where the civi-

lian population plays a background role, armed revolts are

characterized by the active role of the people, who become

a major factor in determining the outcome of the conflict:

both the rebels and the regime need the support of the

population to carry out their campaigns (Lynn, 2005;

Hammes, 2006).

Armed revolts differ from civil uprisings, such as those

that occurred recently (2011) in Tunisia and Egypt, because

uprisings are manifested in demonstrations, which may

involve some minor local violence, rather than protracted

armed engagements. Armed revolts often originate from

civil uprisings and thus our model may provide insight into

the situation if the uprising is on the verge of evolving into

the more violent revolt. An example of this possible pro-

gression can be found in Syria (September 2011) where an

armed revolt seems to be emerging from a popular uprising

mostly owing to defections from the government forces

and some foreign supply of arms to local organizations.

Our approach to modelling armed revolts is on the basis

of Lanchester theory (Lanchester, 1916) that describes the

strength of two opposing military forces by two ordinary

differential equations (ODEs). The forces cause mutual

attrition that depletes their strengths until one of the forces

is defeated. Although Lanchester models are stylized and

highly abstract, they have been extensively used for

analysis for almost a century because they provide pro-

found insights regarding conditions that affect the out-

comes of military conflicts. Examples of such analysis using

Lanchester models include studies of the Battle of Britain

(Johnson and MacKay, 2011), the Battle of Kursk (Lucas

and Turkes, 2004), the Ardennes Campaign (Hung et al,

2005), the Battle of Iwo Jima (Engel, 1954), and the Battle

of Inchon (Hartley and Helmbold, 1995). For further

information on the analysis and applications of Lanchester

models please refer to Washburn and Kress (2009).
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In the 1960s, Deitchman (1962) and Schaffer (1968)

proposed variants of the classic Lanchester equations that

more accurately model guerrilla and insurgent warfare.

The key observation is that attrition of the guerrillas

depends not just on the government forces, but also on the

size of the guerrilla force. The smaller the guerrilla army,

the more difficult it is for government forces to target them.

Later works examined more directly the role of the popu-

lation in insurgency conflicts. Intriligator and Brito (1988)

explicitly modelled the level of popular support for the

insurgents with an additional state variable. McCormick

and Giordano (2002) considered only two state variables

but introduced terms that allow the government and

insurgents to increase in strength on the basis of popular

support. Kress and Szechtman (2009) analysed the impact

of the population by focusing on how collateral damage

and intelligence alter the dynamics. Blank et al (2008) used

Lanchester techniques to study Operation Iraqi Freedom.

Here we also examine a conflict between two forces

where the population plays an important role. However,

unlike the traditional Lanchester models used by the

previously cited works, our focus is not on attrition but on

the control of friendly and hostile territories. Using our

model, we derive the end-state of the revolt, identify

stalemate situations and study the effects of foreign

intervention and of inconstant support by the population.

We show that contrary to classical Lanchesterian insights

regarding traditional force-on-force engagements, the out-

come of a revolt is independent of the initial force sizes. We

also derive conditions for successful foreign interventions.

The main contribution of our model is methodological—

extending the classical Lanchester theory to armed revolts

where the population is a key player. Although we dare to

make some predictions (about Syria), this is not the main

objective of our work. Similarly to classical Lanchester

models, our model is not predictive; it is descriptive and, at

best, diagnostic. Its purpose is to gain insights about cause-

and-effect relations. The main reason for this restrictive

objective is the lack of relevant and reliable data. Having

said that, using the little data available we note that the

results of the model are consistent with the situations

currently (September 2011) observed in Afghanistan, Libya

and Syria. We also evaluate policy options facing the

international community.

Setting and assumptions

Consider an armed revolt involving two forces, termed Red

and Blue, that rely on the population for manpower,

intelligence, and most other resources. In most situations

one of these forces will be in the position of power (eg,

the government forces) and may hold an advantage. We

assume a polarized situation where there are no neutrals

in the population that is divided into supporters of

Blue, called henceforth supporters, and supporters of

Red, called henceforth contrarians. We initially assume

that the support strongly depends on factors such as tribal

affiliation, social class, and ideology and therefore remains

unchanged during the armed revolt. However, later on we

relax this assumption and allow for changes in popular

behaviour, reflecting pragmatic and opportunistic respon-

ses of the population to changes in the force balance.

We assume that the country is divided between Red and

Blue and therefore a populated region lost by one force is

gained by the other force. Independent or neutral regions

are not considered because individuals in these areas will

often become entangled in the conflict, even if they initially

do not want to, and will eventually support one of the

sides. We also assume that the population in each region is

homogeneous—either supporters or contrarians. This

assumption is reasonable if the resolution of the regions

is high enough, and is valid in particular in tribal societies

where members of a clan closely follow their leader.

A force that fights over a region might be either sup-

ported or opposed by the local population, situations that

we call liberation or subjugation, respectively. A liberating

force fights more effectively than a subjugating force

because of population support, Ceteris paribus. Moreover,

the forces in control of hostile regions are busy policing the

population and therefore adopt a defensive posture. Thus,

only the forces operating in friendly regions proactively

attempt to capture additional territories.

