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a b s t r a c t

We calculate several hitting time probabilities for a correlatedmultidimensional Brownian
bridge process, where the boundaries are hyperplanes that move linearly with time. We
compute the probability that a Brownian bridge will cross a moving hyperplane if the end-
points of the bridge lie on the same side of the hyperplane at the starting and ending times,
and we derive the distribution of the hitting time if the endpoints lie on opposite sides of
themoving hyperplane. Our third result calculates the probability that this process remains
between two parallel hyperplanes, and we extend this result in the independent case to a
hyperrectanglewithmoving faces. To derive these quantities,we rotate the coordinate axes
to transform the problem into a one-dimensional calculation.

Published by Elsevier B.V.

1. Introduction

In this paper we generalize some of the one-dimensional first passage time results for conditional Brownian motion and
extend them to the multidimensional realm. Conditioning on the value of a Brownian motion at a particular time T > 0
produces a Brownian bridge process on the interval [0, T ]. Several well known first passage time results exist for the one-
dimensional Brownian bridge (Beghin and Orsingher, 1999; Abundo, 2002), however few studies consider the multidimen-
sional Brownian bridge process.We focus on hyperplane boundaries thatmove at a constant speed. In themultidimensional
case, we do not assume the components behave independently; the underlying Brownian motion can evolve according to
an arbitrary correlation structure.

The papers by Beghin and Orsingher (1999) and Abundo (2002) resemble our work most closely. Beghin and Orsingher
(1999) contains one-dimensional results for the Brownian bridge for stationary boundaries. Both Beghin and Orsingher
(1999) and Abundo (2002) examine a two-sided boundary crossing probability result with symmetric boundaries. Our first
result generalizes this one-dimensional, two-sided boundary result to the asymmetric case. Scheike (1992) calculates the
probability that the standard Brownian bridge crosses a linear boundary, as well as other Brownian motion crossing results.
He uses the time inversion property of Brownian motion to prove several of his results. Abundo (2002) follows the same
approach, as will we. Abundo (2002) also extends the work of Beghin and Orsingher (1999) to moving boundaries and
provides the foundation upon which we will derive the multidimensional results.

We present three results for correlated multidimensional Brownian bridge processes. We first compute the probability
that such a process hits a linear moving hyperplane, given that the initial and final locations of the Brownian bridge lie
on the same side of the hyperplane at the initial and final times, respectively. When the initial and final locations of the
Brownian bridge lie on opposite sides of the moving hyperplane, we derive the distribution of the hitting time. Finally, we
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calculate the probability that the correlated Brownian bridge will remain between two moving parallel hyperplanes. When
the components of the Brownian bridge evolve independently, we extend this last result to compute the probability that the
process remains within a hyperrectangle with moving faces. We derive the multidimensional quantities of interest in this
paper by rotating the coordinate system so that the first component lies perpendicular to the hyperplanes; this procedure
reduces the problem to a single dimension. While we leverage the one-dimensional results to derive the multidimensional
results, the extension is not trivial. Furthermore, moving from the one-dimensional setting to amultidimensional correlated
process with multidimensional boundaries represents a significant generalization.

Several results exist for hitting times in multiple dimensions for Brownian motion. Iyengar (1985) and Metzler (2010)
examine planar correlated Brownian motion and derive results for the first time either component reaches a fixed level.
Wendel (1980), Yin (1999) and Betz and Gzyl (1994) derive first passage time results formultidimensional Brownianmotion
with spherical boundaries. Di Crescenzo et al. (1991) presents hitting time results for general diffusion problems and a
method for transforming a multidimensional problem to a one-dimensional problem. We take a similar approach in this
paper. To the best of our knowledge, the only multidimensional result for the Brownian bridge appears in Buchmann and
Petersen (2006). However, they only examine the independent case with one stationary boundary. Wu (2012) contains a
good overview of the literature on first passage time problems related to Brownian motion.

