
An Analysis of Artillery Shoot-and-Scoot Tactics

Younglak Shim∗, Michael P. Atkinson†

July 8, 2018

Abstract

Firing multiple artillery rounds from the same location has two main benefits: a

high rate of fire at the enemy and improved accuracy as the shooter’s aim adjusts to

previous rounds. However, firing repeatedly from the same location carries significant

risk that the enemy will detect the artillery’s location. Therefore, the shooter may

periodically move locations to avoid counter-battery fire. This maneuver is known as

the shoot-and-scoot tactic. This paper analyzes the shoot-and-scoot tactic for a time-

critical mission using Markov models. We compute optimal move policies and develop

heuristics for more complex and realistic settings. Spending a reasonable amount of time

firing multiple shots from the same location is often preferable to moving immediately

after firing an initial salvo. Moving frequently reduces risk to the artillery, but also

limits the artillery’s ability to inflict damage on the enemy.

Keywords: combat models, salvo equations, stochastic duels, Markov models, artillery

∗younglakshim@gmail.com Center for Army Analysis and Simulation, Republic of Korea Army
†mpatkins@nps.edu Operations Research Department, Naval Postgraduate School

1

mailto:younglakshim@gmail.com
mailto:mpatkins@nps.edu

1 Introduction

Joseph Stalin said that “Artillery is the god of war” (Holmes and Singleton, 2001). Artillery

has been a crucial part of warfare from at least as far back as the the thirteenth century

(Dastrup, 1992) and is a method to apply indirect fire on an enemy. Indirect fire is applied

to a target outside of visual range using coordinates supplied by an external source (Army,

2014), such as a forward observer or surveillance UAV (USMC, 1998). The range of modern

artillery exceeds 20 kilometers (Dastrup, 1992).

Artillery remains a workhorse of modern militaries, accounting for roughly 25% of the

United States Army and Marine Corps ground combat regiments (Army, 1990; USMC, 2016).

Artillery is often used in a support role, such as providing suppression fire to allow infantry

forces to reach an objective. Other common artillery missions include targeting an enemy’s

logistics centers and transportation links, or providing counter-fire against the enemy’s ar-

tillery weapons (Army, 2001). Artillery and air support play similar roles as they both can

strike at long ranges and put minimal forces at risk. However, there are many benefits to

using artillery over air strikes, including: artillery is far cheaper to use and aircraft can

only operate in certain enviromental and threat conditions (Army, 2001; Kopp, 2005; Har-

ris, 2017). Artillery often performs suppression of enemy air defense (SEAD) operations to

destroy anti-aircraft weapons to allow aircraft to perform their missions (Army, 2001).

In the last fifteen years, artillery has played a role in many conflicts throughout the

world, including in Iraq (Ratliff, 2017), Afghanistan (Bowman, 2016), Syria (Snow, 2018),

and the Russian-Ukranian conflict (Fox, 2017). Artillery dictates that tensions in Korea be

handled delicately because North Korea has thousands of artillery weapons within range of

Seoul (McCarthy, 2017). In recent years, technological improvements have resulted in many

countries increasing their investments in artillery capabilities (Kopp, 2005; Miller, 2017).

This paper focuses on the tactics of mobile artillery units. An artillery’s mobility is key to

survival because an adversary can pinpoint a firing artillery’s location with counter-battery

radar and return fire (Kopp, 2005). We formulate models to examine when an artillery force

2

(Blue) should move locations. The United States Army’s field manuals recognize the trade-

off between survivability and artillery responsiveness when changing locations (see Chapter

2 of Army (1996)). The benefits to Blue firing from the same location are a high firing rate

and increasing accuracy as Blue adjusts its aim based on the results of earlier Blue rounds.

However, if Blue remains in its original position, the enemy (Red) will eventually counter-fire.

As both artillery maneuverability and counter-detection capabilities increased in the second

half of the 20th century, so did the importance of Blue artillery moving to avoid counter-

fire. This led to the advent of the “shoot-and-scoot” tactic, where artillery moves quickly

after firing at a target (Koba, 1996). Until recently shoot-and-scoot was primarily used by

unconventional forces as a harassing tactic (Sharp, 2006) and by conventional forces as a

defensive measure to limit casualties. However, the newest generation of artillery cannons

can now fire from one location and then move to a new location and fire again within minutes

(Kopp, 2005; Miller, 2016). This leads to the potential for a new offensive oriented variant

of the shoot-and-scoot tactic, where Blue artillery can perform many cycles of shoot/move.

In the last year, the United States Army practiced new tactics that use this shoot-and-scoot

principle, referred to as “hide and seek” tactics (Tinder, 2017).

In this paper, we generalize the shoot-and-scoot tactic and examine how long Blue should

“shoot” in one location before “scooting” to a new location. Moving frequently limits the risk

to Blue but also reduces Blue’s offensive effectiveness. The United States military recognizes

the importances of moving artillery, spending many pages in manuals describing how to

choose firing positions and travel routes (Army, 1996). However, very little guidance is

given for when the commander should move locations. The United States Army and Marine

Corps field manuals suggest the move decision should consider the amount of time at the

current location, number of rounds fired, and the enemy threat level (Army, 2001; USMC,

2002). However it is up to the specific commander to weigh the various factors to determine

when to move. We incorporate in our models the factors listed in the field manuals, and we

believe our analysis can provide artillery commanders with insight to produce more effective

3

shoot-and-scoot tactics.

Section 2 describes the setting in more detail. We then frame our work within the litera-

ture in Section 3. Sections 4–7 present the models and analysis.

2 Setting

We refer to individual artillery weapons as cannons throughout this paper. One side (Blue)

uses artillery to fire at enemy (Red) targets. Red targets might include bridges, logistics

depots, radar systems, or anti-aircraft weapons. Red has its own artillery whose objective is

to detect Blue’s artillery and return fire. The Red artillery is located at a separate location

from the Red targets. Red artillery fires on Blue artillery, but Blue artillery only fires at Red

targets, not at the Red artillery. Possible reasons for Blue not firing at Red artillery include:

Red artillery is outside the range of Blue artillery, Blue cannot detect the location of Red

artillery (e.g., Blue’s counter-battery radars have been destroyed), or the Blue commander

orders all fire to focus on Red targets. While Blue does not fire at Red artillery, Blue can

move quickly to another position to avoid Red counter-fire. Figure 1 illustrates the setting.

Blue Artillery

Red Artillery

Red
Targets

Figure 1: Blue fires only at Red Targets and receives counter-fire from Red Artillery

Blue has an initial estimate of the location of the Red targets and initiates the battle

by firing first. Red will quickly determine an estimate of Blue’s location and eventually

return fire. At some point, Blue may move to another location to avoid Red counter-fire.

After moving to a new position, Blue fires one risk-free round at the Red targets. We use

the term risk-free because Red does not know Blue’s new location until after Blue fires the

first shot from the new location. Consequently, Blue has the advantage with the first shot

4

from a new location because Red cannot hit Blue before Blue fires this risk-free shot. After

the risk-free shot, both Blue and Red have an estimate of the other’s location, and they

proceed to repeatedly fire at each other. The probability a shot hits the adversary may be

low for both Blue and Red after Blue moves to a new location. As Blue remains in the same

location, the accuracy of Blue and Red improves over time as both adjust their aim. Blue

makes adjustments based on feedback from surveillance assets about the results of Blue’s

earlier fire. Red likewise may adjust to its own fire, but Red also adjusts its aim based on

counter-battery radar reports on Blue fire; Blue does not obtain any targeting information

from observing Red fire as the Red artillery and targets are not co-located. Eventually Blue

moves to a new location and the process resets and repeats. Blue maintains an estimate

of the location of the Red targets from move to move. However, after every move Blue’s

accuracy resets to a lower level due to self-location errors, environmental conditions, and

calibration perturbations to the cannons during the move.

Blue’s objective is to destroy Red targets before Red destroys Blue. With no other

structure on the problem, Blue should move immediately after its risk-free shot because this

results in no Blue casualties. This is the classic scoot-and-shoot approach. In our setting, we

assume a high-priority time-critical mission: Blue must destroy Red within a certain window

of opportunity. If the time-window closes before Blue destroys Red, then Blue effectively

“loses” the battle. An example is Blue plans an air strike in six hours, and Blue artillery

must destroy Red’s anti-aircraft missiles so Blue aircraft can perform the mission safely. If

moving is time-consuming, then frequently changing locations will not be an effective strategy.

We formulate three Markovian models of increasing complexity. Section 4 presents a

simple model that only considers the time-window closing. This model does not account for

the increase in risk to Blue (and Red) from improved firing accuracy when Blue remains at

the same location. Section 5 formulates a model that captures the increased risk faced by

both Blue and Red the longer Blue stays in the same location. In Section 5 Blue knows the

current time and risk level, but in Section 6 Blue does not know the underlying risk level.

5

Markov models have strong underlying assumptions and are approximations to reality.

Our goal is to gain insight into the problem and evaluate how to more effectively use shoot-

and-scoot tactics. In Section 7 we describe a simulation experiment that makes more realistic

assumptions. The insights from the simpler models in Sections 4–6 produce robust heuristics

that perform well in the more realistic simulation setting.

3 Literature Review

Our model incorporates the firing rate of artillery cannons and how aim improves over time.

Alexander (1977) describes volley patterns, aiming procedures, errors, and the likelihood a

round will cause damage. Nadler and Eilbott (1971); Barr and Piper (1972) analyze shoot-

adjust-shoot strategies where the shooter incorporates feedback from earlier shots to improve

his aim. Kwon et al. (1997); Cha and Kim (2010) develop algorithms to schedule when each

artillery cannon should fire at specific targets. All these articles are complementary to our

work by providing realistic parameter estimates for our model.

Our approach falls under the umbrella of combat modeling and has similarities to Lanch-

ester attrition models, search theory, missile defense, salvo equations, and duels (Washburn

and Kress, 2009). The Lanchester Linear Law is often used to model artillery conflict be-

cause the attrition rate depends upon attacker fire-power and defensive density, which is the

dynamic in many indirect fire scenarios (Lucas and Turkes, 2004; Keane, 2011). The flaming

datum problem from search theory (Hohzaki and Washburn, 2001) has similarities to our

setting because a submarine flees after an attack, leaving the enemy scrambling to counter.

Artillery and naval battles both have two sides lobbing volleys of fire at each. The Hughes’

salvo equations focus on the damage inflicted by each volley of a naval battle (Hughes,

1995; Armstrong, 2004). Most studies explore the relative importance of force size, offensive

capabilities, defensive capabilities, and survivability (Armstrong, 2005, 2007, 2014b). Moving

to avoid fire is not a relevant tactic, but there is another tactic in the naval setting that has

6

a trade-off similar to moving in the artillery context. A Blue ship turns off many of its

sensors when Blue employs restrictive emissions control, which makes it difficult for Red

to detect Blue’s position. However without the use of its sensors, Blue’s ability to execute

offensive and defensive operations are significantly degraded. Perhaps our approach could be

adapted to salvo models where Blue tunes its emissions control policy to best balance Blue’s

vulnerability to Red detection vs. Blue fighting effectiveness.

Our model has similarities with stochastic duels (Williams and Ancker, 1963; Choe, 1983).

While we share some modeling overlap with many duel models, no one paper incorporates

as many factors as we do. Furthermore, most duel models are descriptive in nature, whereas

we take a prescriptive approach. Ancker and Williams (1965); Williams and Ancker (1981)

examine a variant that allows one player to defensively dodge fire, and this dodge tactic

prevents the player from returning fire. In our model, Blue can avoid casualties by moving,

and Blue cannot fire at Red during the move. Another variant by Ancker (1966) imposes

a time-limit similar to the one in our model. We allow the hit probability to increase in

time as aim improves, which also appears in the duel models of Bhashyam and Singh (1967);

Ancker (1975); Barfoot (1989). In our model, Blue has the advantage after moving because

Red does not know Blue’s new location. Barfoot (1989); McNaught (2002) consider a similar

first-shooter advantage, where the second-shooter has to detect and react to the initial shot.

Harari (2008) considers insurgents (Blue) utilizing shoot-and-scoot tactics to fire rockets

at government forces (Red). If the government returns fire quickly, the government counter-

fire is not very accurate and may cause collateral casualties. However, if the government waits

too long to better pinpoint the cannon’s location, the insurgents may have already moved.

We are not analyzing an insurgent setting where collateral damage is likely; in our model as

soon as Red detects Blue, Red counter-fires. Armstrong (2014a) also models defenses against

rocket attacks, but evaluates the defender’s ability to shoot down rounds in the air. The

problem examined by Armstrong (2014a) relates to missile defense, which primarily focuses

on knocking out missiles as they approach the intended destination (Brown et al., 2005;

7

Davis et al., 2017) In our setting, Red targets the source of fire rather than incoming shells.

Marshall (1994) develops a model that incorporates both counter-targeting of live missiles

and the missile launchers themselves, but the attacker does not move to avoid counter-fire.

Several Naval Postgraduate theses develop models that consider artillery movement, in-

cluding one by the first author upon which this paper is based (Shim, 2017). Temiz (2016)

proposes an algorithm to choose the firing locations and corresponding travel routes based on

topological features of the terrain. Finlon (1991) develops a Markov model of artillery com-

bat to evaluate artillery unit organization. The model considers the decrease in effectiveness

due to movement but does not include an enemy threat and provides no prescriptive analysis

about when to move. The work most similar to ours is the thesis of Guzik (1988), who formu-

lates a Markov model to analyze when an artillery unit should move locations. Guzik (1988)

assumes Blue fires multiple shots before Red detects Blue’s location. Counter-detection ca-

pabilities have improved in the last thirty years; we reasonably assume Red detects Blue

after Blue’s first shot and that Blue will receive counter-fire if Blue remains in the same

location. Guzik’s model is predicated upon Blue trying to avoid all Red counter-fire, which

is consistent with the classic notion of shoot-and-scoot. This emphasis on survivability is

appropriate in low priority missions, but other missions may require Blue to expose itself to

hostile fire (Army, 1996). Our analysis focuses on how much risky counter-fire Blue should

endure before moving. Our model also accounts for a crucial factor missing from other anal-

yses of mobile artillery: Blue benefits from firing from the same location via improving firing

rate and accuracy. Focusing on the disadvantages of risky-fire (Red counter-fire) and ig-

noring the advantages (improving Blue effective fire), will skew results toward moving more

frequently. From a methodological standpoint, Guzik (1988) examines steady-state behavior

of the system, whereas we consider a time-critical battle and compute the probability Blue

wins. Furthermore, we incorporate a time-window, track the current time and risk (and how

the battle dynamics evolve as risk changes), consider a partial-information setting where Blue

is unaware of the precise current risk level, and present provably optimal move policies.

8

4 Time-window Model

This section focuses on a simple model. There is only one Red target and one direct hit is

sufficient to destroy either side. Blue fires at effective rate α and Red fires at effective rate

β. Thus α (β) represents the overall firing rate of Blue (Red) multiplied by the single-shot

hit (kill) probability. All random times are independent and have exponential distributions.

Therefore the time until Blue (Red) destroys Red (Blue) has an exponential distribution with

rate α (β). In Section 5 we incorporate “risk” by allowing the firing rates α and β to increase

as Blue continues to fire from the same location.

Blue must destroy Red within a window of opportunity. This window comprises N time

periods; each time period is an exponential random variable with rate γ and all time periods

are independent. Therefore the time-window has a Gamma distribution with shape parameter

N and rate parameter γ. If Blue does not hit Red by the conclusion of the Nth time period,

the battle is over and Blue loses. In Appendix I, we examine a time-window of deterministic

length, which may be more realistic in some scenarios. We only consider a binary outcome to

the battle: Blue wins or Blue loses. Blue loses if either Blue is destroyed by Red fire or the

time-window closes. In Section 4.3 we incorporate an additional cost if Red destroys Blue.