Model

Let S and C (SþC¼ 1) denote the fraction of the total

population who are supporters of Blue and supporters of

Red (‘contrarians’), respectively. Let B and R (BþR¼ 1)

denote the fraction of the population controlled by Blue

and Red, respectively. We use the notation XY for the

fraction of population X that is controlled by force Y,

where X¼S,C and Y¼B,R. Hence, SBþSR¼S and

CBþCR¼C. The offensive strengths of the Blue and Red

combatants are proportional to SB and CR, respectively.

When Blue subjugates a CR region it becomes part of CB

and when Blue liberates an SR area it becomes part of SB.

Similar actions are possible by Red, giving a total of four

kinds of combat engagements, as shown in Figure 1. We

implicitly assume that the country can be divided into areas

or regions of sufficiently small size so that each one can be

viewed as a homogeneous group of people belonging to

one of the four types.

Because Red and Blue operate in populated areas, the

outcome of an engagement depends both on the strength

of the attacking force but also on the signature (ie, visibility)

of the defending force; smaller attack force (fewer shooters)

or smaller signature (fewer targets) result in a smaller gain/

loss rate. Namely, at each interaction, the gain rate of the
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attacker is given by a scaling constant, called henceforth

attrition rate, multiplied by the product of the attacking and

defending force sizes. This relationship implies that even a

large attacker would struggle to find and suppress a small

defender (or insurgent) diffused in the population. The

resulting model is an adaptation of the Lanchester Linear

Law (see eg, Washburn and Kress, 2009, p 83) and

Deitchman’s guerrilla warfare model (Deitchman, 1962).

The attrition rate constants depend on the tactics, tech-

nology, and equipment of the parties. Thus if one of the

sides represents the government, which will have an initial

advantage in many of these categories, these attrition rates

will capture this advantage. The attrition rates, however,

also depend upon the behaviour of the population. Thus,

let fS and fC denote the rates of liberation of friendly

regions by Blue and Red forces, respectively. Similarly, let

hC and hS denote the rates of subjugation of hostile regions

by Blue and Red, respectively. The resulting dynamics is

given in Equation (1):

SB0 ¼ þ fSSB � SR� hSCR � SB
SR0 ¼ � fSSB � SRþ hSCR � SB
CR0 ¼ þ fCCR � CB� hCSB � CR
CB0 ¼ � fCCR � CBþ hCSB � CR ð1Þ

As it is easier to fight in friendly territory, we make the

following dominance assumption:

fS4hC and fC4hS: ð2Þ

End-state of the revolt

From solving Equation (1) we obtain that the conflict can

result in one of three outcomes, corresponding to the stable

equilibrium points of the equations:

1. Blue victory: SBþCB¼ 1,

2. Red victory: CRþSR¼ 1,

3. Stalemate: Both sides control a fraction of the total

population.

It can be shown that the evolution of the conflict does not

involve cycles where populated regions change sides

endlessly; rather, the conflict dissipates and reaches a

stable state. Proofs of this and all other results are given in

the Appendix at the end of this paper.

The stable outcomes are not dependent on all four

attrition rates but rather on two ratios: rS¼ fS/hS and

rC¼ fC/hC. We call these the ‘liberation-subjugation

effectiveness ratio’ (LSER) of supporters and contrarians,

respectively. These ratios account for differences in tactics,

technology, and information between Blue and Red, and

also reflect the ability and commitment of the local

population to support its preferred force. The outcomes are

Blue wins if and only if rCo
S

1� S
ð3Þ

Red wins if and only if rSo
1� S

S
ð4Þ

Otherwise a stalemate occurs:

These results1 are summarized in Figure 2(a). It follows

from Equations 3 to 4 that the fate of the armed revolt is

completely determined by the LSERs and the population

split between supporters S and contrarians C¼ 1�S; it

does not depend on the initial sizes of the Blue and Red

forces. Moreover, the minimum popular support needed to

guarantee Blue’s win only depends on the LSER in the

contrarians’ territory. Specifically, Blue wins if and only

if rC(1�S)oS, that is, if the fraction of its supporters is

larger than the fraction of contrarians times the LSER in

contrarians’ territory. An equivalent statement applies

for Red victory that happens if and only if rS(1�C)oC.

The operational implication of these two conditions is

that strengthening one’s advantage in friendly territories

(eg, Blue increasing rS) may be sufficient to avoid defeat

but not to secure a win; if one is not effectively fighting in

hostile territory (eg, Blue cannot sufficiently decrease rC)

SB

CBCR

SR

Liberated
population

Subjugated
population

S population

C population

Liberation

Subjugation

Military force

Figure 1 Schematic dynamics of the model. The four variables
in the model appear as boxes, where each box represents
a possible combination of population behaviour and controlling
force. Solid lines indicate change in control of population
although dashed lines indicate the force causing it. Observe
that the population does not change allegiances even under
occupation.

1Technically, we assume that at the start of the dynamics both forces

have some presence in a friendly territory, ie SB040 and CR040.

Otherwise, one of the forces is never challenged and wins trivially. Also,

the model has a fourth equilibrium that corresponds to the case where

the territory is divided between Blue and Red who control only hostile

territory (SRþCB¼ 1). Obviously, such a situation is very unlikely and

indeed this equilibrium is unstable, as shown in the Appendix.
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then one cannot win; the best it can hope for is a stalemate.