The hitting time calculations presented in this paper may prove useful beyond the theoretical realm. We may know the
location of an entity at certain time points and Brownian motion may appropriately describe the behavior of the entity
between those points. For example, recent work by ecology researchers models the movement patterns of animals using
Brownian bridges (Bullard, 1999; Horne et al., 2007; Kranstauber et al., 2012; Fischer et al., 2013). If Brownian bridge
dynamics adequately represent an animal’s migration pattern, then the results from this paper could aid in determining
the probability an animal will stray outside the boundary of a wildlife refuge, computing the expected time until a herd
reaches a particular grazing region during its migration, or choosing boundaries of a park to protect a certain species.

Wedefine notation and review the one-dimensional results in Section 2. In Section 3we generalize a symmetric boundary
result to the asymmetric case for a one-dimensional Brownian bridge. In Section 4 we present the main results of the paper
for the correlated multidimensional Brownian bridge. Section 5 concludes.

2. Notation and preliminaries

Wedefine Bt as an n-dimensional standard Brownianmotionwith independent components andWt as an n-dimensional
Brownian motion with zero mean and a positive-definite covariance matrix Σ . If LΣ is the lower triangular Cholesky factor
of Σ , thenWt

D
= LΣBt , where D

= denotes equivalence in distribution. We define Xt as the n-dimensional Brownian bridge of
interest with the same covariance matrix Σ as the underlying Brownian motionWt . Without loss of generality, we assume
that the Brownian bridge starts at time t = 0 at position X0 = x0 ∈ Rn and finishes at time t = T at position XT = xT ∈ Rn.
We can write the Brownian bridge as

Xt
D
= x0 + (xT − x0)

t
T

+ Wt −
t
T
WT . (2.1)

We consider hyperplane boundaries thatmove at a constant speed.We define the hyperplane according to its normal vector,
a ∈ Rn, and thus at time t the boundary takes the form {x ∈ Rn

| a′x = b + ct}, with b, c ∈ R and a′ denoting the transpose
of a.

We summarize the three main results we will present for the multidimensional case from Section 4. We first calculate
the probability the Brownian bridge hits the hyperplane if both x0 and xT lie on the same side of the moving hyperplane at
times 0 and T :

P

 
t∈[0,T ]

((a′x0 − b)(a′Xt − b − ct) ≤ 0)


. (2.2)

We will also analyze the case where the hyperplane separates x0 and xT . Formally this occurs when (a′x0 − b)(a′xT − b−

cT ) < 0. In this case, we define the hitting time τ := inf {s > 0 : (a′x0 −b)(a′Xs −b− cs) ≤ 0} and compute its distribution:

P[τ ≤ t] = P

 
s∈[0,t]

((a′x0 − b)(a′Xs − b − cs) ≤ 0)


, for 0 ≤ t ≤ T . (2.3)

Finally, we will compute the probability that the Brownian bridge remains between two moving parallel hyperplanes:
a′x = b1 + c1t and a′x = b2 + c2t ,

P

 
t∈[0,T ]

((a′Xt − b1 − c1t)(a′Xt − b2 − c2t) ≤ 0)


. (2.4)

We will use (2.4) to derive the probability a Brownian bridge with i.i.d. components stays within a hyperrectangle with
moving faces.

We next review prior results for the one-dimensional case that we will use in the multidimensional setting after per-
forming an appropriate rotation of the coordinate axes. Without loss of generality, we will assume the vector a has unit
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length. Thus in the one-dimensional case, the boundary takes the form x = b + ct and x0 and xT are scalars. We denote by
σ 2 the variance parameter of the process, so thatWt

D
= σBt and Xt follows from Eq. (2.1). Result 2.1 presents the probability

that a one-dimensional Brownian bridge will cross a linearly moving boundary, given that the initial and final locations lie
on the same side of the boundary (e.g., x0 < b and xT < b + cT ). This appears in Equations (2.2) of Abundo (2002) and (6)
of Scheike (1992) in slightly different notation.