Immediately after moving to a new location, Blue fires one risk-free shot, which hits Red

with probability p0. It takes no time to set up and fire the risk-free shot after Blue arrives

to the new location. If Blue misses, then Blue’s new location is revealed to Red. Blue and

Red proceed to fire at each other until one of three events occurs: (1) one side is hit, (2) the

time-window closes, or (3) Blue moves. We refer to a situation where Blue and Red exchange

fire simultaneously as risky-fire because Blue exposes itself to risk from Red’s salvos. Blue

knows the time period t ∈ {1, 2, 3, . . . , N}, and hence can tailor its movement decision to the

current time period. We define λt as the rate at which Blue moves. During risky-fire in time

period t, Blue moves after an exponential time with rate λt. Blue moving randomly allows

us to maintain analytic tractability. We examine more realistic move dynamics in Section 7.

However within the fog of war, a random aspect to the movement decision may not be that

9

unreasonable of an approximation. Blue chooses λ∗t to maximize its probability of winning

the engagement. The optimal move policy actually leads to non-random behavior.

The time to travel to a new location is an exponential random variable with rate δ. During

travel Blue is safe from Red fire, however Blue cannot hit Red either. To summarize, time

is divided into two components: Blue travel to new firing locations when neither side can be

destroyed, and a risky-fire portion when both sides fire at each other. The transition between

travel and risky-fire is marked by one risk-free Blue shot. Blue wins if Blue hits Red before

(1) Red hits Blue and (2) the time-window closes. The model parameters appear below.

• α: rate at which Blue fires fatal shots during risky-fire

• β: rate at which Red fires fatal shots during risky-fire

• γ: rate at which time transitions to next period

• λt: rate at which Blue moves; Blue decision variable that depends upon time period t

• δ: rate at which travel completes

• p0: probability Blue hits Red with its risk-free shot

Given the movement rates (λ1, λ2, λ3 . . . , λN), we denote P[t] as the probability Blue wins

starting from risky-fire in period t. We define P[N + 1] ≡ 0: Blue loses if the time-window

closes. To compute P[t], we condition on which event happens next:

P[t] =
α

α + β + γ + λt
+

γ

α + β + γ + λt
×P[t+ 1]

+
λt

α + β + γ + λt
× δ

δ + γ

N∑
s=t

(
γ

δ + γ

)s−t
(p0 + (1− p0)P[s]) (1)

If Red hits Blue first (rate β), then Blue loses. With rate α, Blue hits Red and wins

immediately. With rate γ, time increments to the next period and Blue now wins with

probability P[t+ 1]. When Blue moves (rate λt), the probability Blue wins moving forward

10

is more complicated. While traveling between locations one of two events can occur: Blue

arrives to the new location (rate δ) or time increases (rate γ). Therefore, the number of

periods for Blue to complete its travel is a Geometric random variable (starting at 0) with

success probability δ
δ+γ

. If Blue initiates a moves in period t, the travel will complete in

period s ≥ t with probability δ
δ+γ

(
γ
δ+γ

)s−t
. If Blue’s transit takes more than N − t periods,

the time-window closes and Blue loses. Otherwise Blue completes the move in time period

s, for some t ≤ s ≤ N . Blue then fires a risk-free shot, which destroys Red with probability

p0. If the risk-free shot misses, then Blue has probability P[s] of winning moving forward.

Rearranging (1), we write P[t] recursively in terms of P[s] for t+ 1 ≤ s ≤ N :

P[t] =
(δ + γ) (α + γP[t+ 1])

(α + β + γ) (δ + γ) + λt(γ + δp0)

+ λt
δp0 + γ δ

δ+γ

∑N
s=t+1

(
γ
δ+γ

)s−t−1
(p0 + (1− p0)P[s])

(α + β + γ) (δ + γ) + λt(γ + δp0)
(2)

Given that P[N + 1] = 0, we can solve for P[t] for any 1 ≤ t ≤ N using backward recursion.

4.1 Optimal Move Policy

We now compute the optimal movement rates (λ∗1, λ
∗
2, λ
∗
3 . . . , λ

∗
N) to maximize the probability

Blue wins the battle. For the remainder of this section, P[t] denotes the maximum probability

using the optimal (λ∗1, λ
∗
2, λ
∗
3 . . . , λ

∗
N). We compute λ∗t using (2) by first solving for λ∗N , and

then solving for λ∗N−1, etc. The first result states there are only two possibilities for λ∗t .

Proposition 1. λ∗t ∈ {0,∞}. If λ∗t = 0,

P[t] = F[t] ≡ α

α + β + γ
+

γ

α + β + γ
P[t+ 1] (3)

11

If λ∗t =∞,

P[t] = S[t] ≡ δp0
γ + δp0

+
γ

γ + δp0

δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t−1
(p0 + (1− p0)P[s]) (4)

The proof appears in Appendix A. The optimal policy specifies Blue should either fire

until time increments (λ∗t = 0), or immediately scoot after firing the risk-free shot (λ∗t =∞).

We refer to the λ∗t = 0 case as fight and the λ∗t =∞ case as scoot. If Blue fights, then Blue

wins with probability F[t] in (3), which corresponds to the first two terms of (1). If Blue

scoots, then Blue wins with probability S[t] in (4). With probability δp0
γ+δp0

, Blue hits Red

before time increments. Otherwise, if time increments, then the complicated summation term

in (4) follows from the same logic as the corresponding term in (1). Proposition 1 implies

that P[t] = max(F[t],S[t]). If Blue is indifferent between fighting and scooting (F[t] = S[t]),

Blue fights (λ∗t = 0). Before stating the conditions when λ∗t = 0 vs. λ∗t = ∞, we present an

intuitive property of P[t].

Proposition 2. P[t] is monotonically non-increasing in t.

The proof appears in Appendix B. As the time-window draws nearer to closing, Blue’s

chances of winning decrease.

As time increments, eventually Blue will remain and fight because Blue does not have

enough time to scoot. Determining this time period is a key part of our analysis. We first

define the probability Blue wins, starting in period t, if Blue fights for all remaining time

periods (i.e., λs = 0 for all t ≤ s ≤ N)

F̂all[t] ≡
α

α + β

(
1−

(
γ

α + β + γ

)N−t+1
)
. (5)

Equation (5) follows by substituting λs = 0 for all t ≤ s ≤ N into (1). Intuitively (5) is the

probability Blue fires a fatal shot before Red, multiplied by the probability the time-window

does not close.

12

We next define ŜF[t], which is the probability Blue wins when Blue scoots in period t,

but fights for s > t. That is λt =∞ and λs = 0 for all t+ 1 ≤ s ≤ N .

ŜF[t] ≡ δp0
γ + δp0

+
γ

γ + δp0

δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t−1 (
p0 + (1− p0)F̂all[s]

)
(6)

Equation(6) follows from the same logic that produces S[t] in (4). To summarize the notation:

• F[t]: probability Blue wins if Blue fights in period t, given Blue behaves optimally for

all time periods s ≥ t+ 1 (equation (3))

• S[t]: probability Blue wins if Blue scoots in period t, given Blue behaves optimally for

all time periods s ≥ t+ 1 (equation (4))

• F̂all[t]: probability Blue wins when Blue fights for all time periods s ≥ t (equation (5))

• ŜF[t]: probability Blue wins when Blue scoots in time period t and fights for all time

periods s ≥ t+ 1 (equation (6))

With this new notation, we next define the last time period when Blue scoots:

τ = sup{s | λ∗s =∞} = sup{s | ŜF[s] > F̂all[s]} (7)

If τ = N , then Blue scoots in the final time period, and if τ = −∞, then Blue never scoots.

By construction λ∗t = 0 for all t > τ and λ∗τ = ∞. To complete the optimal policy, we need

λ∗t for t < τ . The optimal policy is a threshold policy dictated by τ :

Proposition 3. If t > τ , then λ∗t = 0, otherwise λ∗t = ∞ for 1 ≤ t ≤ τ , where τ is defined

by (7).

The proof appears in Appendix C. A threshold policy is intuitive, however it is not trivial

to prove. Early in the battle, Blue has time to take the safe approach by scooting and

avoiding Red fire. Near the end of the time-window Blue must fight because a move risks

expiration of the time-window before Blue arrives to the new location.

13

Time-based threshold policies suggested by Proposition 3 often produce near optimal

results for the more complicated models we examine in Sections 5–7.

4.2 Comparative Statics

We next illustrate how the threshold τ and Blue win-probability vary for different parameters.

We formalize the comparative statics below the figures in Proposition 4. Figure 2 plots τ
N

against p0 for four values of δ. Each subfigure fixes a different combination of β and γ. For

all figures α = 1 and N = 6. Recall that Blue scoots for all values less than or equal to τ .

Consequently, curves closer to the northwest produce more scenarios where Blue scoots. Blue

is more likely to scoot for smaller γ (Figure 2a and 2c) because that corresponds to a longer

time-window. Smaller δ corresponds to longer travel times, which lessens the likelihood that

Blue will scoot. In the extreme when δ = 0.2 in Figures 2b and 2d, Blue never scoots and

fights to the finish from the start. Larger values of β result in more scooting because Blue

wants to avoid Red’s more effective fire.

Figure 3 presents the Blue win-probability at the beginning of the battle, P[1], in a

similar format to Figure 2. The always-fight policy provides a lower bound for P[1]. This

lower bound corresponds to F̂all[1] from (5) and is achieved in the figures as p0 → 0. The

relationships follow what we expect. The probability is increasing in p0 and δ and decreasing

in β and γ. The probability can vary by a substantial amount as we change the inputs.

We summarize the relationships illustrated in Figures 2–3.

Proposition 4. P[t] and τ vary with the input parameters in the following manner:

• P[t] is non-decreasing in α.

• P[t] is non-increasing in β and τ is non-decreasing in β.

• P[t] and τ are non-decreasing in δ.

• P[t] is non-increasing in γ.

14

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 T
hr

es
ho

ld
:

/N

 = 1, = 0.5, = 0.6, N = 6

(a) β = 0.5, γ = 0.6

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 T
hr

es
ho

ld
:

/N

 = 1, = 0.5, = 3, N = 6

(b) β = 0.5, γ = 3

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 T
hr

es
ho

ld
:

/N

 = 1, = 2, = 0.6, N = 6

(c) β = 2, γ = 0.6

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 T
hr

es
ho

ld
:

/N

 = 1, = 2, = 3, N = 6

=0.20
=0.70
=1.50
=5.00

(d) β = 2, γ = 3

Figure 2: Normalized threshold τ
N

for α = 1, N = 6 and various values of β, γ, δ.

15

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

B
lu

e
W

in
s

 = 1, = 0.5, = 0.6, N = 6

(a) β = 0.5, γ = 0.6

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

B
lu

e
W

in
s

 = 1, = 0.5, = 3, N = 6

(b) β = 0.5, γ = 3

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

B
lu

e
W

in
s

 = 1, = 2, = 0.6, N = 6

(c) β = 2, γ = 0.6

0 0.2 0.4 0.6 0.8 1
p

0

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

B
lu

e
W

in
s

 = 1, = 2, = 3, N = 6

=0.20
=0.70
=1.50
=5.00

(d) β = 2, γ = 3

Figure 3: Probability Blue wins starting in period 1 (P[1]) for α = 1, N = 6 and various
values of β, γ, δ.

16

• P[t] and τ are non-decreasing in p0.

The proof appears in Appendix D. Most of the relationships in Proposition 4 are intuitive.

However as α increases, the threshold τ may increase or decrease. If Blue is more effective

during risky-fire, Blue may exploit that by fighting earlier (which leads to a smaller τ).

However a larger α may allow Blue to delay fighting and rely on more risk-free shots, knowing

that when Blue finally switches to fight, Blue will have a better chance of winning.

4.3 Additional Cost if Blue Destroyed

In the base model, Blue is indifferent between being destroyed and the time-window closing.

In reality the Blue commander would prefer that Blue not suffer attrition. We now incor-

porate the additional cost of Blue casualties and frame the problem from an expected value

perspective. If Blue wins, Blue receives reward 1, if the time-window closes Blue receives

reward 0, and if Blue is destroyed Blue receives reward −C for some C > 0. We slightly

modify equation (1), including replacing P[t] with V[t], to highlight the expected value focus:

V[t] =
α

α + β + γ + λt
− β

α + β + γ + λt
C +

γ

α + β + γ + λt
×V[t+ 1]

+
λt

α + β + γ + λt
× δ

δ + γ

N∑
s=t

(
γ

δ + γ

)s−t
(p0 + (1− p0)V[s]) . (8)

Our results generalize in the natural way, which we summarize in the following corollary.

Corollary 1. If t > τC, then λ∗t = 0, otherwise λ∗t =∞ for 1 ≤ t ≤ τC, where

τC = sup{j | ŜCF[j] > F̂C
all[j]},

17

and

F̂C
all[t] ≡

α− βC
α + β

(
1−

(
γ

α + β + γ

)N−t+1
)

.ŜCF[t] ≡ δp0
γ + δp0

+
γ

γ + δp0

δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t−1 (
p0 + (1− p0)F̂C

all[s]
)
.

The proof appears in Appendix E. Blue scoots in more periods compared to the base

model (τC ≥ τ) because of the additional cost of being destroyed. Appendix I contains

another extension to the model where we examine a time-window of deterministic length.

5 Risk Model: Full Information

We now incorporate the concept of risk. As Blue continues to fire from the same location,

the firing accuracy will increase for both Blue and Red. Recall that one operational way for

Blue’s accuracy to improve is that Blue adjusts its aim after incorporating feedback from

surveillance assets about the results of Blue’s earlier rounds. Risk represents the increase

in the effective firing rate for both sides as Blue remains in the same location. After Blue

changes locations, the effective firing rate, and hence risk, resets to its lowest level. Even

though Blue maintains an estimate of Red’s location throughout the battle, Blue’s effective

firing rate resets because errors are introduced into Blue’s firing calculus after a move. These

errors are caused by uncertainty in self-location, changing environmental conditions, and

mechanical perturbations incurred during transit.

In addition to tracking the time period t, we now track the risk level r. This approach

assumes one index appropriately captures the risk to both Blue and Red, when in reality the

risk may be asymmetric. It is theoretically straightforward to incorporate a separate risk

level for each side by tracking both a Blue and Red risk, but for simplicity we do not pursue

that here. The model in Section 7 does treat the risk to Blue and Red separately.

As in Section 4, Blue fires a risk-free shot immediately after changing locations. After

18

every risk-free shot from Blue, the battle enters risk level r = 1, where both Blue and Red

begin firing at each. As Blue fires from the same location, the risk to Blue increases over time

as Red obtains better information about Blue’s location. This information may come from

counter-battery radar that tracks Blue’s fire or surveillance assets, such as UAVs. The time

until the risk increases from level r to level r+1 has an exponential distribution with rate µr,

which may depend upon the current risk level r. There are M risk levels, and by definition

µM = 0. The time until the risk increases includes intelligence processing to determine an

updated aimpoint and the time to recalibrate and aim the artillery with the new aimpoint.

Similarly, the risk to Red also increases as Blue fires from the same location because Blue

improves its accuracy based on feedback from earlier shots. As discussed earlier, the risk is

symmetric. Currently there is no explicit connection between shots fired by either side and

increasing risk. A more realistic model would track the number of shots fired by each side

and then the risk rate µ would depend upon shots fired. The simulation model in Section 7

does explicitly connect risk to shots fired by each side.

The battle begins at time t = 1 and risk level r = 1; that is immediately after Blue’s

first (presumed missed) risk-free shot. As in Section 4, time advances to the next period

according to an exponential distribution with rate γ. The effective firing rates αr and βr now

also depend upon the risk level r. These firing rates should increase in r as Blue and Red

better localize the other’s position.

Moving has one important advantage for Blue: it generates a risk-free shot opportunity.