At the stalemate equilibrium, denoted XYb

CBb ¼
Sð1þ rSÞ � 1

rSrC � 1
; SRb ¼

rC � Sð1þ rCÞ
rSrC � 1

;

SBb ¼ rCCBb; CRb ¼ rSSRb:

ð5Þ

Notice that the denominators are always positive because

of the dominance assumption (see Equation 2). Equation

(5) indicates that as S increases an increasing part of the

population is controlled by Blue. When rC increases, a

larger fraction of the contrarians is able to remain free (ie,

ruled by Red).

We plot the fraction of the population controlled by Blue

during a stalemate (ie, CBþSB) in Figure 2(b). (We only

present the plot for S¼ 0.4, but other values of S are qua-

litatively similar.) Near the Blue victory condition defined

by Equation 3 the fraction of the population controlled by

Blue is near one, but quickly decreases as rC increases.

Similarly, the fraction of population controlled by Blue

rapidly increases as rS moves away from the Red victory

condition. However, after the significant initial change in

the fraction of Blue’s regions as rS or rC increases, the

surface flattens out. As both rS and rC continue to increase,

the fraction of Blue’s regions approaches S. Therefore,

when rS and rC are reasonably bounded away from their

thresholds, an entrenched stalemate occurs where Red and

Blue control primarily their friendly territories.

Extensions of the basic model

We consider now two extensions of the basic model: the

case of foreign intervention and the case of shifting popular

support.

Foreign military intervention

Most large revolts in modern times involved foreign

military interventions by regional or global powers (Small

and Singer, 1982; Sarkees and Wayman, 2010). Such inter-

ventions can be manifested in two ways: direct and indirect.

Direct intervention (eg, air-strike support to ground units,

such as the intervention of NATO forces in Libya in 2011)

allows the supported side to exercise more firepower

against its opponent. Indirect intervention provides the

supported side with force multipliers such as intelligence,

training, logistical support and advanced weapons, but

no additional firepower per se. In both cases we assume

that just one side, say Blue, receives the foreign support.

We leave for future studies to consider the case of foreign

support to both sides.

Direct intervention

For simplicity, suppose that the foreign constituent is

tactically superior and it experiences negligible attrition (eg,

air support for Blue that is subject to ineffective air defense

of Red). Therefore, the effectiveness of the foreign consti-

tuent remains fixed throughout the armed revolt. However,

similarly to the direct engagements discussed above, its

ability to target Red diminishes as the size of Red’s forces

decreases. In that case, Red targets are harder to find

and engage. Let lS, lC40 denote the combat power of the

foreign constituent when operating in supporters’ (S)

regions and contrarians’ (C) regions, respectively. The sepa-

ration into two combat power parameters allow for the

possibility that the foreign constituent only contributes to

certain kinds of operations (eg, only to liberating suppor-

ters), and/or is affected by the behaviour of the population,

just like Blue. In this case, Equation (1) becomes

SB0 ¼ þ fSSB � SR� hSCR � SBþ lSSR

SR0 ¼ � fSSB � SRþ hSCR � SB� lSSR

CR0 ¼ þ fCCR � CB� hCSB � CR� lCCR

CB0 ¼ � fCCR � CBþ hCSB � CRþ lCCR ð6Þ

As the effectiveness of the foreign constituent remains

unaffected, it is clear that Red cannot win. The only two
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Figure 2 Outcomes of the conflict when S¼ 40% as a function of rS and rC. (a) The possible outcomes are: stalemate, Red victory
and Blue victory. The white area is excluded by the dominance assumption (In Equation 2). Outright victory is possible only when
one party has a low LSER. Increasing rS and rC makes both parties much more entrenched in their areas, leading to a stalemate
regardless of the value of S. (b) The amount of territory controlled by Blue. Observe that a very sharp change in the outcome is
predicted as rC approaches 2/3, from a balanced stalemate to a Blue victory.
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outcomes are Blue’s victory and a stalemate. Blue wins if

and only if lC4fC(1�S)�hCS. Otherwise, the armed revolt

ends in a stalemate. Like in the basic model, the conflict

dissipates and reaches a stable state, and no cycles are

possible.

An interesting observation is that the value of lS—the

combat power of the foreign constituent in friendly

regions—plays no role in helping Blue achieve victory; it

only ensures that Blue will not lose as long as lS40. The

threshold of lC that determines Blue’s victory is the

difference between two terms, each a combination of

combat effectiveness and popular support: fC(1�S) is

Red’s effectiveness fighting on friendly territory times its

popular support, and hCS is Blue’s effectiveness fighting on

hostile territory times its popular support. Clearly, this

threshold decreases as the support to Blue increases. In

particular, a sufficient condition for Blue victory is lC4fC
that only depends upon the fighting effectiveness of Red.

Consequently, even if Blue has limited tactical capabilities

or a small amount of popular support, it can still prevail

with enough assistance from a foreign constituent.