Result 2.1. If (x0 − b)(xT − b − cT ) > 0 then

P

 
t∈[0,T ]

((x0 − b)(Xt − b − ct) ≤ 0)


= exp


−2

|x0 − b| |xT − b − cT |

σ 2T


. (2.5)

We next present the hitting time distribution when the initial and final locations lie on opposite sides of the boundary
(e.g., x0 < b and xT > b + cT ). If the linear boundary separates the starting and ending locations, then with probability one
the Brownian bridge will cross the boundary on the interval [0, T ]. We denote by τ the first hitting time of the boundary.
The following result specifies the cumulative distribution function for τ and is a special case of (2.8) in Abundo (2002).

Result 2.2. If (x0 − b)(xT − b − cT ) < 0 then

P[τ ≤ t] = P

 
s∈[0,t]

((x0 − b)(Xs − b − cs) ≤ 0)



= exp

2
|x0 − b| |xT − b − cT |

σ 2T


Φ


−

|x0 − b|(T − t) + t|xT − b − cT |

σ
√
tT (T − t)


+


1 − Φ


|x0 − b|(T − t) − t|xT − b − cT |

σ
√
tT (T − t)


, for 0 ≤ t ≤ T . (2.6)

3. Asymmetric two-sided boundary extension

We next examine the probability that a one-dimensional Brownian bridge will stay between two asymmetric linear
boundaries: b1 + c1t and b2 + c2t . Both Abundo (2002) and Beghin and Orsingher (1999) only consider the symmetric case
where b1 = −b2 and c1 = −c2. The following result from (3.5) of Abundo (2002) gives the probability of staying within the
linear boundaries in the symmetric case:

Result 3.1. If b > 0, c ≥ 0, x0 = 0, and |xT | < b + cT then

P

 
t∈[0,T ]

((Xt − b − ct)(Xt + b + ct) ≤ 0)


=

j=∞
j=−∞

(−1)j exp


−2bj
(b + cT )j − xT

σ 2T


. (3.1)

We will analyze the more general case by assuming only that both x0 and xT lie between two linear boundaries that do
not cross during times t ∈ [0, T ].

Proposition 3.2. If the following three conditions hold

• (x0 − b1)(x0 − b2) < 0 (initial point lies between boundaries)
• (xT − b1 − c1T )(xT − b2 − c2T ) < 0 (final point lies between boundaries)
• (b1 − b2)(b1 + c1T − b2 − c2T ) > 0 (boundaries do not cross for t ∈ [0, T ])

then the probability that the Brownian bridge stays within the two boundaries is

P

 
t∈[0,T ]

((Xt − b1 − c1t)(Xt − b2 − c2t) ≤ 0)



= G


|x0 − b1|
σ

,
|xT − b1 − c1T |

σT
,
|x0 − b2|

σ
,
|xT − b2 − c2T |

σT


, (3.2)

where

G(α, β, γ , δ) = 1 −

∞
k=1

(e−2Ak + e−2Bk − e−2Ck − e−2Dk), (3.3)
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with

Ak = k2γ δ + (k − 1)2αβ + k(k − 1)(γ β + δα)

Bk = (k − 1)2γ δ + k2αβ + k(k − 1)(γ β + δα)

Ck = k2(γ δ + αβ) + k(k − 1)γ β + k(k + 1)δα

Dk = k2(γ δ + αβ) + k(k + 1)γ β + k(k − 1)δα. (3.4)

Proof. Abundo (2002) presents the symmetric case where b1 = −b2 and c1 = −c2. The proof for the more general case
proceeds in a similar fashion to the symmetric case, so we closely mimic the steps used by Abundo (2002). We leverage a
result from Doob (1949) regarding the probability a one-dimensional Brownianmotion stays between two lines for all time.
Doob’s result also appears as Theorem 3.1 in Abundo (2002). For α, β, γ , δ > 0 Doob (1949) proved