Depending upon the values of αr and βr, moving may have an additional benefit to Blue in

that it puts Blue in a relative firing advantage (e.g., if α1 � β1). In this section we assume

Blue has perfect information about the risk level and thus tailors its movement decision based

on time t and risk level r. That is Blue chooses its movement rate λt,r for all time periods

t and risk levels r to maximize its win-probability. In Section 6, we consider an imperfect

information scenario where Blue knows the current time period t, but not the risk level r,

and thus chooses a move-rate that depends only upon the time period t. As in Section 4,

19

the travel time to the new location has an exponential distribution with rate δ. Once Blue

arrives to the new location, the risk resets to r = 1 after the ensuing risk-free shot.

With this new notation, we update the win-probability equation from (1), which is now

a function of the tuple (t, r).

P[t, r] =
αr

D(t, r)
+

γ

D(t, r)
×P[t+ 1, r] +

µr
D(t, r)

×P[t, r + 1]

+
λt,r

D(t, r)
× δ

δ + γ

N∑
s=t

(
γ

δ + γ

)s−t
(p0 + (1− p0)P[s, 1]) (9)

where the denominator D(t, r) is the sum of all the rates

D(t, r) = αr + βr + γ + µr + λt,r (10)

The first, second, and last terms in (9) correspond directly to terms in (1). Blue hits Red with

rate αr and wins. Time increments to period t+1 with rate γ, and when time increments the

risk remains at its current level r. Blue moves with rate λt,r and arrives to the new location

at some period in the future. If Blue arrives prior to the closing of the time-window (period

N or earlier), than Blue takes one risk-free shot with success probability p0. If Blue misses,

then the risk resets to level 1, and hence the P[s, 1] term in the summation. The new term in

(9) relative to (1) is the third term: the risk level increases at rate µr. When risk increases,

the time remains at period t.

5.1 Results

As in the time-window model of Section 4, the optimal move policy is deterministic. Upon

entering a given time-period/risk-level tuple (t, r), Blue should either scoot immediately or

remain and fight until either the battle ends or the time period or risk level increments. The

following proposition generalizes Proposition 1.

20

Proposition 5. λ∗t,r ∈ {0,∞}. If λ∗t,r = 0,

P[t, r] =
αr

αr + βr + γ + µr
+

γ

αr + βr + γ + µr
×P[t+ 1, r] +

µr
αr + βr + γ + µr

×P[t, r + 1] (11)

If λ∗t,r =∞,

P[t, r] =
δ

δ + γ

N∑
s=t

(
γ

δ + γ

)s−t
(p0 + (1− p0)P[s, 1]) (12)

The proof appears in Appendix F. Appendix F.2 describes an O(NM2) algorithm to

determine whether λ∗t,r is 0 or ∞. In Section 4 one could compute the optimal λ∗t via

backward induction. We take a similar approach with the model described by (9). Starting

at t = N , we compute λ∗t,r for all 1 ≤ r ≤M , and then we proceed to t−1 and repeat. While

we can use backward induction in t, we cannot perform backward induction in r because

P[t, r] depends upon P[t, 1] (see the summation in the last term of (9)). Therefore for each

fixed t, we first solve for P[t, 1] and then we can solve for P[t, r], r > 1, using backward

induction in r. See Appendix F for more details.

We illustrate Proposition 5 with an example with three time periods (N = 3) and three

risk levels (M = 3). The expected length of the time-window is 75 minutes, which corresponds

to γ = 1
25

. The average travel time is 12 minutes (1
δ
). Blue hits Red on a risk-free shot with

probability p0 = 0.1. The risk rate is constant: µr = µ = 1
15

. This implies it takes on average

30 minutes to reach the maximum risk level after Blue’s risk-free shot. Blue’s effective firing

rate is also constant: αr = α = 1
20

. Finally, Red’s effective firing rate βr increases with risk:

β1 = 1
80
, β2 = 1

19
, β3 = 1

5
. Table 1 summarizes the parameters for this scenario.

α = 1
20

βr =
(

1
80
, 1
19
, 1
5

)
µ = 1

15
γ = 1

25
δ = 1

12
p0 = 0.1

Table 1: Example 1 parameter values

Table 2 presents the optimal move-rate λ∗t,r for the scenario defined by Table 1. We solve

for λ∗t,r using the approach described in Appendix F.2. If λ∗t,r = 0, Blue fires from the same

21

location until either one side is hit, the risk level increases (r increases), or time increments

(t increases). If time or risk increases, Blue reevaluates with the new value of λ∗t,r using the

updated indices. If λ∗t,r = ∞, then Blue moves immediately upon entering this state. In

this scenario Blue benefits little from the risk-free shot as p0 is small. However, the benefit

to scooting is that the risk resets to r = 1, where Blue has a significant firing advantage:

α1 = 1
20

vs. β1 = 1
80

. Blue exploits this firing advantage by fighting at risk level r = 1 for

all time periods (λ∗t,1 = 0,∀t). For higher risk levels, Blue primarily scoots. For risk level

r = 3, Blue is at a firing disadvantage (α3 = 1
20

vs. β3 = 1
5
) and so Blue scoots for all time

periods (λ∗t,3 =∞, ∀t). At risk level r = 2, Blue and Red are close to parity in terms of their

firing rates. For early time periods (t ∈ {1, 2}), if Blue moves it is unlikely the time-window

will close before Blue finishes traveling (travel-rate δ = 1
12

vs. time-rate γ = 1
25

), and thus

Blue prefers to scoot and reset the risk to the favorable level r = 1. However, in the last

time period Blue chooses to fight in risk level r = 2 because there is a reasonable chance the

time-window will close before Blue finishes traveling. If Blue uses the optimal strategy in

Table 2, Blue has a 0.707 probability of winning the battle starting in t = 1, r = 1.

r = 1 r = 2 r = 3
t = 1 0 ∞ ∞

t = 2 0 ∞ ∞

t = 3 0 0 ∞

Table 2: λ∗t,r for the parameters in Table 1

In the time-window model of Section 4, the optimal policy is a time-threshold policy (see

Proposition 3). As Table 2 illustrates, a time-threshold policy will not be optimal once we

include risk. There may be some risk levels where Blue has a firing advantage and other

risk levels where Blue is at a significant firing disadvantage. A pure time-threshold cannot

account for the differences across risk. The optimal time-threshold using the parameters in

Table 1 has Blue scoot for t = 1 and fight for t ∈ {2, 3}. This time-threshold policy produces

a win-probability of 0.582, which is a reasonable amount less than the optimal of 0.707.

22

While the optimal policy may not take the form of a pure time-threshold policy, the solu-

tion in Table 2 suggests a risk-based time-threshold might perform well. Such a generalized

policy would still have Blue scooting in early periods and fighting in later periods, but the

exact crossover time may depend upon the risk level. Unfortunately as the following example

illustrates, the optimal policy is not necessarily a risk-based time-threshold. This counter-

example has N = 6 time periods and M = 3 risk levels. The remaining parameters appear

in Table 3 and the optimal policy appears in Table 4.

αr = (0.1, 2.7, 10) βr = (0.6, 0.7, 0.9) µr = (6.5, 7.8, 0) γ = 8.2 δ = 7.6 p0 = 0.29

Table 3: Example 2 parameter values

r = 1 r = 2 r = 3
t = 1 ∞ 0 0

t = 2 ∞ 0 0

t = 3 0 0 0

t = 4 0 0 0

t = 5 ∞ 0 0

t = 6 ∞ 0 0

Table 4: λ∗t,r for the parameters in Table 3

Table 4 shows the surprising result that Blue oscillates between scooting and fighting in

risk level r = 1. In this scenario Blue has a significant firing advantage in risk level r = 3

(α3 = 10 vs. β3 = 0.9) and r = 2 (α2 = 2.7 vs. β2 = 0.7), but Red holds the advantage

in risk level r = 1 (α1 = 0.1 vs. β1 = 0.6). To reach the favorable risk levels, Blue needs

to fight Red in risk level r = 1 and hope to survive. For early time periods Blue scoots

because it has enough time remaining to try to get lucky with a risk-free shot as the travel-

rate δ is comparable to the time-rate γ. For time periods close to the end, if Blue fights in

r = 1 it is unlikely Blue fires a fatal shot before the time-window closes, and thus Blue is

better off scooting in the hope of hitting a risk-free shot. The interesting middle time periods

(t ∈ {3, 4}), provide a sweet spot for Blue to attempt to reach the favorable higher risk levels

23

by fighting in r = 1. There is a reasonable chance Blue reaches a higher risk level with enough

time remaining to effectively exploit the firing advantage. The Blue win-probability using

λ∗t,r in Table 4 is 0.762. If instead Blue scoots in risk level r = 1 for all time (λt,1 =∞, ∀t),

the win-probability drops slightly to 0.760. While an interesting theoretical result that the

optimal policy may oscillate, in practice the difference between the optimal policy and a

threshold-type policy may not be operationally meaningful.

5.2 Heuristic Performance

We conclude this section by examining the performance of the two heuristics discussed earlier:

a pure time-threshold policy and a more robust risk-based time-threshold. Formally we define

these two heuristics as:

• Time-Threshold : λt,r = ∞ for t ≤ k for some 1 ≤ k ≤ N ; otherwise λt,r = 0. This

heuristic uses a time threshold similar to Section 4. Blue scoots during early time

periods and fights in later time periods, without consideration for the risk level.

• Risk-Time-Threshold : λt,r = ∞ for t ≤ kr for some 1 ≤ kr ≤ N ; otherwise λt,r = 0.

The time threshold kr depends upon the risk level.

We perform a simulation experiment to compare the win-probability using the optimal λ∗t,r

to the win-probability achieved by the two heuristics. We generate the number of time periods

N as a uniform integer between 2 and 15 and the number of risk levels M a uniform integer

between 2 and 5. The rate parameters αr, βr, µr, γ, δ are uniformly distributed between 0

and 10 and the risk-free hit probability p0 has a uniform distribution between 0 and 1.

Table 5 contains the results for the two heuristics. To compute the optimal thresholds for

the heuristics we use brute force enumeration. This is computationally easy for the Time-

Threshold heuristic, but for Risk-Time-Threshold the brute force method can be burdensome

for larger values of N and M . Our metric of interest is relative suboptimality of the win-

probability starting in t = 1 and r = 1: optimal−heuristic
optimal

. Table 5 presents the 95th percentile of

24

this metric over 9000 replications. We repeat the experiment, but limit ourselves to scenarios

that satisfy two conditions: the optimal win-probability lies in the interval (0.15,0.85) and

the optimal policy both scoots and fights. When one of these conditions does not hold

the heuristics often produce near optimal results. By focusing on these more “challenging”

scenarios, there is more variability in heuristic performance. Both heuristics perform very

well, with Risk-Time-Threshold being optimal at the 95th percentile.

Time-Threshold Risk-Time-Threshold

All replications 0.020 0
Optimal in (0.15, 0.85) 0.056 0

Table 5: 95th percentile of the relative suboptimality in the Blue win-probability

We divide the replications into 9 categories of 1000 replications each depending upon the

values of αr, βr, µr. We consider three groupings based on whether the ratio αr
βr

is increasing,

decreasing, or non-monotonic. If that ratio increases then Blue has the advantage as risk

increases, and Red has the advantage if the ratio decreases. Similarly we consider three

groupings based on whether µr is increasing, decreasing, or non-monotonic. When αr
βr

is

increasing, then Time-Threshold is optimal at the 95th percentile. If it is optimal to fight in

risk level r = 1 for a fixed time t, then it is also likely optimal for Blue to fight in higher risk

levels where Blue has a stronger firing advantage. Time-Threshold performs the worst when

αr
βr

and µr are both decreasing, which leads to a 95th percentile suboptimality of 0.095. These

cases are similar to the scenario in Tables 1–2: Blue fights for lower risk levels and scoots for

higher risk levels, which is not compatible with Time-Threshold. The Risk-Time-Threshold

heuristic performs excellently. The worst relative suboptimality across all 9000 replications

for Risk-Time-Threshold is 0.043, but the actual difference in win-probabilities is only 0.005.

To summarize: Risk-Time-Threshold, while not technically optimal, generates essentially

optimal results. The much simpler Time-Threshold also performs very well, coming within

10% of the optimal at the 95th percentile even with worst-case parameter relationhips. We

also ran a separate experiment where the parameters take values across more realistic ranges

(e.g., similar to those in Table 1) and the heuristics perform even better in these scenarios.

25

6 Risk Model: Partial Information

In Section 5 Blue knows both the current time period t and the risk level r. In some scenarios

the Blue commander may not be able to accurately determine the true risk level in real-time

during the chaos battle. In this section Blue knows the current time period t, but not the

risk level r. More precisely Blue only knows the risk level immediately after the risk-free shot

following a location change when the risk resets to level r = 1. As Blue continues to fire from

the same location, the risk level will increase, but Blue will not know the exact risk level.

In this setting the move-rate λ cannot depend upon the unknown risk level r. We use λ
(j)
t

to denote Blue’s move-rate in time period t given the last risk-free shot occurred in period

j ≤ t. Immediately after each move, Blue knows the current time period j and risk level

r = 1, and thus uses a new family of move-rates λ
(j)
t moving forward. Because the move-rate

now depends upon the last period j a risk-free shot occurred, we modify the definition of our

win-probability in (9) to P(j)[t, r] to also depend upon j

P(j)[t, r] =
αr

D(j)(t, r)
+

γ

D(j)(t, r)
×P(j)[t+ 1, r] +

µr
D(j)(t, r)

×P(j)[t, r + 1]

+
λ
(j)
t

D(j)(t, r)
× δ

δ + γ

N∑
s=t

(
γ

δ + γ

)s−t (
p0 + (1− p0)P(s)[s, 1]

)
(13)

where the denominator D(j)(t, r) is the sum of all the rates

D(j)(t, r) = αr + βr + γ + µr + λ
(j)
t (14)

Note how the superscript index j varies for P(j)[t, r] on the right-hand side of (13). If time

(rate γ) or risk (rate µ) increment, then the superscript remains j because Blue remains in

the same location. However, if Blue moves (rate λ
(j)
t), then Blue finishes the transit at period

s ≥ t, fires a risk-free shot, and then proceeds to use new move-rates λ
(s)
t , which generate the

P(s)[s, 1] win-probabilities in the summation of (13).

After completing a move at time j, Blue’s win-probability moving forward after the risk-

26

free shot is P(j)[j, 1]. Blue chooses λ
(j)
t to maximize P(j)[j, 1] for each j. To solve for the

optimal λ
(j)∗
t , we can proceed with backward induction in j, however we cannot use backward

induction in t. To determine an effective λ
(j)
t , it is helpful to have an estimate of the risk

level in time period t. However, the risk level in period t depends upon the move-rates in

earlier periods λ
(j)
s for j ≤ s < t. Because the decisions are now coupled across time, we

cannot use backward induction in t. Furthermore the binary nature (scoot or fight) of the

optimal decision from the full-information settings in Sections 4–5 (see Propositions 1 and

5) no longer holds.

6.1 Results

We discuss the technical details behind solving for λ
(j)∗
t in Appendix G, which involves stan-

dard numerical optimization techniques. Figure 4 illustrates how the Blue win-probability

varies as we change λ
(j)
t . The win-probability is not a concave function of λ

(j)∗
t , which makes

it difficult to derive properties of the optimal solution. In Figure 4 we assume one time

period (N = 1) and two risk levels (M = 2); the other baseline parameters appear in Table

6. There is only one move-rate λ
(1)
1 , which we denote simply λ in Figure 4. The three curves

correspond to three different combinations of αr and βr. In the bottom curve Red has a

significant advantage in risk level r = 2, and so Blue sets λ∗ = ∞ to avoid the higher risk

level. In the middle dashed curve, Blue has a significant advantage in risk level r = 2, and so

Blue sets λ∗ = 0 to attempt to reach that risk level. The more interesting case appears in the

top curve where Blue has the advantage in risk level r = 1 and Red has the advantage in risk

level r = 2. Blue wants to spend some time firing to benefit from the advantage in the lower

risk level but knows that if Blue fires for too long the risk will increase and tip the scales in

favor of Red; therefore the optimal move-rate is λ∗ = 3.73 and not one of the extremes. If we

extend the x-axis in Figure 4 indefinitely, all three plots converge to the same value: δp0
δp0+γ

.