We do not consider the situation where the foreign

constituent experiences attrition. The standard example

would be foreign ground troops participating directly in

combat, such as the US involvement in Vietnam. Analysing

this scenario would involve defining an additional state

variable for the strength of the intervening force and

modelling its dynamics (eg, attrition and reinforcements).

Such an expanded model is beyond the scope of this paper.

Indirect intervention

Indirect intervention (force multiplier) increases the ability

of Blue to defend its territory and to attack Red forces.

Specifically, the liberation rate fS and the subjugation rate

hC are multiplied by factors mS,mC41, respectively, where

the structure of Equation (1) remains unchanged. The

LSER values rS and rC change to mSrS and rC/mC,
respectively. Using the conditions in Equation 4 we obtain

that for Blue to avoid defeat it is sufficient that the

intervention be such that

mSX
1� S

rSS
:

We see that if the Blue forces have low LSER, ie, cannot

hold their own territory, they may be defeated despite

assistance from their foreign backers. In order to secure a

win, it follows from Equation 3 that the support for Blue

must be such that

mC4
rCð1� SÞ

S
:

Because rSrC41, the threshold of mC is always larger

than the threshold of mS—it is more costly to secure a

victory than to avoid a loss. Obviously, the indirect

intervention is needed to secure a victory only if S is small

enough, specifically, if So(rC)/(1þ rC). Note that ‘small

enough’ may actually be quite large when Red is very

effective on its own turf compared with Blue (rC is large).

Opportunistic population

Although in some conflicts the behaviour of the people is

highly polarized and unchanging, in others the population

might be quite opportunistic and favour the side that

appears more likely to win. It follows that the fraction of

the supporters, and hence contrarians, changes according

to the state of the conflict. We capture this situation by

treating the fraction of supporters S as a dynamic variable,

and adding to Equation (1) an equation for S0. The value

of S0 increases with the fraction of population Blue con-

trols (SBþCB) and decreases with the fraction controlled

by Red (CRþSR). Because C¼ 1�S, SR¼S�SB, and

CB¼ 1�S�CR, we obtain from Equation (1) the three

equations:

SB0 ¼ þ fSSBðS � SBÞ � hSCR � SB
CR0 ¼ þ fCCRð1� S � CRÞ � hCSB � CR
S 0 ¼ þ aðSBþ 1� S � CRÞð1� SÞ

� aðCRþ S � SBÞS; ð7Þ

where a is a parameter that determines the rate at which

individuals switch allegiances, which is assumed to be the

same for both the supporters and contrarians. With

opportunistic population there are only two potential

outcomes:

1. Blue victory where the entire population supports Blue,

who controls all regions (SB¼ 1), and

2. Red victory where the entire population supports Red,

who controls all regions (CR¼ 1).

These two equilibria are stable for all parameter values.

There are also two stalemate equilibria: a balanced

stalemate where SB,CR40, and a disarmed stalemate

where SB¼CR¼ 0. Neither of the two stalemate equilibria

are stable. The disarmed stalemate is neither realistic nor

relevant. The balanced stalemate, given below, is more

interesting because it lies on a boundary that separates the

basins of attraction for the two victory situations:

SB� ¼ rC

2þ rS þ rC
; ð8Þ

CR� ¼ rS

2þ rS þ rC
; ð9Þ

S� ¼ 1þ rC

2þ rS þ rC
: ð10Þ
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Thus, the stalemate equilibrium gives a rough metric for

the potential outcome of the conflict. For example, the closer

the stalemate equilibrium is to the Blue victory point, the

more likely Red will win the conflict. This occurs because

most of the three-dimensional (rS, rC,S) parameter space lies

in the basin of attraction corresponding to Red victory.

Comments on recent revolts

In this section we discuss several nascent and ongoing (in

2011) revolts in light of the SBCR model above and its

extensions. We have also attempted to systematically

validate this model empirically, but while data on armed

conflicts exist (eg, UCDP/PRIO Armed Conflict Dataset

(Themnér and Wallensteen, 2011) and Correlates of War

Data (Sarkees and Wayman, 2010)), none of the data sets

include the information necessary for us to make quanti-

tative estimates of the parameters, particularly the para-

meters rS, and rC. Thus, although we could not compute

precise estimates of the model parameters, we show that

many of the ongoing conflicts are at a state consistent with

our model. The model suggests how the outcomes might be

effected by decisions including those currently on the policy

table.

Libya

The available information regarding the revolt in Libya

is based mainly on fragmented, and largely anectodal,

news reports. It suggests that the conflict has progressed

through three stages: During the first stage, mid-February

to mid-March 2011, the rebels established local govern-

ments but then experienced setbacks and were collapsing

in the face of a regime offensive towards their base in

Benghazi (MacAskill et al, 2011). In the second stage, mid-

March to late April, NATO established a no-fly zone and

blocked further incursions by Qaddafi’s forces. A stalemate

developed with the rebels repelling Qaddafi’s forces and

vice versa. Finally, in the third stage, from early May to

September, NATO gradually intensified its air strikes and

aid to the rebels leading to rapid rebel progress, and

eventually to the fall of Tripoli.

This progression is consistent with our model, as follows.