P[−(αt + β) ≤ Bt ≤ γ t + δ for all t ≥ 0] = G(α, β, γ , δ) (3.5)

where (3.3) and (3.4) define G(·, ·, ·, ·). To prove our result we first rewrite (3.5) as

P


t≥0

((Bt + αt + β)(Bt − γ t − δ) ≤ 0)


= G(α, β, γ , δ). (3.6)

We now proceed using the time inversion technique of Scheike (1992) and Abundo (2002). That is, we use the fact that
B̃t = tB 1

t
is also a standard Brownianmotion. In the following steps wewill explicitly write out Xt as a conditional Brownian

motion:

P

 
t∈[0,T ]

((Xt − b1 − c1t)(Xt − b2 − c2t) ≤ 0)



= P

 
t∈[0,T ]

((x0 + σBt − b1 − c1t)(x0 + σBt − b2 − c2t) ≤ 0) | x0 + σBT = xT



= P


s≥ 1

T


sB 1

s
+

x0 − b1
σ

s −
c1
σ

 
sB 1

s
+

x0 − b2
σ

s −
c2
σ


≤ 0

  B 1
T

=
xT − x0

σT


= P


s≥ 1

T


Bs +

x0 − b1
σ

s −
c1
σ

 
Bs +

x0 − b2
σ

s −
c2
σ


≤ 0

  B 1
T

=
xT − x0

σT


= P


s≥ 1

T


Bs − B 1

T
+

x0 − b1
σ

s +
xT − x0 − c1T

σT

 
Bs − B 1

T
+

x0 − b2
σ

s +
xT − x0 − c2T

σT


≤ 0


= P


t≥0


Bt +

x0 − b1
σ

t +
xT − b1 − c1T

σT

 
Bt +

x0 − b2
σ

t +
xT − b2 − c2T

σT


≤ 0


. (3.7)

The expression in (3.7) has the same form as the left-hand-side of (3.6). By assumption, one of x0−b1
σ

and x0−b2
σ

is positive and
the other is negative. We can define α as the positive value and −γ as negative quantity. The corresponding value xT−bi−ciT

σT
will have the same sign as x0−bi

σ
andwe can define β and δ accordingly. However, by inspection of (3.3) and (3.4) we observe

that G(α, β, γ , δ) = G(γ , δ, α, β), and therefore we can arbitrarily choose how to distinguish between (α, β) and (γ , δ).
Choosing

α =
|x0 − b1|

σ

β =
|xT − b1 − c1T |

σT

γ =
|x0 − b2|

σ

δ =
|xT − b2 − c2T |

σT
(3.8)

produces the desired result. In the symmetric case where b1 = −b2 and c1 = −c2 and x0 = 0, we define b = |b1| and
c = |c1| and the expressions in (3.2)–(3.4) simplify greatly to produce result (3.1). �
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Remark 3.3. The results in Sections 2 and 3 depend upon the initial and final locations and the boundary only through the
absolute difference between the initial location and the boundary at time0 (e.g., |x0−b|) and the final location and the bound-
ary at time T (e.g,. |xT − b − cT |). When we extend these results to the multidimensional case in Section 4, we will replace
the absolute values with the perpendicular distance between the initial and final locations and the hyperplane boundaries.

4. Multidimensional results

We start by stating several standard linear algebra results that we use to transform the multidimensional problem to a
one-dimensional calculation. First we present the well known formula for the perpendicular distance between a point and
a hyperplane. This appears in any standard linear algebra text (see for example page 450 of Cheney and Kincaid (2010)).

Result 4.1. If we have a point x̂ in n-dimensional space, and a hyperplane defined by {x ∈ Rn
| a′x = b}, then the perpen-

dicular distance from x̂ to the hyperplane is

D =
|a′x̂ − b|

√
a′a

. (4.1)

Our analysis will require the Cholesky decomposition of the covariance matrix of the underlying multidimensional
Brownian motion, Σ . For a positive definite symmetric matrix S, its Cholesky factor LS is a lower triangular matrix such
that S = LSL′

S . See Chapter 4.2 of Golub and Van Loan (1996) for more details on the Cholesky decomposition and a proof of
the following result.