In Appendix G.2 we present two more numerical illustrations, including a scenario with a

local maximum that is not the global maximum.

27

µr = (5, 0) γ = 2 δ = 3 p0 = 0.55

Table 6: Parameter values associated with Figure 4

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

W
in

 P
ro

ba
bi

lit
y

S
ta

rt
in

g
in

 R
is

k
r=

1

=(10,1), =(1,10)
=(1,10), =(1,1)
=(1,1), =(1,10)

Figure 4: N = 1, R = 2, for various combination of αr and βr. Other parameters appear in
Table 6

The top curve in Figure 4 is similar to the scenario defined in Table 1 in Section 5 because

Blue has the firing advantage in lower risk levels and Red has the advantage in higher risk

levels. Table 7 presents λ
(j)∗
t for the scenario defined in Table 1 in the partial-information

setting. We must take care in comparing the partial-information move-rates λ
(j)∗
t in Table 7

with the full-information move-rates λ∗t,r in Table 2. Both tables have a row for each time

period t. However Table 2 has a column for each risk level r, whereas Table 7 has a column

for each time period. The time period j along the columns in Table 7 corresponds to the last

period Blue fired a risk-free shot. The diagonal terms λ
(t)∗
t represent the move-rates when

Blue enters risk level r = 1 after a risk-free shot in period t, and hence are most comparable

to the first column of Table 2. It is interesting to see how λ
(j)∗
t changes in Table 7 as we vary

j for a fixed t. For t = 2, λ
(2)∗
2 is smaller than λ

(1)∗
2 because Blue uses λ

(2)∗
2 immediately after

entering risk level r = 1 and wants to take advantage of the favorable relative firing rate in

r = 1. However, Blue uses λ
(1)∗
2 only after some time has elapsed since the last risk-free shot

in the previous time period; thus it is more likely that the risk level has changed to a less

favorable firing condition for Blue.

28

j = 1 j = 2 j = 3
t = 1 0.29 — —

t = 2 0.11 0.05 —

t = 3 0 0 0

Table 7: λ
(j)∗
t for the parameters in Table 1

For the scenario defined in Table 1, the Blue win-probability in the full-information setting

using λ∗t,r in Table 2 is 0.707. In the partial-information setting using λ
(j)∗
t in Table 7, the

win-probability is 0.614, which is a substantial decrease from the full-information setting.

We conclude this section with a simulation experiment to assess how much worse Blue does

in the partial-information setting compared to full-information. We also examine how well

the Time-Threshold heuristic described in Section 5.1 performs in the partial-information

setting. Table 8 contains the results for the same 9000 scenarios as in Table 5 in Section

5 and in a similar format. The metric of interest is performance relative to the optimal

partial-information win-probability. Therefore the metric is positive for the Time-Threshold

heuristic and negative for the full-information optimal policy.

Time-Threshold Full-Information Optimal

All replications 0.0003 -0.020
Optimal in (0.15, 0.85) 0.006 -0.053

Table 8: 95th percentile performance relative to the optimal partial-information Blue win-
probability

The Time-Threshold heuristic generates nearly optimal results. Furthermore, there is only

a small difference between the full-information solution and the partial-information solution.

Situations where there is a larger performance gap between both Time-Threshold and partial-

information and full-information and partial-information are similar to the scenario in Table

1. In these scenarios Blue has the firing advantage for early risk levels and Red has the

firing advantage for later risk levels, which implies greater benefits if Blue can tailor the

move strategy to the specific risk level. For the Table 1 scenario the full-information win-

probability is 0.707, partial-information is 0.614, and Time-Threshold is 0.582.

29

Throughout Sections 4–6 we require only one hit to destroy either side. In some scenarios

destruction may require multiple hits. Blue may consist of a battery with six cannons, and

so Red must hit Blue six times to destroy Blue. One could approximate a multiple hit

requirement by decreasing the effective fire rates α and β. Another approach would be to

explicitly track the health of both Blue and Red during the battle (e.g., number of remaining

Blue cannons). This would increase the state space from two dimensions (time and risk) to

four with the addition of Blue and Red health. In the next section we incorporate the health

level into a more general simulation model.

7 Simulation Model

The models in Sections 4–6 are approximations of reality. Perhaps the most controversial

part of our model is that the move decision is random. This may not be unreasonable because

the actual departure time may vary substantially from the planned departure time due to the

chaos on the battlefield. Furthermore, the optimal move decisions are often deterministic:

Blue either scoots immediately (λ∗ = ∞) or fights until the state changes (λ∗ = 0). The

deterministic Time-Threshold heuristic also performs well in Section 6 when the optimal

move time is non-deterministic. Even if our model is a simplified approximation, the results

can provide insight about more realistic settings.

We could extend the models in Sections 4–6 to incorporate more realism. As mentioned

at the end of the previous section, we could track the health of Blue and Red. Blue may

consist of several cannons and Red may have several targets (e.g., bridges, refineries, logistic

centers). Therefore to destroy either side requires multiple hits. Another way to add realism

to the model would be to have a separate Blue risk and Red risk and count the number of

shots fired by each side to better capture how risk increases. Incorporating these aspects

into our modeling framework from Sections 4–6 is conceptually straightforward and requires

expanding our state space to track additional factors. Rather than continue with this ap-

30

proach, we instead develop a simulation model. In the interest of space, we defer most of

the implementation details to Appendix H. We no longer restrict random variables to follow

exponential distributions and for simplicity we primarily use uniform distributions for most

of the random variables in the simulation. The travel time and the inter-shot times for both

Blue and Red are all uniform random variables. The time-window is deterministic. We also

track Blue and Red health, which corresponds to the number of remaining hits until the

side is destroyed. We explicitly connect an increase in risk to improved firing accuracy from

processing intelligence. Specifically, after every Blue and Red shot, Red processes the shot

information (e.g., radar signature) to improve firing accuracy. The time to process the shot

information is a uniform random variable. Blue’s accuracy improves only after adjusting to

a previous Blue shot. Because Blue does not fire at the Red artillery, Red artillery trajectory

provides no information on the location of the desired Red targets.

Blue’s move decision now depends upon five factors

• Blue’s health

• Number of Blue shots fired

• Number of Red shots fired

• Current time

• Time since Blue’s risk-free shot at current location

The move decision does not depend upon Red’s health because we assume that Blue has

imperfect battle damage assessment and thus does not know Red’s health in real time. Blue

maps the above five factors to the time when Blue moves to a new location. If the current

time is less than the move time, Blue stays at the current location, otherwise Blue moves.

Even with a coarse discretization of the two time variables listed above (e.g., 5 to 10 lev-

els), the number of move decision variables can easily exceed 1000. Optimizing over that

many variables embedded in a simulation is difficult. We use a genetic algorithm approach

31

(see Whitley (1994); Mitchell (1998)) to solve for the move variables using Matlab’s built-in

genetic algorithm functionality. Unfortunately, there is no guarantee that the solution gen-

erated by the genetic algorithm is optimal or even near optimal. We compare the results

from the genetic algorithm to simpler heuristics based on the results in Sections 4–6 in the

hopes that the heuristics provide effective move policies. Based on the effectiveness of a pure

time-threshold policy in Sections 4–6, we focus on two heuristics

• Pure-Time-Threshold : Blue scoots for all time less than some threshold τ and fights

from one location thereafter. This corresponds to the optimal policy in Section 4 and

the Time-Threshold heuristic in Sections 5–6.

• Health-Based-Time-Threshold : If Blue’s current health level is hB, then Blue scoots for

all time less than threshold τ(hB) and fights thereafter until Blue’s health decreases.

For the Pure-Time-Threshold heuristic, we estimate the optimal threshold by enumeration.

For the Health-Based-Time-Threshold we must estimate the optimal threshold for each Blue

health level. We utilize a genetic algorithm to do this, which performs well because we only

need to optimize over at most six decision variables for the scenarios we consider.

We run each simulation 10000 times to estimate Blue’s win-probability. We consider 750

different scenarios. Both heuristics are within 0.05, in absolute terms, of the genetic algorithm

solution in 0.91 of the scenarios. The strong performance of the heuristics is partly the result

of the difficulty of finding optimal solutions with genetic algorithms. Future work could

improve the optimization approach to generate solutions closer to the optimum. However, it

is reassuring that the intuitive time-threshold policy suggested by the simple model in Section

4 performs nearly as well as a more complicated and much more time-intensive algorithm.

The scenarios where the heuristics perform poorly relative to the genetic algorithm had large

increases in Blue firing accuracy as Blue observes more Blue shots. Blue is apt to stay in the

same location for a few shots in order to fire high accuracy rounds. The heuristics do not

account for this information and thus have a larger performance gap.

32

8 Conclusion

We formulate several models of increasing complexity to analyze shoot-and-scoot tactics for

artillery forces. Most commanders are risk averse and want to avoid casualties and thus

tend to move frequently to avoid the enemy’s counter-fire. Moving frequently reduces risk

to Blue, but limits Blue’s ability to inflict damage on Red. Fighting from the same location

improves accuracy and increases the overall firing rate. When the mission is time-critical,

frequent scooting may no longer be an effective tactic. In some situations, Blue should spend

a reasonable amount of time firing at Red from the same location. These include situations

where the time-window is close to expiring.

We primarily focus on Markov models to gain insight and develop simple heuristics. The

heuristics are variants of time-threshold policies, where Blue scoots in early periods and fights

in later periods. The pure time-threshold policy is optimal for the model in Section 4. These

heuristics perform well when applied to more complex and realistic settings via a simulation

experiment.

Future work could more explicitly model where Blue fires from after a move. For example

a larger travel-rate δ corresponds to moving to a closer location. If Blue moves to a location

too close to the previous location, Red may hit Blue before Blue fires the risk-free shot.

Another future effort could consider a setting where Blue artillery and Red artillery fire

directly at each other. We could develop a sequential game theory model with two mobile

players. Each round a player chooses to either move or fire at an enemy location. Some

locations are hidden from the enemy until a player fires from the location for the first time.

Acknowledgment

This paper is based on the Master’s Thesis of Younglak Shim (first author). We would like

to thankful Captain Alex Ryan, USMC, for very informative discussions about the nature of

artillery engagements.

33

References

Alexander, Robert Michael. 1977. An analysis of aggregated effectiveness for indirect artillery

fire on fixed targets. Master’s thesis, Georgia Institute of Technology.

Ancker, C. J. 1966. Stochastic duels of limited time duration. Canadian Operational Research

Society Journal 4(2) 59–81.

Ancker, C. J. 1975. Stochastic duels with round-dependent hit probabilities. Naval Research

Logistics 22(3) 575–583.

Ancker, C. J., Trevor Williams. 1965. Some discrete processes in the theory of stochastic

duels. Operations Research 13(2) 202–216.

Armstrong, Michael J. 2004. Effects of lethality in naval combat models. Naval Research

Logistics 51(1) 28–43.

Armstrong, Michael J. 2005. A stochastic salvo model for naval surface combat. Operations

Research 53(5) 830–841.

Armstrong, Michael J. 2007. Effective attacks in the salvo combat model: Salvo sizes and

quantities of targets. Naval Research Logistics 54(1) 66–77.

Armstrong, Michael J. 2014a. Modeling short-range ballistic missile defense and Israel’s Iron

Dome system. Operations Research 62(5) 1028–1039.

Armstrong, Michael J. 2014b. The salvo combat model with a sequential exchange of fire.

Journal of the Operational Research Society 65(10) 1593–1601.

Barfoot, C Bernard. 1989. Continuous-time Markov duels: Theory and application. Naval

Research Logistics 36(3) 243–253.

Barr, Donald R, Larry D Piper. 1972. A model for analyzing artillery registration procedures.

Operations Research 20(5) 1033–1043.

34

Bhashyam, N, Naunihal Singh. 1967. Stochastic duels with varying single-shot kill probabil-

ities. Operations Research 15(2) 233–244.

Bowman, Tom. 2016. U.S. military trainers teach Afghan troops to wield artillery. July 5,

2016. National Public Radio.

Brown, Gerald, Matthew Carlyle, Douglas Diehl, Jeffrey Kline, Kevin Wood. 2005. A two-

sided optimization for theater ballistic missile defense. Operations Research 53(5) 745–763.

Cha, Young-Ho, Yeong-Dae Kim. 2010. Fire scheduling for planned artillery attack operations

under time-dependent destruction probabilities. Omega 38(5) 383–392.

Choe, Jum Soo. 1983. Some stochastic-duel models of combat. Master’s thesis, Naval Post-

graduate School.

Dastrup, Boyd L. 1992. King of battle: a branch history of the US Army’s field artillery.

Army Training And Doctrine Command, Fort Monroe, VA.

Davis, Michael T, Matthew J Robbins, Brian J Lunday. 2017. Approximate dynamic pro-

gramming for missile defense interceptor fire control. European Journal of Operational

Research 259(3) 873–886.

Deelstra, Griselda, Guillaume Plantin. 2013. Risk theory and reinsurance. Springer.

Finlon, Matthew A. 1991. Analysis of the field artillery battalion organization using a Markov

chain. Master’s thesis, Naval Postgraduate School.

Fox, Major Amos. 2017. Understanding modern Russian war: Ubiquitous rocket, artillery to

enable bttlefield swarming, siege warfare. Fires Bulletin 107.

Guzik, Dennis M. 1988. Markov model for measuring artillery fire support effectiveness.

Master’s thesis, Naval Postgraduate School.

35

Harari, Lior. 2008. Defense against rocket attacks in the presence of false cues. Master’s

thesis, Naval Postgraduate School.

Harris, Michael C. 2017. Is tube artillery a viable fire support platform for the United States

military on the battlefields of the future. Master’s thesis, Air War College, Air University

Maxwell AFB United States.

Hohzaki, R, A Washburn. 2001. The diesel submarine flaming datum problem. Military

Operations Research 6(4) 19–30.

Holmes, Richard, Charles Singleton. 2001. The Oxford companion to military history . Oxford

University Press, Oxford.

Hughes, Wayne P. 1995. A salvo model of warships in missile combat used to evaluate their

staying power. Naval Research Logistics 42(2) 267–289.

Keane, Therese. 2011. Combat modelling with partial differential equations. Applied Math-

ematical Modelling 35(6) 2723–2735.

Koba, Michael. 1996. Artillery strike force. School of Advanced Military Studies, United

States Army Command and General Staff College.

Kopp, Carlo. 2005. Artillery for the Army: Precision fire with mobility. Defence Today 4(3).

Kwon, Ojeong, Kyungsik Lee, Sungsoo Park. 1997. Targeting and scheduling problem for

field artillery. Computers & Industrial Engineering 33(3-4) 693–696.

Lucas, Thomas W, Turker Turkes. 2004. Fitting lanchester equations to the battles of kursk

and ardennes. Naval Research Logistics 51(1) 95–116.

Marshall, Kneale T. 1994. Quantifying counterforce and active defense in countering theater

ballistic missiles. Military Operations Research 1 35–48.

36

McCarthy, Niall. 2017. Why the North Korean artillery factor makes military action ex-

tremely risky. October 2, 2017. Forbes .

McNaught, Ken R. 2002. Markovian models of three-on-one combat involving a hidden

defender. Naval Research Logistics 49(7) 627–646.

Miller, Stephen W. 2016. Shoot and scoot. Armada International 1.

Miller, Stephen W. 2017. Asia’s artillery rennaissance. Asian Military Review 2.

Mitchell, Melanie. 1998. An introduction to genetic algorithms . MIT press.

Nadler, Jack, Joan Eilbott. 1971. Optimal sequential aim corrections for attacking a station-

ary point target. Operations Research 19(3) 685–697.

Ratliff, Timothy M. 2017. Field artillery and fire support at the operational level: An analysis

of operation desert storm and operation iraqi freedom. Master’s thesis, US Army School

for Advanced Military Studies.

Sharp, Jeremy. 2006. Lebanon: The Israel-Hamas-Hezbollah conflict. Congressional Research

Service.