In the first stage, Qaddafi’s forces (labelled Red) were

much better trained, equipped and organized than the

rebels (labelled Blue). The regime’s forces could success-

fully beat the rebels even in rebel-supporting regions,

suggesting that fSohS and fC4hC, which implies that rSo1

and rC41. From Equation 4 and that SE40% we learn

that Qaddafi should have achieved a clear victory, crushing

the revolt. (Here we estimated S from the fact that three of

the seven largest districts in Libya—Benghazi, Misrata,

and Az-Zawiya—established rebel governance, and these

amount to approximately 40% of Libya’s population.)

In the second stage, the foreign intervention was defensive

in nature (lS40 and lC¼ 0) and attrition to NATO forces

was negligible. The model indicates that under such

conditions the rebels could no longer be defeated. The

rebels were also provided training and gear to help them

repel Qaddafi’s attempts at recapturing rebelling popula-

tion, ie, increasing the rebels’ rS but not changing rC. Thus,

the rebels remained inferior to the regime’ forces when

fighting in territory controlled by Qaddafi or supporting

him. Consistent with our model, we saw a stalemate

because Blue victory requires a reduction of rC to rCo(S)/

(1�S)¼ 2/3 (Equation (3)). Finally in the third stage, the

foreign intervention gradually began to aid the rebel

offensive: NATO provided weapons (decreasing rC) as

well as tactical air support (increasing lC) (Fahim and

Mazzetti, 2011). The near-complete victory by the rebels

(as of September 2011) is exactly what one expects from the

model when rC is brought sufficiently low.

Afghanistan

One can view the ongoing conflict in Afghanistan (2001–)

as a struggle of government and coalition forces (Blue)

against Salafists (Red) led by the Taliban. Many observers

of the conflict point to the critical need of both parties to

win the support of the population, and thus the conflict is

a good application of our model. According to the 2007

report by the International Council on Security and

Development, the Taliban have permanent presence in

54% of the country (International Council on Security and

Development, 2007). Suppose, pessimistically, that the

Taliban movement has the support of all the people in the

regions where it is present. Assuming fixed behaviour of

the population (no opportunistic shifts) the situation in

Afghanistan will continue in its current stalemate form

unless rSo1.17 (giving Red a victory) or rCo0.85 (giving

Blue a victory). Thus, the model suggests that the

government can avoid a Taliban takeover of the country

by nurturing the support of the population it currently

controls, and it is not necessary to push back the Taliban

from their areas.

Syria

The situation in Syria is currently (September 2011) in

a state of civil unrest rather than a full-scale armed revolt:

The Syrian army and paramilitaries face massive but largly

unarmed demonstrations. If the situation does escalate into

an armed revolt, what might be its outcome? The

opposition (Red) would be at a disadvantage against the

government forces (Blue), which are led by special units

of the Syrian army that possess superior tactics and

weapons. Therefore, rS is likely large and rC is likely small.

Furthermore, the international community appears less
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likely to become involved as compared to Libya. However,

if the opposition unites under effective leadership and

initiates a strong offensive push (perhaps drawing in

foreign intervention), then we anticipate that the Assad

regime would face a strong challenge because of its narrow

base of support in the Alawite sect (assuming he does not

enlarge his base).

Recall that Red would be victorious against Blue if

rSo(1�S)/(S) (Equation 4). Assuming SE10% (the entire

Alawite community (Central Intelligence Agency, 2009)),

the government must have rSX9 in order to avoid defeat.

If we assume other minority groups (eg, Christians and

Druze) also generally support the government (New York

Times, 2011), then SE25% (Central Intelligence Agency,

2009) and to avoid defeat the government would need just

rSX3. Thus, for the government to avoid defeat in an

armed revolt, it would need to maintain strong loyalty of

its backers and/or tactical superiority. This seems unlikely:

there appears to be strong discontent even within the

Alawite community and the rebels could come to acquire

military hardware from their foreign backers—hardware

such as armor-piercing munitions and air cover to

neutralize government forces. Furthermore, the currently

observed (September 2011) stalemate is partly a result of

foreign intervention by Iranian and Hezbollah combatants

(Tisdall, 2011). This intervention is covert and therefore

fragile. In sum, although the current situation does not

appear promising for the opposition, changes in the dome-

stic political climate, or the international community’s

stance on intervention could quickly turn the tide and lead

to the defeat of Syria’s Assad regime.

Summary and conclusions

We present a new Lanchester-type model that represents

the dynamics of liberating and subjugating populated

regions in the setting of an armed revolt. We identify

winning and stalemate conditions and obtain some general

insights regarding the revolt’s end-state. Many revolts do

not have a decisive outcome, with both sides entrenched

in a prolonged stalemate. Our model explicitly identifies

this realistic outcome, which is not captured in classical

Lanchester theory. Our model also illustrates that it is not

sufficient to ably control friendly regions; for victory it is

crucial to be able to effectively fight in hostile regions.

We also study the effect of foreign intervention (eg,

NATO intervention in Libya) on the outcome of a revolt.

We find that although direct intervention to support one

side will prevent defeat of that side and can facilitate a win

even if that side has very little popular support, indirect

intervention cannot guarantee this particularly when its

LSER is low. The level of foreign intervention (either

direct or indirect) required to defeat an opponent depends

on the popular support (S) and the attrition coefficients

( fC and hC) in the contrarians’ territory; it does not depend

on the capabilities of the forces in supporters’ regions.