Result 4.2. If S is a positive definite symmetric matrix with Cholesky factor LS then LS(1, 1) =
√
S(1, 1), where (p, q) cor-

responds to the element of the matrix in the pth row and qth column.

Result 4.2 will prove beneficial because we will need element (1, 1) of the Cholesky factor of the covariance matrix to
compute the variance parameter of a Brownian motion after rotating our coordinate axes. We will use the following result
when performing calculations with Cholesky factors. This result appears in Chapter 3.1.8 of Golub and Van Loan (1996).

Result 4.3. If L is an invertible lower triangular matrix, then its inverse L−1 is also lower triangular and L−1(1, 1) =
1

L(1,1) .

Our next result will allow us to write the distribution of the product of an n × nmatrix Awith Brownian motion, ABt , as
an equivalent distribution of a matrix product using a lower triangular matrix.

Result 4.4. If A is an invertible and square matrix, and we define LA as the lower Cholesky factor for AA′, then ABt
D
= LABt .

Proof. First we define Wt = ABt and W̃t = LABt . Both Wt and W̃t are multidimensional zero-mean Gaussian processes.
Furthermore, they have the following covariance structures:

Cov(Wt ,Ws) = Cov(Ws,Ws) = Cov(ABs, ABs) = AA′s for s ≤ t

Cov(W̃t , W̃s) = LAL′

As for s ≤ t. (4.2)

By construction LAL′

A = AA′, and consequently Wt and W̃t have the same covariance structure and evolve according to the
same distribution. �

Remark 4.5. The Brownian bridge and underlying Brownian motion evolve with respect to the standard coordinate axes.
Part of our analysis will rotate the axes and define a related Brownian motion by multiplying our original Brownian motion
by a suitably chosen rotation matrix A. We will construct the rotated coordinate system such that the first component lies
perpendicular to the hyperplane boundary. To accomplish this, we set the first column of A to the normalized version of a.
Result 4.4 will allow us to perform analysis in terms of lower triangular Cholesky factors, rather than the original matrix A.
This will lead to great simplifications in the calculations.

We now present the hitting time results from (2.2)–(2.4) in the multidimensional setting. Recall that we define the
moving hyperplanes as a′x = b + ct , t ∈ [0, T ]. Without loss of generality, we only consider unit length vectors a such
that a′a = 1. We will first generalize Result 2.1 to multidimensional correlated Brownian bridges in Proposition 4.6, where
we calculate the probability Xt will hit a moving hyperplane. As with Result 2.1, we assume the initial and final locations lie
on the same side of the hyperplane.

Proposition 4.6. If (a′x0 − b)(a′xT − b − cT ) > 0 then

P

 
t∈[0,T ]

((a′x0 − b)(a′Xt − b − ct) ≤ 0)


= exp


−2

|a′x0 − b||a′xT − b − cT |

a′ΣaT


. (4.3)
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Proof. We start in a similar fashion to the proof of Proposition 3.2 by rewriting (4.3) in terms of the underlying Brownian
motion

P

 
t∈[0,T ]

((a′x0 − b)(a′Xt − b − ct) ≤ 0)



= P

 
t∈[0,T ]

((a′x0 − b)(a′(x0 + LΣBt) − b − ct) ≤ 0) | x0 + LΣBT = xT


, (4.4)

where LΣ is the lower Cholesky factor of the covariance matrix Σ . We next construct an orthonormal matrix A by setting
the vector a as the first column. We will not need the remaining n − 1 columns of A so we do not specify their exact form.
However, one could easily construct A from a using the Gram–Schmidt algorithm (see page 230 of Golub and Van Loan
(1996)). The matrix A defines a rotated coordinate system where the first component lies perpendicular to the hyperplane
boundary. We next modify (4.4) bymultiplying certain components by the orthonormal matrices A and A′. By doing this, we
effectively rotate the coordinate system, which will allow us to focus only on the evolution of the process perpendicular to
the boundary. We rewrite (4.4) as