Shim, Younglak. 2017. An analysis of shoot-and-scoot tactics. Master’s thesis, Naval Post-

graduate School.

Snow, Shawn. 2018. These marines in Syria fired more artillery than any battalion since

Vietnam. February 6, 2018. Marine Corps Times .

Temiz, Yusuf. 2016. Artillery survivability model. Master’s thesis, Naval Postgraduate School.

The MathWorks, Inc. 2016. Matlab 2016b. URL https://www.mathworks.com/products/

matlab.html.

Tinder, Brett. 2017. Artillery units embrace ’hide and seek’ tactics to gain decisive edge.

August 2, 2017. Army.mil .

37

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

United States Army. 1990. Army regulation 600-82: The U.S. Army regimental system.

Headquarters, Department of the Army.

United States Army. 1996. FM 6-50: Tactics, techniques, and procedures for the field artillery

cannon battery. Headquarters, Department of the Army.

United States Army. 2001. FM 3-09.22: Tactics, techniques, and procedures for corps ar-

tillery, division artillery, and field artillery brigade operations. Headquarters, Department

of the Army.

United States Army. 2014. FM 3-09: Field artillery operations and fire support. Headquar-

ters, Department of the Army.

United States Marine Corps. 1998. MCWP 3-16.6: Supporting arms observer, spotter and

controller. Marine Corps Combat Development Command.

United States Marine Corps. 2002. MCWP 3-16.1: Artillery operations. Marine Corps

Combat Development Command.

United States Marine Corps. 2016. Organization of the United States Marine Corps. Head-

quarters, United States Marine Corps.

Washburn, Alan R, Moshe Kress. 2009. Combat modeling . Springer, Heidelberg.

Whitley, Darrell. 1994. A genetic algorithm tutorial. Statistics and computing 4(2) 65–85.

Williams, G Trevor, C. J. Ancker. 1981. Stochastic duels with displacements (suppression).

Naval Research Logistics 28(3) 519–524.

Williams, Trevor, Clinton J. Ancker. 1963. Stochastic duels. Operations Research 11(5)

803–817.

38

APPENDIX

A Proof of Proposition 1: λ∗t ∈ {0,∞}

Simplifying the notation of equation (2) yields

P[t] =
a

b+ λtc
+ λt

d

b+ λtc
. (A.1)

It is a straightforward exercise via differentiation to show that P[t] is a monotonic function

of λt. It increases if d
c
> a

b
. Substituting in the specific values of a, b, c, d from (2), reveals

that λ∗t = 0 if

F[t] ≥ S[t],

otherwise λ∗t =∞. F[t] and S[t] are the fighting costs and scooting costs, respectively, defined

in Proposition 1.

B Proof of Proposition 2: Monotonicity of P[t]

We will proceed via induction. First we prove the base case: P[N−1] ≥ P[N]. By inspection

of (3)–(4)

F[N − 1] ≥ F[N] (B.1)

S[N − 1] ≥ S[N]. (B.2)

39

This follows because P[N + 1] = 0. Because P[t] = max(F[t],S[t]), conditions (B.1)–(B.2)

imply that

P[N − 1] ≥ F[N − 1] ≥ F[N] (B.3)

P[N − 1] ≥ S[N − 1] ≥ S[N]. (B.4)

Conditions (B.3)–(B.4) imply that P[N − 1] ≥ max(F[N],S[N]) = P[N], which completes

the base case.

The general case follows similar logic. First we assume that P[s] ≥ P[s + 1] for all

t < s ≤ N . This induction assumption implies

α

α + β + γ
+

γ

α + β + γ
P[t+ 1] ≥ α

α + β + γ
+

γ

α + β + γ
P[t+ 2]

→ F[t] ≥ F[t+ 1] (B.5)

Similarly, S[t] ≥ S[t+ 1]. To see this:

S[t]− S[t+ 1] =
γ

γ + δp0

δ

δ + γ

N∑
s=t+2

(
γ

δ + γ

)s−t−2
(1− p0)(P[s− 1]−P[s])

+
γ

γ + δp0

δ

δ + γ

(
γ

δ + γ

)N−t−1
(p0 + (1− p0)P[N])

≥ 0 (B.6)

Condition (B.6) follows because P[s − 1] − P[s] ≥ 0 by the induction assumption. We

combine conditions (B.5) and (B.6) in the same fashion as Conditions (B.3)–(B.4), which

yields P[t] ≥ P[t+ 1]. This completes the proof.

40

C Proof of Proposition 3: Optimality of Threshold Pol-

icy

We start with several edge cases before turning to the general case. The first Lemma handles

the case when τ = N : Blue scoots in the final time period.

Lemma 1. If τ = N , then λ∗t =∞ for all time periods 1 ≤ t ≤ N .

The proof appears in Appendix C.1.

If τ = −∞ (Blue never scoots) or τ = 1 (Blue scoots in first period, and then fights for

the remainder of the battle), then Proposition 3 follows immediately by definition of τ . For

the remainder of this section, we focus on the general case where 1 < τ < N . We must show

that λt =∞ for all 1 ≤ t ≤ τ . The following Lemma states that if Blue optimally scoots in

two consecutive periods, Blue should optimally scoot in all previous periods.

Lemma 2. If λ∗t =∞ and λ∗t−1 =∞, then λ∗s =∞ for all 1 ≤ s ≤ t− 1.

The proof of Lemma 2 appears in Appendix C.2. By definition of τ , λτ =∞. By Lemma

2, we can complete the proof if we show that λτ−1 =∞. The following Lemma provides this

final piece

Lemma 3. For 1 < τ < N , λ∗τ−1 =∞.

The proof of Lemma 3 appears in Appendix C.3.

C.1 Proof of Lemma 1: Scoot in All Time Periods

If Blue scoots in period N (λ∗N = ∞), then by definition ŜF[N] > F̂all[N]. This implies, by

(5) and (6), that

δp0
γ + δp0

>
α

α + β + γ
. (C.1)

41

To show Blue should scoot in all periods (λ∗t = ∞ for all 1 ≤ t ≤ N), we follow an

inductive approach. We assume that there exists some s ≤ N , such that it is optimal to

scoot for all s ≤ k ≤ N : λ∗k = ∞. The base case s = N is one such s by assumption. We

can explicitly compute P[s] when Blue scoots for all s ≤ k ≤ N . We denote Ŝall[s] as the

probability Blue wins if it uses a scoot-only policy for all time periods from s onward:

P[s] = Ŝall[s] ≡ 1−
(

γ

γ + δp0

)N−s+1

. (C.2)

Using this scoot-only policy, Blue wins unless the time-window closes. One can formally

show that (2) simplifies to (C.2) when λk =∞ for all s ≤ k ≤ N via induction.

To determine the optimal action in period s− 1, Blue compares

P[s− 1] = max

(
α

α + β + γ
+

γ

α + β + γ
Ŝall[s], Ŝall[s− 1]

)
(C.3)

Substituting in for Ŝall[s] from (C.2) into (C.3) and rearranging terms, we see that Blue will

also scoot in state s− 1 if

(
1−

(
γ

γ + δp0

)N−s+2
)
>

α

α + β + γ
+

γ

α + β + γ

(
1−

(
γ

γ + δp0

)N−s+1
)

→ β

α + β + γ
>

(
γ

γ + δp0

)N−s+1(
γ

γ + δp0
− γ

α + β + γ

)
(C.4)

If the right-hand side in (C.4) is negative, then condition (C.4) holds for all s, and thus Blue

should scoot in period s − 1 and inductively for all periods. If the right-hand side in (C.4)

is positive, then the right-hand side of (C.4) is an increasing function of s for s ≤ N + 1.

Condition (C.4) holds for s = N + 1 because condition (C.4) simplifies to condition (C.1) for

s = N + 1. By the monotonicity of the right-hand side of (C.4), condition (C.4) will thus

also hold for all s < N + 1, and hence Blue should scoot in all time periods. This completes

the proof.

42

C.2 Proof of Lemma 2: Two Consecutive Scoot Periods

If τ = N , then the result follows immediately by Lemma 1. For the remainder of this proof,

we assume τ < N , which holds if and only if

δp0
γ + δp0

≤ α

α + β + γ
(C.5)

If λ∗t = ∞, then the expression for S[t − 1] simplifies greatly from (4). We present the

following as a Lemma because we use it for other results.

Lemma 4. If λ∗t =∞, then

S[t− 1] =
δp0

γ + δp0
+

γ

γ + δp0
P[t]. (C.6)

The proof of Lemma 4 appears in Appendix C.2.1. If, in addition, λ∗t−1 =∞, then

S[t− 1] > F[t− 1]

→ δp0
γ + δp0

+
γ

γ + δp0
P[t] >

α

α + β + γ
+

γ

α + β + γ
P[t]. (C.7)

We use (C.6) and (3) to produce (C.7). Condition (C.7) is a comparison of two linear

functions where the independent variable is P[t]. By (C.5), the “slope” of the left-hand side

of (C.7) is larger than the slope of the right-hand side of (C.7):

γ

γ + δp0
≥ γ

α + β + γ

Thus condition (C.7) will hold if we replace P[t] with any x ≥ P[t]. Namely, by the mono-

tonicity of P[t] (Proposition 2), condition (C.7) will also hold for P[t − 1]. Hence, Blue

should scoot in period t − 2 (λ∗t−2 = ∞). Iterating this logic, condition (C.7) holds for all

1 ≤ s ≤ t− 1 and thus λ∗s =∞.

43

C.2.1 Proof of Lemma 4: Win-Probability if Next Period Optimally Scoots

The expressions for S[t] and S[t − 1] only differ by one term in the summation of (4). Ma-

nipulating (4) yields S[t− 1] as a function of S[t]

S[t− 1] =

(
S[t]− δp0

γ + δp0

)
γ

γ + δ
+

δp0
γ + δp0

+
γ

γ + δp0

δ

γ + δ
(p0 + (1− p0)P[t]) (C.8)

Because we assume λ∗t = ∞, we can substitute S[t] = P[t] in (C.8). Further algebra trans-

forms (C.8) to (C.6).

C.3 Proof of Lemma 3: Scoot in Period τ − 1

By definition of τ in equation (7), we have

F̂all[t] ≥ ŜF[t] ∀τ + 1 ≤ t ≤ N (C.9)

F̂all[τ] < ŜF[τ] (C.10)

To complete the proof, we must show that λ∗τ−1 = ∞, which occurs if and only if (see

Proposition 1)

F[τ − 1] < S[τ − 1]

→ α

α + β + γ
+

γ

α + β + γ
P[τ] <

δp0
γ + δp0

+
γ

γ + δp0
P[τ] (C.11)

→ α

α + β + γ
+

γ

α + β + γ
ŜF[τ] <

δp0
γ + δp0

+
γ

γ + δp0
ŜF[τ] (C.12)

The left-hand side of (C.11) follows directly from (3) and the right-hand side of (C.11) is a

result of Lemma 4 because λ∗τ = ∞. Finally we replace P[τ] in (C.11) with ŜF[τ] in (C.12)

by (C.9)–(C.10).

44

We will derive a contradiction by assuming that (C.12) does not hold. That is we assume

α

α + β + γ
+

γ

α + β + γ
ŜF[τ] ≥ δp0

γ + δp0
+

γ

γ + δp0
ŜF[τ]. (C.13)

If condition (C.13) holds, then we will show that condition (C.10) will be violated, which

produces a contradiction. Combining (C.9), (C.10), and Proposition 2 yields

F̂all[τ + 1] = P[τ + 1] ≤ P[τ] = ŜF[τ] (C.14)

By Proposition 1 if λ∗N = 0 (Lemma assumption) then

α

α + β + γ
≥ δp0
γ + δp0

(C.15)

Condition (C.15) also implies

γ

α + β + γ
≤ γ

γ + δp0
(C.16)

Conditions (C.15) and (C.16) imply that if (C.13) holds, then (C.13) will also hold if we

replace ŜF[τ] in (C.13) with any value x ≤ ŜF[τ]. This follows because (C.13) is just the

comparison of two linear functions. We use similar logic in Appendix C.2. Consequently

(C.13) holds for F̂all[τ + 1] ≤ ŜF[τ], by (C.14):

α

α + β + γ
+

γ

α + β + γ
F̂all[τ + 1] ≥ δp0

γ + δp0
+

γ

γ + δp0
F̂all[τ + 1]

→ F̂all[τ] ≥ δp0
γ + δp0

+
γ

γ + δp0
F̂all[τ + 1]. (C.17)

The second line of (C.17) follows from the first line by (3) and (C.9). The final step is to

45

show that

F̂all[τ + 1] ≥ δ

δ + γ

N∑
s=τ+1

(
γ

δ + γ

)s−τ−1 (
p0 + (1− p0)F̂all[s]

)
. (C.18)

If we substitute condition (C.18) into the right-hand side of (C.17) we produce ŜF[τ] (see

(6)). Consequently, condition (C.17) would imply F̂all[τ] ≥ ŜF[τ], which is the desired

contradiction of (C.10). We show (C.18) by brute force. Manipulating the right-hand side

(C.18)

δ

δ + γ

N∑
s=τ+1

(
γ

δ + γ

)s−τ−1 (
p0 + (1− p0)F̂all[s]

)

=
δ(1− p0)
δ + γ

F̂all[τ + 1] +

(
δp0
δ + γ

+
γ

δ + γ

δ

δ + γ

N∑
s=τ+2

(
γ

δ + γ

)s−τ−2 (
p0 + (1− p0)F̂all[s]

))
.

(C.19)

Inspection of (6) reveals that the large term in parentheses in (C.19) is a constant multiple

of ŜF[τ + 1], which simplifies (C.19) to

δ

δ + γ

N∑
s=τ+1

(
γ

δ + γ

)s−τ−1 (
p0 + (1− p0)F̂all[s]

)
=
δ(1− p0)
δ + γ

F̂all[τ + 1] +
γ + δp0
δ + γ

ŜF[τ + 1]

≤ F̂all[τ + 1] (C.20)

The second line in (C.20) follows from the first by (C.9). Condition (C.20) produces in-

equality (C.18) and completes the proof.

46

D Proof of Proposition 4: Comparative Statics

D.1 Blue firing rate α

We introduce the notation P[t;α], S[t;α] , τ(α), F̂all[t;α], and ŜF[t;α] to explicitly connect

these quantities to α. By inspection of equation (5) F̂all[t;α] is an increasing function of α

∂

∂α
F̂all[t;α] ≥ 0, ∀α > 0, 1 ≤ t ≤ N (D.1)

To show that P[t;α] is also non-decreasing in α, we consider α1 < α2. We show the result

by considering two cases for the value of t. For t > max(τ(α1), τ(α2)), it is optimal to fight

for both α1 and α2. By (D.1)

P[t;α1] = F̂all[t;α1] ≤ F̂all[t;α2] = P[t;α2] ∀t > max(τ(α1), τ(α2)) (D.2)

Next we consider 1 < t ≤ max(τ(α1), τ(α2)). We argue by induction that

F[t;α1] ≤ F[t;α2]

S[t;α1] ≤ S[t;α2],

where F[t;α] and S[t;α] are defined in (3)–(4). Since by definition P[t;α] = max(F[t;α],S[t;α]),

this completes the proof.

The base case is t = max(τ(α1), τ(α2)). S[t;α] is a linear combination of P[t;α] for

t > max(τ(α1), τ(α2)). Therefore S[t;α1] ≤ S[t;α2] follows from (D.2). Similar logic applies

to F[t;α]. Furthermore F[t;α] is a weighted combination of 1 and P[t;α] ≤ 1, and the weight

on 1 increases with α. Consequently F[t;α1] ≤ F[t;α2] holds and the base case is complete.

The general case follows by the same logic because for a general t the induction assumption

47

implies

P[s;α1] = max(F[s;α1],S[s;α1]) ≤ max(F[s;α2],S[s;α2]) = P[s;α2] ∀s > t (D.3)

This completes the proof.