Finally, if the population can shift its support, then

a stalemate is not possible. A bandwagon-type effect will

occur where the population increases its support to the

apparent winner, which strengthens it and leads to more

support, which further strengthens it and so on until

the side achieves victory. Unlike the case of fixed popula-

tion behaviour, the results of this scenario are sensitive to

the initial conditions.

The model we present agrees in its predictions with the

views of many analysts of the ongoing conflicts. Therefore,

our contribution to the current policy debate is to make

explicit the latent assumptions of previous studies. For

the future, the model (and its variants) could help to antici-

pate the outcomes of different kinds of revolts.
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Appendix A

Victory conditions

In general, dynamical systems may exhibit stable oscilla-

tions. We now show that the system of equations in

Equation (1) does not have those oscillations (no limit

cycles). This means that the state variables will always reach

one of the equilibrium points (by the Poincaré-Bendixon

Theorem (Strogatz, 2000) and noting that the state space is

bounded).

Theorem 1 (Dulac’s Criterion (Strogatz, 2000) Let
.
x¼ f(x)

be a smooth system on a simply-connected set S � R2: Let
w : S ! R be smooth on S. Suppose on S the expression

r � ( f (x)w(x)) does not change sign. Then the system has no

limit cycle on S.

Proposition 1 The system of Equation (1) does not have

limit cycles.

Proof We first write the model as a system of two

independent equations by removing the mixed variables:

SB0 ¼ þ fSSBðS � SBÞ � hSCR � SB ðA:1Þ

CR0 ¼ þ fCCRðC � CRÞ � hCSB � CR ðA:2Þ

Let

wðSB;CRÞ ¼ 1

SBðS � SBÞCRðC � CRÞ :

Both the system and w are smooth on the set (0,S) � (0,C)

( points on the boundary of this space move to one of the

fixed points and do not oscillate.)

r � ðfwÞ

¼ r � fSðS � SBÞ � hSCR

ðS � SBÞCRðC � CRÞ ;
fCðC � CRÞ � hCSB

SBðS � SBÞðC � CRÞ

� �

¼ �hS
ðS � SBÞ2ðC � CRÞ

þ �hC
ðS � SBÞðC � CRÞ2

o0: &

We next show that the victory conditions in Equations

3, 4 correspond to the stability conditions for the equilibria

points. Throughout, we assume that 0oSo1, ie, S is not

on its boundary.

Theorem 2 The following four statements hold for the

system of differential equations defined by Equation (1):

K The equilibrium CR¼SB¼ 0 and SR¼ 1�CB¼S is

never stable.

K The Blue victory equilibrium (CR¼SR¼ 0 and

SB¼ 1�CB¼S) is stable if and only if rCo(S)/(1�S).
K The Red victory equilibrium (SB¼CB¼ 0 and

CR¼ 1�SB¼ 1�S) is stable if and only if rSo(1�S)/(S).
K The stalemate equilibrium (defined by Equation (5)) is

stable if and only if rCX(S)/(1�S) and rSX(1�S)/(S).

Proof The model is fully specified based on two variables:

SB and CR, Equations (A.1)–(A.2). We first compute the

Jacobian of the right hand size of differential equation

JðSB;CRÞ

¼
fSðS � 2SBÞ � hSCR �hSSB
�hCCR fCð1� S � 2CRÞ � hCSB

� �

A solution (SB�,CR�) to the differential equation is

stable if the two eigenvalues of J(SB�,CR�) have negative
real parts (Strogatz, 2000). By inspection the equilibrium

with SB¼CR¼ 0 is not stable for any parameter values.

Blue victory

The characteristic polynomial in this case is

ð�fSS � lÞðfCð1� SÞ � hCS � lÞ ¼ 0:

The first eigenvalue, �fSS, is always negative and the

second eigenvalue, fC(1�S)�hCS, is negative if rCo(S)/

(1�S).
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Red victory

The characteristic polynomial in this case is

ð�fCð1� SÞ � lÞðfSS � hSð1� SÞ � lÞ ¼ 0:

The first eigenvalue, �fC(1�S), is always negative and

the second eigenvalue, fSS�hS(1�S), is negative if

rSo(1�S)/(S). By the dominance assumption (ie, In

Equation 2)) rSrC41 and thus 1/(1þ rS)o(rC)/(1þ rC).

Therefore it is not possible for both the Blue victory and

Red victory to be stable equilibria for the same values of rS
and rC. This also implies that if rSo(1�S)/(S) a Blue

victory cannot occur and if rCo(S)/(1�S) a Red victory

cannot occur.

Stalemate

At the stalemate equilibrium, the variables have the values

SBb,SRb,CRb, and CBb. We next present a lemma, and

then prove that the stalemate equilibrium is stable if and

only if 1/(1þ rS)oSo(rC)/(1þ rC), which is equivalent to

the two conditions rCX(S)/(1�S) and rSX(1�S)/(S).

Lemma 1 The product SBbCRb is positive if and only if

1/(1þ rS)oSo(rC)/(1þ rC).