P

 
t∈[0,T ]

((a′x0 − b)((a′A)(A′x0 + A′LΣBt) − b − ct) ≤ 0) | A′x0 + A′LΣBT = A′xT


. (4.5)

We next define L as the lower Cholesky factor of A′ΣA. By Result 4.4, A′LΣBt
D
= LBt , and hence we can rewrite (4.5) as

P

 
t∈[0,T ]

((a′x0 − b)((a′A)(A′x0 + LBt) − b − ct) ≤ 0) | A′x0 + LBT = A′xT


. (4.6)

We next turn our attention to (a′A)(A′x0 + LBt). By construction, (a′A) = e′

1, where e1 denotes the standard unit vector in
the first component (e′

1 = (1, 0, 0 . . . , 0)). In the following calculation we define Ai as the ith column of the matrix A, and
recall that A1 = a. We now simplify (a′A)(A′x0 + LBt) to

e′

1




a′x0
A′

2x0
...

A′

nx0

 +


L(1, 1)Bt(1)

L(2, 1)Bt(1) + L(2, 2)Bt(2)
...

n
i=1

L(n, i)Bt(i)



 = a′x0 + L(1, 1)Bt(1) (4.7)

where Bt(i) is the Brownian motion in the ith component. Substituting (4.7) into (4.6) greatly simplifies the problem. We
have transformed the event so that we only need to consider the evolution of a one-dimensional Brownian motion Bt(1)
and write (4.6) as

P

 
t∈[0,T ]

((a′x0 − b)(a′x0 + L(1, 1)Bt(1) − b − ct) ≤ 0) | A′x0 + LBT = A′xT


. (4.8)

We can rewrite the conditioning event as BT = L−1A′(xT − x0). By definition, Bt(1) is independent of BT (j) for all j > 1.
Consequently, we only need to condition on the first component of the Brownian motion at time T : BT (1). To determine the
first element of L−1A′(xT − x0), we note that the first row of L−1A′ is a′/L(1, 1). This follows from Result 4.3 because L is a
lower triangular Cholesky factor. Hence, BT (1) = a′(xT − x0)/L(1, 1). Rearranging yields

P

 
t∈[0,T ]

((a′x0 − b)(a′x0 + L(1, 1)Bt(1) − b − ct) ≤ 0) | a′x0 + L(1, 1)BT (1) = a′xT


. (4.9)

Inspection of (4.9) reveals we have completed the transformation to a calculation involving only a one-dimensional process.
The Brownian bridge starts at initial point a′x0 and finishes at time T at point a′xT , and the underlying Brownian motion
evolves with σ = L(1, 1). By Result 4.2 we know L(1, 1) corresponds to the square root of element (1, 1) of A′ΣA. This
element equals a′Σa, and thus L(1, 1) =

√
a′Σa. Substituting these quantities into the one-dimensional Eq. (2.5) produces

the multidimensional result in (4.3). �

The same technique of transforming a multidimensional problem into a one-dimensional calculation will allow us to
extend Result 2.2 and Proposition 3.2 into their multidimensional analogs. We replace σ with

√
a′Σa, and then using Re-

sult 4.1 we replace |x0 − b| with |a′x0 − b| and |xT − b − cT | with |a′xT − b − cT |. Proposition 4.7 extends Result 2.2 to the
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probability distribution for the time until Xt will hit the hyperplane aT x = b+ ct , given the hyperplane separates the initial
and final locations.