D.2 Red firing rate β

We introduce the notation P[t; β], τ(β), F̂all[t; β], and ŜF[t; β] to explicitly connect these

quantities to β. We first present three Lemmas that provide the pieces for our proof.

Lemma 5.

∂

∂β
F̂all[t; β] ≤ 0, ∀β > 0, 1 ≤ t ≤ N

The proof of Lemma 5 and Lemma 6 appears in Appendix D.2.1.

Lemma 6. For all 1 ≤ t ≤ N ,

∂

∂β
F̂all[t; β]

∣∣∣
β=β0

≤ ∂

∂β
F̂all[s; β]

∣∣∣
β=β0

, ∀β0 > 0, t < s ≤ N

Lemma 7. If ŜF[t; β1] > F̂all[t; β1], then ŜF[t; β2] > F̂all[t; β2] for any β2 > β1

The proof appears in Appendix D.2.2.

Lemma 7 immediately implies that τ(β) is non-decreasing in β by the definition of τ in

equation (7).

To show that P[t; β] is non-increasing in β we consider β1 < β2. We assume Blue uses

threshold τ(β2) ≥ τ(β1) when β = β1, instead of the optimal τ(β1). This produces the

suboptimal win-probability of P̄[t; β1]:

48

P̄[t; β1] =
δp0

γ + δp0
+

γ

γ + δp0

δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t−1 (
p0 + (1− p0)P̄[s; β1]

)
1 ≤ t ≤ τ(β2)

(D.4)

P̄[t; β1] = F̂all[t; β1] = P[t; β1] t > τ(β2) (D.5)

The second equality in (D.5) follows because τ(β2) ≥ τ(β1) (see discussion below Lemma 7

).

Clearly P̄[t; β1] ≤ P[t; β1] since Blue does not use the optimal threshold τ(β1). Lemma 5

implies that

P̄[t; β1] = F̂all[t; β1] ≥ F̂all[t; β2] = P[t; β2] for t > τ(β2). (D.6)

Condition (D.6) combined with comparison of (4) with (D.4) yields that P̄[t; β1] ≥ P[t; β2]

for 1 ≤ t ≤ τ(β2). Thus P̄[t; β1] ≥ P[t; β2] for all 1 ≤ t ≤ τ(β2) and hence P[t; β1] ≥ P[t; β2]

and the proof is complete.

D.2.1 Proof of Lemma 5 and Lemma 6

Differentiating (5) yields

∂

∂β
F̂all[t; β] =

α

(α + β)2

(
−1 +

(
γ

α + β + γ

)N−t+1(
1 + (N − t+ 1)

α + β

α + β + γ

))

Ignoring the initial constant and replacing x = N − t+ 1 and p = γ
α+β+γ

produces

∂

∂β
F̂all[t; β] = −1 + px (1 + x(1− p)) (D.7)

To complete the proof for Lemma 6, we show that the right-hand side of (D.7) decreases

in x. Since x = N − t+ 1, this implies the non-decreasing relationship in Lemma 6. Taking

49

the derivative of (D.7) with respect to x yields

px (log p+ (1− p)(x log p+ 1)) (D.8)

We show (D.8) is always negative and hence ∂
∂β

F̂all[t; β] is non-decreasing in t. We ignore

the outer px factor and generate the following inequality by setting x = 0 in the interior

log p+ (1− p)(x log p+ 1) ≤ log p+ (1− p) (D.9)

Condition (D.9) follow because the x log p on the left-hand side of (D.9) is non-positive. Thus

if

log p+ (1− p) ≤ 0, (D.10)

we have proven Lemma 6. The left-hand side of (D.10) is 0 if p = 1 and it increases over

p ∈ [0, 1]. Therefore, the left-hand side of (D.9) must be non-positive for any p ∈ [0, 1].

To complete the proof for Lemma 5, we note that by Lemma 6, the largest derivative

occurs at t = N , so to complete the proof it suffices to show ∂
∂β

F̂all[N ; β] ≤ 0:

∂

∂β
F̂all[N ; β] =

α

(α + β)2

(
−1 +

(
γ

α + β + γ

)(
1 +

α + β

α + β + γ

))

By inspection the above is non-positive.

50

D.2.2 Proof of Lemma 7

By the fundamental theorem of calculus we have

F̂all[t; β2] = F̂all[t; β1] +

∫ β2

β1

∂

∂β
F̂all[t; β]dβ,

ŜF[t; β2] = ŜF[t; β1] +

∫ β2

β1

∂

∂β
ŜF[t; β]dβ.

Since by assumption ŜF[t; β1] > F̂all[t; β1], to complete the proof it suffices to show

∫ β2

β1

∂

∂β
ŜF[t; β]dβ ≥

∫ β2

β1

∂

∂β
F̂all[t; β]dβ.

Since integration preserves inequalities, we will prove

∂

∂β
ŜF[t; β] ≥ ∂

∂β
F̂all[t; β] ∀β

To do this we define ∂
∂β

ŜF[t; β] in terms of ∂
∂β

F̂all[t; β]. Differentiating (6)

∂

∂β
ŜF[t; β] =

γ

γ + δp0

δ

δ + γ
(1− p0)

N∑
s=t+1

(
γ

δ + γ

)s−t−1
∂

∂β
F̂all[s; β] ≤ 0 (D.11)

The inequality in (D.11) follows by Lemma 5. By Lemma 6

∂

∂β
F̂all[s; β] ≥ ∂

∂β
F̂all[t; β] t < s ≤ N (D.12)

Combining (D.11) and (D.12) yields

∂

∂β
ŜF[t; β] ≥ κ

∂

∂β
F̂all[t; β] (D.13)

51

where

1 ≥ κ =
γ

γ + δp0

δ

δ + γ
(1− p0)

N∑
s=t+1

(
γ

δ + γ

)s−t−1
(D.14)

∂
∂β

F̂all[t; β] and ∂
∂β

ŜF[t; β] are both non-positive by Lemma 5 and (D.11). This non-positivity

combined with κ ∈ [0, 1] and (D.13) implies

∂

∂β
ŜF[t; β] ≥ ∂

∂β
F̂all[t; β],

which is the desired condition and completes the proof.

D.3 Blue move-rate δ

We introduce the notation P[t; δ], τ(δ), and ŜF[t; δ] to explicitly connect these quantities to

δ. Note that F̂all[t] does not depend upon δ. We use the following Lemma in our proof

Lemma 8.

∂

∂δ
ŜF[t; δ] ≥ 0, ∀δ > 0, 1 ≤ t ≤ N

The proof for Lemma 8 appears in Appendix D.3.1.

Because F̂all[t] does not depend upon δ, Lemma 8 implies

if ŜF[t; δ1] > F̂all[t]

then ŜF[t; δ2] > F̂all[t] for any δ2 > δ1 (D.15)

Condition (D.15) implies that τ(δ) is non-decreasing in δ by the definition of τ in equation

(7).

To show that P[t; δ] is non-decreasing in δ, we consider δ1 < δ2. We now assume that

when δ = δ2 Blue uses threshold τ(δ1) ≤ τ(δ2) instead of the optimal τ(δ2). This produces

52

the suboptimal win-probability of P̄[t; δ2]:

P̄[t; δ2] =
δp0

γ + δp0
+

γ

γ + δp0

δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t−1 (
p0 + (1− p0)P̄[s; δ2]

)
1 ≤ t ≤ τ(δ1)

(D.16)

P̄[t; δ2] = F̂all[t] t > τ(δ1) (D.17)

Clearly P̄[t; δ2] ≤ P[t; δ2] since Blue does not use the optimal threshold τ(δ2). By definition

P[t; δ1] = F̂all[t] for t > τ(δ1), and thus by (D.17) P̄[t; δ2] = P[t; δ1] for t > τ(δ1). The final

piece is to show that P̄[t; δ2] ≥ P[t; δ1] for 1 ≤ t ≤ τ(δ1). This follows using the same logic

as the proof for Lemma 8 in Appendix D.3.1. We define P̄[t; δ2] as a weighted sum of 1 and

an expectation of a function of a geometric random variable (see (D.18)). Appendix D.3.1

contains the details for this approach.

D.3.1 Proof of Lemma 8

First let us write rewrite ŜF[t; δ] in terms of a weighted sum of expected values

ŜF[t; δ] = w(δ)× 1 + (1− w(δ))× E[g(Z(δ))] (D.18)

Where w(δ) = δp0
γ+δp0

, Z(δ) is a geometric random variable with success probability δ
δ+γ

, and

the function g(·)

g(k) =


p0 + (1− p0)F̂all[t+ k] if 1 ≤ k ≤ N − t

0 if k > N − t

Note that g(k) ≤ 1 for all k and hence E[g(Z(δ))] ≤ 1 for all δ.

By inspection of (5), F̂all[t] decreases in t and hence g(k) is non-increasing in k. If δ1 < δ2,

then Z(δ1) has first-order stochastic dominance over Z(δ2). See Chapter 1.1.2i of Deelstra

53

and Plantin (2013) for a discussion of stochastic dominance. Since g(k) is a non-increasing

function, first-order stochastic dominance implies that E[g(Z(δ2))] ≥ E[g(Z(δ1))].

For any δ1 < δ2 we have w(δ1) ≤ w(δ2) and E[g(Z(δ1))] ≤ E[g(Z(δ2))] ≤ 1. Using this

inequalities in conjunction with (D.18) yields ŜF[t; δ1] ≤ ŜF[t; δ2]. Since this holds for any

δ1 < δ2, ŜF[t; δ] is an non-decreasing function, which completes the proof.

D.4 Time-rate γ

The proof is nearly identical to the corresponding proof for α in Appendix D.1, so we just

sketch the approach here. We introduce the notation P[t; γ], S[t; γ], τ(γ), F̂all[t; γ], and

ŜF[t; γ] to explicitly connect these quantities to γ. By inspection of equation (5) F̂all[t; γ] is

a non-increasing function of γ

∂

∂γ
F̂all[t; γ] ≤ 0, ∀γ > 0, 1 ≤ t ≤ N (D.19)

To show that P[t; γ] is non-increasing in γ, we consider γ1 < γ2. We show the result by

considering two cases for the value of t. For t > max(τ(γ1), τ(γ2)), it is optimal to fight for

both γ1 and γ2. By (D.19)

P[t; γ1] = F̂all[t; γ1] ≥ F̂all[t; γ2] = P[t; γ2] ∀t > max(τ(γ1), τ(γ2)) (D.20)

Next we consider 1 < t ≤ max(τ(γ1), τ(γ2)). We argue by induction that

F[t; γ1] ≥ F[t; γ2] (D.21)

S[t; γ1] ≥ S[t; γ2], (D.22)

where F[t; γ] and S[t; γ] are defined in (3)-(4). The remainder of the proof follows the same

logic as in in Appendix D.1.

54

D.5 Risk-free hit probability p0

The proof is nearly identical to the corresponding proof for δ in Appendix D.3, so we just

sketch the approach here. We introduce the notation P[t; p0], τ(p0), and ŜF[t; p0] to explicitly

connect these quantities to p0. Note that F̂all[t] does not depend upon p0. We use the

following Lemma in our proof

Lemma 9.

∂

∂p0
ŜF[t; p0] ≥ 0, ∀p0 ∈ [0, 1), 1 ≤ t ≤ N

The proof for Lemma 9 follows the same logic as the analogous proof for Lemma 8 in

Appendix D.3.1. Because F̂all[t] does not depend upon p0, Lemma 9 implies

if ŜF[t; p
(1)
0] > F̂all[t]

then ŜF[t; p
(2)
0] > F̂all[t] for any p

(2)
0 > p

(1)
0 (D.23)

Condition (D.23) implies that τ(p0) is non-decreasing in p0 by the definition of τ in

equation (7).

To show that P[t; p0] is non-decreasing in p0, we consider p
(1)
0 < p

(2)
0 . We then proceed

using the same logic as in the proof for δ in Appendix D.3.

55

E Proof of Corollary 1: Cost if Blue Destroyed

Adding the cost C requires replacing α with α−βC in the numerator of several of the terms

in equations (2)–(6). Equation (2) becomes

V[t] =
(δ + γ) (α− βC + γV[t+ 1])

(α + β + γ) (δ + γ) + λt(γ + δp0)

+ λt
δp0 + γ δ

δ+γ

∑N
s=t+1

(
γ
δ+γ

)s−t−1
(p0 + (1− p0)V[s])

(α + β + γ) (δ + γ) + λt(γ + δp0)
.

Equation (3) becomes

V[t] = F[t] ≡ α− βC
α + β + γ

+
γ

α + β + γ
V[t+ 1]

and (4) remains unchanged except for replacing P[s] with V[s]. Theorems 1 – 3 and the proofs

and results in Appendices A – C all still hold after making these α→ α− βC substitutions.

F Proof of Proposition 5 : λ∗t,r ∈ {0,∞} for Full-Information

Risk Model

We provide the proof in Appendix F.1 and present an algorithm to compute λ∗t,r in Appendix

F.2.

F.1 Proof

We first introduce notation in Appendix F.1.1. They key to the proof is optimizing the first

risk level, P[t, 1], which we focus on in Appendix F.1.2. We tie up the loose ends for higher

risk levels in Appendix F.1.3

56

F.1.1 Notation

We first define several intermediate values to simplify notation. We separate out the s = t

term from the summation in (9) and define the remaining summation starting at t + 1 as

G[t+ 1]

G[t+ 1] =
δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t
(p0 + (1− p0)P[s, 1]) (F.1)

Note that G[t+ 1] does not depend upon the current risk level r. Using G[t+ 1], we rewrite

P[t, r] from (9) by separating out the P[t, 1] term:

P[t, r] =
αr

D(t, r)
+

γ

D(t, r)
P[t+ 1, r] +

µr
D(t, r)

P[t, r + 1] +
λt,r

D(t, r)
G[t+ 1]

+
λt,r

D(t, r)

δ

δ + γ
p0 +

λt,r
D(t, r)

δ

δ + γ
(1− p0)P[t, 1] (F.2)

We next define Q[t, r] as all the terms of P[t, r] in (F.2) except the µr and P[t, 1] terms

Q[t, r] =
αr

D(t, r)
+

γ

D(t, r)
P[t+ 1, r] +

λt,r
D(t, r)

G[t+ 1] +
λt,r

D(t, r)

δ

δ + γ
p0 (F.3)

Combining (F.2) with (F.3) results in

P[t, r] =

(
Q[t, r] +

λt,r
D(t, r)

δ

δ + γ
(1− p0)P[t, 1]

)
+

µr
D(t, r)

P[t, r + 1] (F.4)

Examining (F.2)–(F.4), we see that P[t, r] depends upon P[i, j] for i ≥ t and j ≥ r, except

for the P[t, 1] term in (F.4). Consequently if we knew P[t, 1] for all 1 ≤ t ≤ N , then we could

solve for P[t, r] and the corresponding optimal policy λ∗t,r via backward induction in both t

and r. For a fixed t, we would solve for P[t, r] working backward from r = M to r = 2, and

then we would proceed to time index t − 1 and repeat. Therefore, the key is determining

P[t, 1].

57

F.1.2 Optimizing P[t, 1]

If we iterate out F.4, we can rewrite P[t, r] only in terms of Q[t, ·] and P[t, 1]

P[t, r] =
M∑
k=r

(
k−1∏
i=r

µi
D(t, i)

)(
Q[t, k] +

λt,k
D(t, k)

δ

δ + γ
(1− p0)P[t, 1]

)
(F.5)

Substituting in r = 1 in (F.5) allows us to compute P[t, 1] as a function of the move-rates

λt,r:

P[t, 1] =

∑M
k=1

(∏k−1
i=1

µi
D(t,i)

)
Q[t, k]

1− δ
δ+γ

(1− p0)
∑M

k=1

(∏k−1
i=1

µi
D(t,i)

)
λt,k
D(t,k)

(F.6)

We can now choose the optimal move-rates λ∗t,r to maximize P[t, 1] in (F.6). P[t, 1] depends

upon Q[t, k], which is a function of the current time period t only through the decision

variables λt,r. Because we compute P[t, ·] and λ∗t,r in reverse chronological order, we can view

P[t+ 1, r] and G[t+ 1] in as (F.3) as known constants in our optimization of P[t, 1].