Proof By Equation (5), SBb is positive if 1/(1þ rS)oS,

and CRb is positive if So(rC)/(1þ rC). By the dominance

assumption (In Equation 2) 1/(1þ rS)o(rC)/(1þ rC), and

therefore it is impossible for SBb and CRb to both be

negative.

Lemma 1 and Equation (5) imply that if 1/

(1þ rS)oSo(rC)/(1þ rC), then SBb,SRb,CRb, and CBb

are all positive (and by conservation of total population,

less than 1). The Jacobian matrix for the stalemate

equilibrium is

JðSBb;CRbÞ ¼
�fSSBb �hSSBb

�hCCRb �fCCRb

� �

We derive the upper left hand element of this Jacobian

below

J11ðSBb;CRbÞ ¼fSðS � 2SBbÞ � hSCRb

¼hSðrSðS � 2SBbÞ � rSSRbÞ

¼fS S � 2SrCð1þ rSÞ � 2rC

rSrC � 1

�

� rC � Sð1þ rCÞ
rSrC � 1

�
¼� fSSBb

The lower right hand element of J(SBb,CRb) can be

derived in a similar fashion and we omit the details. The

eigenvalues of J(SBb,CRb) will both have a negative real

component if the trace of J(SBb,CRb) is negative and the

determinant is positive The determinant of J(SBb,CRb) is

SBbCRbhChS(rSrC�1). If 1/(1þ rS)oSo(rC)/(1þ rC), then

by Lemma 1 the trace is negative and the determinant is

positive, and thus the stalemate equilibrium is stable. If

Se(1/(1þ rS), (rC)/(1þ rC)) then by Lemma 1 the determi-

nant of J(SBb,CRb) is negative and thus one of the eigen-

values has a positive real component and the stalemate

equilibrium is not stable. &

Appendix B

Direct foreign intervention

Let us rewrite the direct intervention dynamics of

Equation (6):

SB0 ¼ þfS SBþ lS
fS

� �
SR� hSCR � SB

SR0 ¼ �fS SBþ lS
fS

� �
SRþ hSCR � SB

CR0 ¼ þfCCR � CB� hC SBþ lC
hC

� �
CR

CB0 ¼ �fCCR � CBþ hC SBþ lC
hC

� �
CR ðB:1Þ

Furthermore let us define AS� lS/fS and AC� lC/hC.
The stalemate equilibrium of these equations is denoted

with a subscript fi (foreign intervention) and we present

them below.

SBfi ¼
SBb

2
� AS

2
þ AC � AS

2ðrSrC � 1Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SBb

2
� AS

2
þ AC � AS

2ðrSrC � 1Þ

� �2

þ rSrCASS

rSrC � 1

s
ðB:2Þ

SRfi ¼ S � SBfi ðB:3Þ

CBfi ¼
SBfi þ AC

rC
ðB:4Þ

CRfi ¼ 1� S � CBfi ðB:5Þ

(SBb is the value at stalemate of the variable SB in the basic

model, Equation (5).) To derive these expressions we first

write the analogue of Equations (A1)–(A.2):

SB0 ¼ þ fSðSBþ ASÞðS � SBÞ � hSCR � SB ðB:6Þ

CR0 ¼ þ fCCRð1� S � CRÞ � hCðSBþ ACÞCR ðB:7Þ
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Solving Equations (B.6)–(B.7) for the stalemate equili-

brium root results in two equations

fSðSBþ ASÞðS � SBÞ ¼ hSCR � SB ðB:8Þ

fCð1� S � CRÞ ¼ hCðSBþ ACÞ ðB:9Þ

Solving Equation (B.8) for CR and substituting into

Equation (B.9) produces a quadratic in SB. Solving for the

positive root of that quadratic yields the expression for SBfi

in Equation (B.2). Substituting SBfi into Equation (B.9)

gives CBfi in Equation (B.4). Similarly to the basic model, it

is possible to exclude cycles, as follows.

Proposition 2 The set of Equation (6) does not have limit

cycles.

Proof We will work with the two independent Equations

(B.6) and (B.7).

Let

wðSB;CRÞ ¼ 1

ðSBþ ASÞCRð1� S � CRÞ :

Both the system and w are smooth on the set

(0,S) � (0, 1�S).

wSB0 ¼ fSðSBþ ASÞðS � SBÞ � hSCR � SB
ðSBþ ASÞCRð1� S � CRÞ

¼ fSðS � SBÞ
CRð1� S � CRÞ �

hS

ð1� S � CRÞ 1þ AS

SB

� ��1

wCR0 ¼ fCCRð1� S � CRÞ � hCðSBþ ACÞCR
ðSBþ ASÞCRð1� S � CRÞ

¼ fC

SBþ AS
� hCðSBþ ACÞ
ðSBþ ASÞð1� S � CRÞ :

Note that 1�S�CR¼C�CR40 in the strictly positive

quadrant. Therefore,

r � ðfwÞ ¼ �fS
CRð1� S � CRÞ �

hS

ð1� S � CRÞ

� ð�1Þ 1þ AS

SB

� �� 2�AS

SB2

þ 0� hCðSBþ ACÞ
ðSBþ ASÞð1� S � CRÞ2

o0: &

Before proceeding to examine the stability properties

of the victory equilibrium and the stalemate equilibrium,

we note there are two other equilibrium points to the

system defined by Equation (6): CR¼ 0, SB¼�lS/ fS and

an equilibrium similar to Equations (B.2)–(B.5), but with

SBfi the negative root of the quadratic that produced

Equation (B.2). Because both of these equilibria consist of

negative values, which cannot be realized, we do not

analyse them further. We next show that the victory

condition defined in corresponds to the stability conditions

for the equilibria points.