Proposition 4.7. If (aT x0 − b)(aT xT − b − cT ) < 0 then

P

 
s∈[0,t]

((a′x0 − b)(aTXs − b − cs) ≤ 0)


(4.10)

= exp

2
|a′x0 − b| |a′xT − b − cT |

a′ΣaT


Φ


−

|a′x0 − b|(T − t) + t|a′xT − b − cT |
√
a′ΣatT (T − t)


+


1 − Φ


|a′x0 − b|(T − t) − t|a′xT − b − cT |

√
a′ΣatT (T − t)


, for 0 ≤ t ≤ T . (4.11)

Finallywe extend Proposition 3.2 to the probability that Xt will remain between two parallel hyperplanes given the initial
and final points lie between both hyperplanes. We define the two hyperplanes by a′x = b1 + c1t and a′x = b2 + c2t . Our
methodology does not apply for non-parallel hyperplanes. However, the two planes can move at different rates: c1 ≠ c2.

Proposition 4.8. If
• (a′x0 − b1)(a′x0 − b2) < 0 (initial point between boundaries)
• (a′xT − b1 − c1T )(a′xT − b2 − c2T ) < 0 (final point between boundaries)
• (b1 − b2)(b1 + c1T − b2 − c2T ) > 0 (boundaries do not cross)
then

P

 
t∈[0,T ]

((a′Xt − b1 − c1t)(a′Xt − b2 − c2t) ≤ 0)



= G


|a′x0 − b1|
√
a′Σa

,
|a′xT − b1 − c1T |

√
aTΣaT

,
|a′x0 − b2|

√
a′Σa

,
|a′xT − b2 − c2T |

√
a′ΣaT


(4.12)

where G(·, ·, ·, ·) is defined in (3.3).

We can extend the result in Proposition 4.8 if the components of the underlying Brownian motion evolve in an i.i.d.
fashion (i.e., Σ = σ 2I). In this case we compute the probability that the Brownian bridge remains within a hyperrectangle
withmoving faces in Corollary 4.9.Wedenote the ith parallel faces to thehyperrectangle by a′

ix = bi1+ci1t and a′

ix = bi2+ci2t
for 1 ≤ i ≤ n. We also require that ai and aj be orthogonal for i ≠ j. Thus if ai corresponds to the ith column of A, then A
forms an orthonormal basis of Rn that defines the orientation of the hyperrectangle.

Corollary 4.9. If
• A is an orthonormal matrix with columns ai
• Xt is Brownian bridge with covariance matrix Σ = σ 2I
• (a′

ix0 − bi1)(a′

ix0 − bi2) < 0 for all i = 1, 2, . . . , n (initial point in hyperrectangle)
• (a′

ixT − bi1 − ci1T )(a′

ixT − bi2 − ci2T ) < 0 for all i = 1, 2, . . . , n (final point in hyperrectangle)
• (bi1 − bi2)(bi1 + ci1T − bi1 − ci1T ) > 0 for all i = 1, 2, . . . , n (parallel faces do not cross)
then

P


n

i=1


t∈[0,T ]

((a′

iXt − bi1 − ci1t)(a′

iXt − bi2 − ci2t) ≤ 0)



=

n
i=1

G


|a′

ix0 − bi1|
σ

,
|a′

ixT − bi1 − ci1T |

σT
,
|a′

ix0 − bi2|
σ

,
|a′

ixT − bi2 − ci2T |

σT


(4.13)

where G(·, ·, ·, ·) is defined in (3.3).

5. Conclusion

In this paperwe extend the results of Scheike (1992), Beghin andOrsingher (1999), andAbundo (2002) to compute hitting
time quantities of correlatedmultidimensional Brownian bridge processes tomoving hyperplane boundaries. Our technique
of rotating the coordinate axes provides an approach that could be used to generalize other hitting time results related to
Brownian motion to the multidimensional setting. For example, Abundo (2002) considers piecewise linear boundaries in
one-dimension. In themultidimensional case this would correspond to the hyperplane boundary changing from a′x = b+ct
when t ≤ t∗ to a′x = b∗

+ c∗t when t ≥ t∗. Iyengar (1985) and Metzler (2010) examine the first time planar Brownian
motion hits either a horizontal line or a vertical line. Using our approach, one could generalize this problem to analyze the
first time planar Brownian motion hits one of two perpendicular lines.
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