To show that λ∗t,r ∈ {0,∞}, we pick an arbitrary risk index r and multiply the numerator

and denominator of P[t, 1] in (F.6) by D(t, r). We then break up the summations in (F.6)

into three categories: indices less than r, indices greater than r, and the index exactly equal

to r:

P[t, 1] =
AD(t, r) + C +B

(
αr + γP[t+ 1, r] + λt,r

(
G[t+ 1] + δ

δ+γ
p0

))
ÃD(t, r)− C̃ − B̃λt,r

(F.7)

58

where

A =
r−1∑
k=1

(
k−1∏
i=1

µi
D(t, i)

)
Q[t, k]

B =

(
r−1∏
i=1

µi
D(t, i)

)

C =µr

(
r−1∏
i=1

µi
D(t, i)

)
M∑

k=r+1

(
k−1∏
i=r+1

µi
D(t, i)

)
Q[t, k]

Ã =1− δ

δ + γ
(1− p0)

r−1∑
k=1

(
k−1∏
i=1

µi
D(t, i)

)
λt,k

D(t, k)

B̃ =
δ

δ + γ
(1− p0)

(
r−1∏
i=1

µi
D(t, i)

)

C̃ =
δ

δ + γ
(1− p0)µr

(
r−1∏
i=1

µi
D(t, i)

)
M∑

k=r+1

(
k−1∏
i=r+1

µi
D(t, i)

)
λt,k

D(t, k)

Note that the constants A,B,C, Ã, B̃, C̃ do not depend upon λt,r. Of course they depend

upon λt,k for risk level k 6= r. Because D(t, r) is a linear function of λt,r (see (10)), P[t, 1] in

(F.7) is just the ratio of two linear functions of λt,r. As discussed in the proof for Proposition

1 in Appendix A, a ratio of linear functions leads to the desired λ∗t,r ∈ {0,∞}.

When computing the optimal solution λ∗t,r to maximize P[t, 1] in (F.6), the optimal solu-

tion takes the form of λ∗t,r = 0 for all 1 ≤ r ≤ m∗−1 and λ∗t,m∗ =∞ for some 1 ≤ m∗ ≤M+1.

That is Blue fights for all risk levels 1 ≤ r < m∗ and scoots at risk level m∗. If m∗ = M + 1,

Blue fights for all risk levels at time t. The values of λt,r for r > m∗ do not impact P[t, 1] as

the summation terms are 0 in (F.6) for k > m∗. If Blue uses this risk threshold policy with

risk threshold m, then (F.6) can be written as:

P[t, 1;m] =

(∏m−1
i=1

µi
αi+βi+γ+µi

)(
G[t+ 1] + δ

δ+γ
p0

)
+
∑m−1

k=1

(∏k−1
i=1

µi
αi+βi+γ+µi

)
αk+γP[t+1,k]
αk+βk+γ+µk

1− δ
δ+γ

(1− p0)
(∏m−1

i=1
µi

αi+βi+γ+µi

)
(F.8)

59

We can determine m∗ by enumeration: compute P[t, 1;m] for all 1 ≤ m ≤ M using (F.8).

As in Section 4.1, we assume that if Blue is indifferent between fighting and scooting, Blue

fights. Therefore, if there are multiple thresholds that produce the maximum P[t, 1;m], we

choose the largest threshold as m∗.

F.1.3 Optimizing P[t, 1] for r > 1

We still have two outstanding issues. One is that when determining λ∗t,r by maximizing P[t, 1]

as described in Appendix F.1.2, we only determine λ∗t,r for 1 ≤ r ≤ m∗. To determine the

λ∗t,r for r > m∗, we perform backward induction on (F.2) for both t and r. Examining (F.2),

P[t, 1] is now known and both P[t+ 1, r] and G[t+ 1] have been computed at previous time

iterations. Finally, we compute P[t, r+ 1] on the previous step as we work backward in risk.

The computation for P[t, r] in (F.2) is therefore just a weighted sum of constants, where

λt,r controls the weights. To maximize a weighted sum, we put all the weight on the largest

value; we achieve this by setting λ∗t,r ∈ {0,∞}. If Blue is indifferent, we set λ∗t,r = 0.

The above describes two methods to compute λ∗t,r. The first method maximizes P[t, 1]

by solving for m∗ using (F.8) and setting λ∗t,r = 0 for all 1 ≤ r ≤ m∗ − 1 and λ∗t,m∗ = ∞.

We can also compute λ∗t,r for 2 ≤ r ≤ M by maximizing P[t, r] via backward induction

on (F.2) as discussed in the previous paragraph. The last issue we need to resolve is to

ensure these two methods for computing λ∗t,r produce the same results for 1 ≤ r ≤ m∗.

This consistency follows from a contradiction argument. We denote λ∗t,r as the move-rates

computed to maximize P[t, 1] using risk threshold m∗. We denote λ̃t,r as the move-rates to

optimize each P[t, r] separately via backward induction on (F.2). Finally we denote P[t, r]

as the probabilities associated with λ∗t,r and P̃[t, r] as the probabilities associated with λ̃t,r.

By construction P[t, 1] ≥ P̃[t, 1] and P[t, r] ≤ P̃[t, r] for r > 1. Assume there exists some

1 ≤ j ≤ m∗ such that λ∗t,j 6= λ̃t,j, which implies P[t, j] < P̃[t, j]. By (F.2)–(F.5), we have

60

P[t, 1] =

(
j−1∏
i=1

µi
D(t, i)

)
P[t, j] +

j−1∑
k=1

(
k−1∏
i=1

µi
D(t, i)

)
Q[t, k] (F.9)

To move from (F.4) to (F.9) we use λ∗t,k = 0 for 1 ≤ k ≤ j−1 < m∗. P[t, 1] is a direct function

of P[t, j] in (F.9). Consequently, if we use move-rate λ̃t,i instead of λ∗t,i for i ≥ j, we could

replace P[t, j] in the right-hand side of (F.9) with P̃[t, j] > P[t, j]. However, this substitution

would imply that using λ̃t,i would produce a strictly greater value for P[t, 1] than using λ∗t,i,

which yields the desired contradiction. Therefore, the two methods for computing λ∗t,r are

consistent and we have addressed the remaining outstanding issue. The proof is complete:

λ∗t,r ∈ {0,∞}

F.2 Algorithm to Compute λ∗t,r

We conclude with a description for computing the optimal λ∗t,r

1. Start at time period t = N

2. Compute P[t, 1;m] for each 1 ≤ m ≤ M using (F.8) and determine m∗ such that

P[t, 1;m∗] ≥ P[t, 1;m] for each 1 ≤ m ≤ m∗ and P[t, 1;m∗] > P[t, 1;m] for each

m∗ < m ≤M

3. Set λ∗t,r = 0 for all 1 ≤ r ≤ m∗ − 1 and λ∗t,m∗ =∞

4. Define P[t, 1] = P[t, 1;m∗]

5. Start at risk level r = M

6. Compute the right-hand side of (F.2) for λt,r ∈ {0,∞} and denote λ∗t,r as the

maximizer and P[t, r] as the maximum

7. Decrement r ← r − 1

8. If r > m∗ return to step 6, otherwise proceed to step 9

61

9. Decrement t← t− 1

10. If t > 1 return to step 2, otherwise algorithm complete

To compute m∗ in Step 2 is O(M) and we have to work backward in time and risk to

compute the remaining values of λ∗t,r and P[t, r]. Therefore the complexity of the entire

algorithm is O(NM2).

G Optimal Solution for Partial-Information Setting

In Appendix G.1 we define the optimization problem to compute the optimal move-rates. We

provide numerical examples in Appendix G.2 to illustrate the properties of the optimization

problem. Appendix G.3 presents an algorithm to compute λ
(j)∗
t

G.1 Optimization Framework

First we define the analogous notation as in Appendix F.

G[t+ 1] =
δ

δ + γ

N∑
s=t+1

(
γ

δ + γ

)s−t (
p0 + (1− p0)P(s)[s, 1]

)
(G.1)

As in Appendix F, G[t+ 1] does not depend upon the risk level. G[t+ 1] also only depends

upon the win-probabilities P(j)[j, 1] for j > t. Therefore we can view G[t + 1] as a constant

from an optimization point of view as it can be calculated with terms derived from previous

iterations of our backward induction in j. Next rewrite P(j)[t, r] in terms of G[t+ 1]

P(j)[t, r] =
αr

D(j)(t, r)
+

γ

D(j)(t, r)
P(j)[t+ 1, r] +

µr
D(j)(t, r)

P(j)[t, r + 1] +
λ
(j)
t

D(j)(t, r)
G[t+ 1]

+
λ
(j)
t

D(j)(t, r)

δ

δ + γ
p0 +

λ
(j)
t

D(j)(t, r)

δ

δ + γ
(1− p0)P(t)[t, 1] (G.2)

62

Finally we define Q(j)[t, r].

Q(j)[t, r] =
αr

D(j)(t, r)
+

γ

D(j)(t, r)
P(j)[t+ 1, r] +

λ
(j)
t

D(j)(t, r)
G[t+ 1] +

λ
(j)
t

D(j)(t, r)

δ

δ + γ
p0 (G.3)

In the full-information setting in Appendix F we could assume P[t + 1, r] in (F.2) was

known as it was computed on a previous iteration of backward induction in t and had an

associated λ∗t+1,r. We cannot treat P(j)[t+ 1, r] as a known constant in (G.2)–(G.3) because

when the system transitions to state (t + 1, r), Blue knows the time t but not risk r. The

move-rate Blue uses in state (t + 1, r) is λ
(j)
t+1, which is chosen at time j, not time t + 1 like

in the full-information setting. This coupling implies we cannot perform backward induction

in t for a fixed j.

Performing the same steps as in Appendix F yields.

P(j)[t, r] =
M∑
k=r

(
k−1∏
i=r

µi
D(j)(t, i)

)(
Q(j)[t, k] +

λ
(j)
t

D(j)(t, k)

δ

δ + γ
(1− p0)P(t)[t, 1]

)
(G.4)

In the full-information setting for any state (t, r), we could choose the optimal moves

rates to maximize P[t, r]. In the partial-information setting, Blue can only choose the move-

rates after a risk-free shot because those are the only times Blue has full-information. Thus

Blue chooses λ
(j)∗
t for j ≤ t ≤ N to maximize P(j)[j, 1]. As in Appendix F we can solve for

P(j)[j, 1] from (G.4)

P(j)[j, 1] =

∑M
k=1

(∏k−1
i=1

µi
D(j)(j,i)

)
Q(j)[j, k]

1− δ
δ+γ

(1− p0)
∑M

k=1

(∏k−1
i=1

µi
D(j)(j,i)

)
λ
(j)
j

D(j)(j,k)

(G.5)

Blue solves max
λ
(j)
t for j≤t≤N P(j)[j, 1]. In the corresponding expression in (F.6) in Appendix

F there was a different λt,i for each term in the product expressions. However in (G.5) only

one move-rate, λ
(j)
j , appears in the product terms. Therefore if we multiply the numerator

and denominator of (G.5) by
∏M

i=1D
(j)(j, i), then P(j)[j, 1] transforms into the ratio of two

63

polynomials of order M in λ
(j)
j . Recall in Appendix F that P[t, 1] could be expressed as

the ratio of linear expressions for any particular λt,r, which led to the binary nature of the

optimal solution: λ∗t,r ∈ {0,∞}. Unfortunately, once our expression is a ratio of polynomials,

we no longer have the optimal solution necessarily being an extreme. The Q(j)[j, k] in the

numerator (G.5) contains G[j + 1] (see (G.3)) , which has been computed at a previous

iteration of the backward induction on j and we can view as a constant for our optimization

purposes. However, Q(j)[j, k] also contains P(j)[j + 1, r], which as discussed earlier is not

known unlike in the full-information setting. The P(j)[j + 1, r] term in Q(j)[j, k] depends

upon λ
(j)
t for t > j and causes the problem to become a multivariate optimization problem.

G.2 Numerical Illustrations

To illustrate the optimization more concretely we examine the results in the last period

(j = N) in Appendix G.2.1 and the penultimate period in in Appendix G.2.2.

G.2.1 One Period Optimization

We first consider the simplest setting where j = N and we must determine λ
(N)∗
N to maximize

P(N)[N, 1]. Since we only have one decision variable, we denote it below as merely λ for

notational convenience. In this case, substituting D(N)(N, i) from (14) and Q(N)[N, k] from

(G.3) into (G.5) yields

P(N)[N, 1] =

∑M
k=1

(∏k−1
i=1

µi
αi+βi+γ+µi+λ

)
αk+λ

δ
δ+γ

p0

αk+βk+γ+µk+λ

1− δ
δ+γ

(1− p0)
∑M

k=1

(∏k−1
i=1

µi
αi+βi+γ+µi+λ

)
λ

αk+βk+γ+µk+λ

(G.6)

Unfortunately the win-probability in (G.6) is not a concave function so we cannot derive

nice properties about the optimal λ∗. As the example in Table 9 and Figure 5 illustrates,

the win-probability in (G.6) may have a local maximum that is not a global maximum. The

optimal policy is for Blue to scoot λ =∞, which produces a win-probability of δp0
δp0+γ

= 0.6.

Risk levels r = 1 and r = 4 provide a significant firing advantage to Red and risk level r = 3

64

slightly favors Red. Blue has a significant advantage only in risk level r = 2. The worst

choice for Blue is λ ≈ 40 because while Blue only fires for a short time before moving, Blue is

likely to spend most of this time firing in risk level r = 1 which favors Red. Fighting (λ = 0)

is not a good option for Blue either as there is a nontrivial probability that the exchange will

reach risk level r = 3 or r = 4, which also favor Red. Blue has a sweet spot of λ ≈ 6, which

gives Blue a reasonable chance of reaching risk level r = 2, where Blue has the advantage,

but it is much less likely to reach the higher risk levels where Blue is at a disadvantage. All

of these options are worse, however, than Blue scooting.

R = 4 αr = (1, 10, 2, 1) βr = (5, 1, 3, 10) µr = (20, 5, 15, 0) γ = 1 δ = 10 p0 = 0.15

Table 9: Parameter values associated with Figure 5

0 20 40 60 80
0.5

0.505

0.51

0.515

0.52

W
in

 P
ro

ba
bi

lit
y

S
ta

rt
in

g
in

 R
is

k
r=

1

Figure 5: Optimal win-probability P(N)[N, 1] for parameters in Table 10

To write out P(j)[j, 1] in (G.5) explicitly for j < N is tedious. However, for fixed λ
(j)
t

it is straightforward to compute P(j)[j, 1] numerically by iterating over P(j)[t, r] in (G.2) for

t > j to calculate the Q(j)[j, k] terms in the numerator of P(j)[j, 1]. Therefore we can apply

standard numerical nonlinear optimization techniques to compute λ
(j)∗
t . We use the built-in

optimization functionality in Matlab (The MathWorks, 2016) to compute λ
(j)∗
t . As Figure 5

illustrates the problem is non-concave and may have local maximizers that are not the global

maximum. Therefore we run the optimization with 20 different initial values, but it is possible

65

our final solution will not be the global optimum. Based on our experimentation it is rare

to have situations with local maxima differing from the global, and often in those situations

suboptimal solutions are close the global maximum. Our purpose with this analysis is not

to produce a guaranteed optimal solution. We want to generate insight into the nature of

the move policy by examining near optimal policies and comparing the results with simple

heuristics.