Theorem 3 For the system of differential equations

defined by Equation (B.1), the Blue victory equilibrium

(CR¼SR¼ 0) is stable if and only if (rC�AC)/(1þ rC)oS.

Proof We first compute the Jacobian of the right

hand size of differential equation defined in Equations

(B.6)–(B.7)

JfiðSB;CRÞ

¼
fSðS � 2SB� ASÞ � hSCR �hSSB
�hCCR fCð1� S � 2CRÞ � hCðSBþ ACÞ

� �

For the Blue victory equilibrium (SB¼S,CR¼ 0), the

characteristic polynomial is

ð�fSðS þ ASÞ � lÞðfCð1� SÞ � hCðS þ ACÞ � lÞ ¼ 0:

The first eigenvalue, �fS(SþAS), is always negative and

the second eigenvalue, fC(1�S)�hC(SþAC), is negative if

(rC�AC)/(1þ rC)oS. Writing out this condition in terms of

the direct foreign intervention parameter lC¼AChC
produces the condition: lC4fC(1�S)þ hCS. &

Theorem 3 provides a necessary condition for Blue

victory. We have not been able to prove the stability

characteristics for the stalemate equilibrium analytically,

which would provide the sufficient conditions for Blue

victory. This is given in Conjecture 1 and extensive

numerical experimentation makes us confident that this

conjecture does hold.

Conjecture 1 The stalemate equilibrium defined in Equa-

tions (B.2)–(B.5) is stable if and only if (rC�AC)/

(1þ rC)4S.

Appendix C

Opportunistic population

We next show that victory is the only possible outcome of

the opportunistic population model.
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Theorem 4 The following four statements hold for the

system of differential equations defined by Equation (7):

K The equilibrium CR¼SB¼ 0 and S¼ 1/2 is never stable.

K The Blue victory equilibrium (CR¼ 0 and SB¼S¼ 1) is

always stable.

K The Red victory equilibrium (SB¼S¼ 0 and CR¼ 1) is

always stable.

K The stalemate equilibrium defined in Equations (8)–(10)

is never stable.

Proof We first compute the Jacobian of Equation (7)

A solution (SB�,CR�,S�) to the differential equation is

stable if the three eigenvalues of Jop(SB
�,CR�,S�) have

negative real parts. By inspection the equilibrium with

(SB�,CR�,S�)¼ (0, 0, (1/2)) is not stable for any parameter

values.

Blue victory

For the equilibrium (SB�,CR�,S�)¼ (1, 0, 1) the character-

istic polynomial is

ð�hC � lÞðl2 þ lð2aþ fSÞ þ afSÞ ¼ 0:

The first eigenvalue, �hC, is always negative and the

second and third eigenvalues are always negative by

appealing to the quadratic formula for the second term.

Red victory

For the equilibrium (SB�,CR�,S�)¼ (0, 1, 0) the character-

istic polynomial is

ð�hS � lÞðl2 þ lð2aþ fCÞ þ afCÞ ¼ 0:

The first eigenvalue, �hS, is always negative and the

second and third eigenvalues are always negative by

appealing to the quadratic formula for the second term.

Stalemate

Substituting the equilibrium points Equations (8)–(10) into

the Jacobian yields

JopðSB�;CR�;S�Þ

¼
� fSrC

2þrSþrC � hSrC
2þrSþrC

fSrC
2þrSþrC

� hCrS
2þrSþrC � fCrS

2þrSþrC � fCrS
2þrSþrC

a �a �2a

0
B@

1
CA

To calculate the eigenvalues, we need to find the roots of

the characteristic polynomial g(l)¼det(Jop(SB
�,CR�,

S�)�I). Because liml-Ng(l)¼�N, if g(0)¼ det(Jop(SB
�,

CR�,S�))40, then by the Intermediate Value Theorem

there must be a positive eigenvalue and the stalemate

equilibrium must be unstable. We will now show that this

is the case for all possible parameter values. Computing the

determinant:

detðJopðSB�;CR�;S�ÞÞ
¼ að�2fSrCfCrS þ hSrCfCrS þ fSrChCrS

þfSrCfCrS þ fSrCfCrS þ 2hSrChCrSÞ
ð2þ rS þ rCÞ2

¼ arSrCðhSfC þ fShC þ 2hShCÞ
ð2þ rS þ rCÞ2

40:

Therefore there will always be a positive eigenvalue

associated with the stalemate equilibrium defined by

Equations (8)–(10), and so it cannot be stable.
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JopðSB;CR;SÞ ¼
fSðS � 2SBÞ � hSCR �hSSB fSSB

�hCCR fCð1� S � 2CRÞ � hCSB �fCCR
a a �2a

0
B@

1
CA
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