G.2.2 Two Period Optimization

We next consider the decision in the penultimate period (j = N−1). For notational simplicity

we assume there are only two time periods (N = 2). Figure 6 illustrates a scenario with two

risk levels (M = 2); the other baseline parameters appear in Table 10. We first compute the

optimal move-rate when the risk-free shot occurs in the last period j = 2: λ
(2)∗
2 = 12.7. The

logic to optimally compute λ
(2)∗
2 follows from the discussion in Appendix G.2.1. Given this

value of λ
(2)∗
2 , we plot the Blue win-probability starting in t = 1 and r = 1 as a function of

λ
(1)
1 for three different values of λ

(1)
2 . The move-rate at time period t = 1, λ

(1)
1 , has a much

greater impact on the win-probability than the move-rate at time period t = 2, λ
(1)
2 , because

the system may not reach time period 2 before one side is destroyed or Blue moves. The

optimal solution, λ
(1)∗
1 = 32.1 and λ

(1)∗
2 = 21.7, is an intermediate solution because Blue has

the advantage in risk level r = 1 and Red has the advantage in risk level r = 2.

αr = (4, 1) βr = (1, 5) µr = (10, 0) γ = 1 δ = 8 p0 = 0.01

Table 10: Parameter values associated with Figure 6

G.3 Algorithm to Compute λ
(j)∗
t

We conclude with a description for computing the optimal λ
(j)∗
t

1. Start at time period j = N

66

0 10 20 30 40 50

1
(1)

0.35

0.4

0.45

0.5

0.55

W
in

 P
ro

ba
bi

lit
y

S
ta

rt
in

g
in

 R
is

k
r=

1
an

d
T

im
e

t=
1

2
(1)=0

2
(1)=20

2
(1)=

Figure 6: N = 1, R = 2, for three values of λ
(1)
2 . Other parameters appear in Table 10

2. Use numerical optimization techniques to determine λ
(j)∗
t to maximize P(j)[j, 1] in

(G.5) for j ≤ t ≤ N .

3. Given λ
(s)∗
t and P(s)[s, 1] for all j ≤ s ≤ N , compute P(j)[t, r] for all j ≤ t ≤ N

and 1 ≤ r ≤M using (G.2)

4. Decrement j ← j − 1

5. If j > 1 return to step 2, otherwise algorithm complete

H Description of Simulation Model

We provide a detailed description of the simulation in Section H.1. Section H.2 contains a

list of all the parameters of the simulation model and their corresponding distributions.

H.1 Overview

At a high level, the simulation model is very similar to the risk models in Sections 5–6. One

key addition is the inclusion of both Blue and Red health, which corresponds to the number

of hits until either side is destroyed. For concreteness we assume one level of Blue health

corresponds to one Blue cannon and one unit of Red health corresponds to one Red target

67

(e.g., refinery, bridge, logistics center). Blue must destroy Red before the time-window closes.

In the simulation model the length of the time-window is deterministic. After Blue moves

to a new location, there is a risk-free period where Blue prepares for its risk-free shot. After

the risk-free shot Red and Blue engage in risky-fire where both sides simultaneously shoot

at each. Risk increases as Blue stays in the same location, which corresponds to increased

firing accuracy for both Blue and Red. In the simulation model, we now connect risk more

directly to the shots fired by each side. After a Blue shot, Red increases its firing accuracy

because it better knows Blue’s location (e.g., because of counter-battery radar). However,

Blue’s accuracy also increases after it observes the results of its own shot and recalibrates

the cannon based on potential drift errors. Blue’s accuracy does not improve after a Red

shot because Red artillery fires from a different location than the Red target The time to

incorporate the intelligence associated with each shot, which increases firing accuracy, is a

uniform random variable. Eventually Blue moves to a new location and the process repeats.

The main additions the simulation model has over the risk models in Sections 5–6 are:

1. Requiring multiple hits to destroy either Red or Blue by tracking Blue and Red health

2. Non-exponential distributions

3. More explicitly connecting risk to improved accuracy from incorporating intelligence

about shots fired

The following subsections provide additional detail.

H.1.1 Risk-free Firing

Immediately after moving to a new location, Blue sets up to fire its risk-free shot. The time

to fire the risk-free shot is a uniform random variable. The risk-free shot can potentially

hit multiple Red targets, which reduces Red’s health by more than one level, unlike in the

Sections 5–6. This is reasonable if the Blue health corresponds to the number of Blue cannons.

After a move, Blue will fire all of its available cannons simultaneously during the risk-free

68

shot, and thus it is possible Blue will hit multiple Red targets with this risk-free volley. We

model the number of Red targets hit with the risk-free shot as a discrete random variable

that depends upon the current health of Red and Blue and the firing accuracy of Blue on

its risk-free shot. See Section H.2.1 for more details on the distribution for number of Red

targets hit on the Blue risk-free shot.

Immediately after the risk-free shot, the battle enters the risky stage (see Section H.1.2),

where both Red and Blue fire at each other. Red and Blue now track the shots fired by

each side, because that improves future firing accuracy. We count the risk-free shot as just

one Blue shot even though multiple cannons might shoot at the same time. We generate

a uniform random variable for Blue (Red) to determine when Blue (Red) incorporates the

intelligence from the risk-free shot into future shots.

We do not allow Red to detect Blue while Blue is setting up for a risk-free shot immediately

after Blue arrives to a new location, although that would be straightforward to incorporate.

H.1.2 Risky Firing

In this stage Blue and Red repeatedly fire at each other. Unlike for the risk-free shot in Section

H.1.1, during risky-fire each Blue (Red) shot can only decrease Red’s (Blue’s) health by one

level. After each Blue (Red) shot, we generate a uniform random variable for the time until

the next Blue (Red) shot. Red’s accuracy improves as it observes and processes shots from

either side. For example adjusting aim based on the results of a previous Red shot or better

pinpointing Blue’s location after processing a radar signal from a Blue shot. Blue’s accuracy

only improves as it processes its own shots because Red artillery is located at a different

location than the Red targets. After each shot we generate a uniform random variable for

each side that corresponds to the time when that side incorporates the information from the

shot into their firing calculus. The accuracy of Blue (Red) depends upon how many shots by

each side Blue (Red) has processed. For simplicity we assume that Blue (Red) incorporates

at most 3 shots from each side into its fire system. Even though both sides know how

69

many shots have been fired, Blue does not know how many shots Red has processed. This

corresponds to the partial risk setting in Section 6 where Blue does not know the exact risk

level. Blue and Red continue firing and incorporating the corresponding information into

their situational awareness picture until either (1) one side is destroyed, (2) the time-window

closes, or (3) Blue moves to a new location.

During this stage, Blue is constantly evaluating when it should move. This depends not

just on the time, but also the situation on the battlefield: Blue’s health and the number of

shots fired by both Blue and Red. We provide more details on the move logic in Section

H.1.3. When Blue decides to move, we generate a uniform random variable for the travel

time and transition into the risk-free period (see Section H.1.1). The risk and situational

awareness reset to the lowest levels after a move.

H.1.3 Move Decision

Blue accounts for five factors when determining when it should move: Blue health, Blue shots

fired, Red shots fired, current time, time spent in risky-fire at current location. We discretize

the current time and risky time into discrete bins; tbin and tbinrisky correspond to discrete levels

for those factors. This allows us to only define a finite number of combinations for the move

decision. We define the threshold τ(hB, sB, sR, t
bin, tbinrisky) that specifies when Blue should

move. The variables hB, sB, sR correspond to Blue health, number of Blue shots fired, and

number of Red shots fired, respectively. If the current time t < τ(hB, sB, sR, t
bin, tbinrisky) then

Blue should remain and fire, otherwise Blue should move. Each time one of those five factors

change during the risky-fire, Blue checks the updated τ to determine whether Blue should

move. Immediately after firing the risk free shot, Blue checks the threshold τ(hB, 1, 0, t
bin, 1),

which only varies with Blue health hB and current time level tbin.

For a known threshold function τ(hB, sB, sR, t
bin, tbinrisky), we run the simulation and com-

pute Blue’s win-probability. To optimize τ(hB, sB, sR, t
bin, tbinrisky), we use a genetic algorithm

approach. Due to the randomness of the simulation output and the large number of τ com-

70

binations, the genetic algorithm is slow and provides no guarantees on the optimality gap of

the solution generated.

H.2 Simulation Parameters

We now define all the parameters and their corresponding probability distributions where

appropriate. We generate 750 scenarios and for each scenario we compute the win-probability

by simulating the battle 10000 times. We optimize the move decision and also compute the

win-probability against several heuristic. For each scenario there are many parameters that

are randomly generated before running the scenario, and then those parameters are fixed

for the duration of the scenario. These include the initial health of Blue and Red and the

probability Blue or Red hits the other with a risky shot. We describe these parameters in

Section H.2.1. Within a particular scenario, we randomly generate several values many times

during the duration of the battle. These include the time for Blue to move locations, and the

time until the next Red shot during risky-fire. We define these random variables in Section

H.2.2

H.2.1 Scenario Input Parameters

Table 11 lists all the parameters. Most of the distributions for the paramters are uniforms,

which we denote U [a, b]. We describe a few parameters in more detail below the table.

71

Description Distribution

Max number of Blue shots used to improve firing accuracy U [1, 3], integer

Max number of Red shots used to improve firing accuracy U [1, 3], integer

Initial Blue health U [4, 6], integer

Initial Red health U [4, 6], integer

Time window U [30, 240] minutes

TravL: lower bound on Blue travel U [2, 12] minutes

TravU : upper bound on Blue travel TravL + U [0, 20] minutes

RiskFreeBlueL: lower bound on time until Blue U [1, 6] minutes

fires risk-free shot after arriving to new location

RiskFreeBlueU : upper bound on time until Blue RiskFreeBlueL + U [0, 5] min

fires risk-free shot after arriving to new location

RiskyBlueL: lower bound on Blue interfire time during risky-fire U [0.2, 3.2] minutes

RiskyBlueU : upper bound on Blue interfire time during risky-fire RiskyBlueL + U [0, 3] minutes

RiskyRedL: lower bound on Red interfire time during risky-fire U [0.1, 2] minutes

RiskyRedU : upper bound on Red interfire time during risky-fire RiskyRedL + U [0, 2] minutes

BlueProcL: lower bound on how long it takes Blue to U [0.5, 3.5] minutes

process a shot and improve its firing accuracy

BlueProcU : upper bound on how long it takes Blue to BlueProcL + U [0, 5] minutes

process a shot and improve its firing accuracy

RedProcL: lower bound on how long it takes Red to U [0.5, 3.5] minutes

process a shot improve its firing accuracy

RedProcU : upper bound on how long it takes Red to RedProcL + U [0, 5] minutes

process a shot and improve its firing accuracy

Distribution for number of Red targets hit by Blue risk-free shot see below explanation

Probability Blue hits Red during risky-fire see below explanation

Probability Red hits Blue during risky-fire see below explanation

Table 11: Inputs for each Scenario of the Simulation Model

We now provide more detail on the three parameters at the bottom of the Table 11.

Number of Red Targets Hit By Risk-Free Shot

After moving positions, Blue simultaneously fires all of its cannons. During risky-fire, Blue

fires one shot at a time as each cannon will have random perturbations in its actual firing

72

time. Thus during risky-fire, each Blue shot can hit at most one Red target (i.e., decrease

Red health by 1). However, Blue’s risk-free volley can hit multiple targets. If we denote hB

and hR as Blue and Red health remaining, then the maximum number of Red targets hit on

a risk-free volley is min(hB, hR) because each Blue cannon can hit at most one Red target.

If we define maxHB as the starting Blue health (3rd parameter listed in Table 11) , and

maxHB as the starting Red health (4th parameter listed in Table 11), then the probability

distribution for the number of Red targets hit on a risk-free shot is

P[k Red targets hit on risk-free volley ;hB, hR]

= a× bmaxHB−hB × cmaxHR−hR × dk−1, 1 ≤ k ≤ min(hB, hR) (H.7)

For a, b, c, d ∈ [0, 1]. We define the probability that k = 0 Red targets are hit on the risk-free

shot to normalize the probability distribution to 1. If both Blue and Red are at the maximum

health, then the probability that Blue hits exactly 1 Red target equals a. As Blue health

decrements, this hit probability degrades by factor b, as there are fewer cannons available

to fire at Red. Similarly as Red health decrements the probability degrades by c as there

are fewer targets that a round might hit. This is consistent with the area fire nature of

artillery. Finally the dk−1 term gives a geometric flavor to the distribution: the probability

monotonically decreases from k = 1 to k = min(hB, hR). For the simulation, we generate

a, b, c, d as follows

a ∼ U [0.5, 0.4] b ∼ U [0.3, 0.95] c ∼ U [0.3, 0.95] d ∼ U [0.5, 0.45]

Probability One Risky Blue Shot Hits Red

During risky-fire the probability one Blue shot hits Red depends upon the number of Blue

shots fired since Blue arrived to the current location that Blue has processed into its firing

system. This includes the risk-free shot. We denote the quantity of Blue shots processed

73

by Blue as s
(B)
B . Blue improves its aim based on feedback from forward observers about the

results of earlier Blue shots. Because Red artillery is firing from a different location than

the desired Red target, the number of Red shots fired does not improve Blue’s accuracy for

aiming at Red targets. If we denote maxSB as the maximum number of Blue shots that Blue

can incorporate before reaching its maximum situational awareness (1st parameter listed in

Table 11), then

P[Blue hits Red with risky shot; s
(B)
B] = e+

∑s
(B)
B
i=1

1
i∑maxSB

i=1
1
i

(f − e) (H.8)

For f, e ∈ [0, 1]. e represents the probability of hitting Red without any situational awareness:

s
(B)
B = 0. f represents the hit probability at maximum situational awareness s

(B)
B = maxSB.

The inverse weighting formulation in (H.8) provides a decreasing marginal impact of shots.

For example if maxSB is 2, then the first shot provides 2
3

of the improvement from e to f ,

and the second shot provides the remaining 1
3

increase. We generate e, f as follows

e = a
maxHR−1∑

i=0

di f ∼ U [0.5, 1]

Where a and d are defined above in (H.7). In this case e corresponds to the probability Blue

hits at least one Red target during the risk-free shot when both Blue and Red are at their

maximum health levels. If f < e, then we continue generating f until f > e.

Probability One Risky Red Shot Hits Blue

The probability that Red hits Blue with a risky shot follows similar logic, however Red

incorporates both Red shots and Blue shots into its situational awareness. Observing Blue

shots via radar can help Red pinpoint Blue’s location. Observing the results from Red’s

earlier shots (e.g., from a forward observer or surveillance UAV) allows Red to adjust its

aim to improve accuracy. In this case we denote s
(R)
B as the number of Blue shots processed

by Red, s
(R)
R as the number of Blue shots processed by Red, and maxSR as the maximum

74

number of Red shots required to reach its maximum situational awareness (2nd parameter

listed in Table 11). We assume that Red also uses maxSB for the number of Blue shots to

reach Red’s maximum situational awareness. The parameter wB represents a weighting for

how much emphasis Red puts on Blue shots relative to Red shots. For example a wB near 1

might occurs if Red’s radar system to track Blue shots is very accurate relative to the human

observer tracking Red shots. Our final hit probability is a generalization of (H.8)

P[Blue hits Red with risky shot; s
(R)
B , s

(R)
R]

= g +

wB ∑s
(R)
B
i=1

1
i∑maxSB

i=1
1
i

+ (1− wB)

∑s
(R)
R
i=1

1
i∑maxSR

i=1
1
i

 (h− g) (H.9)

g represents the probability of hitting Red without any situational awareness: s
(R)
B , s

(R)
R = 0.

h represents the hit probability at maximum situational awareness s
(R)
B = maxSB, s

(R)
R =

maxSR. Equation (H.9) has a similar decreasing marginal impact of shots as (H.8), but

(H.9) has to track two variables. The relevant parameters have the following distributions

g = (0.5 + U [0, 1])e h ∼ U [0.5, 1] wB ∼ U [0, 1]

Where e is defined above in (H.8). If h < g, then we continue generating h and g until h > g.

H.2.2 Random Variables within a Scenario

Many of the random variables listed in Table 12 depend upon the input parameters from

Table 11.

Note the difference between the interfire time of Blue during risky-fire (3rd random vari-

able listed in Table 12) and Red’s interfire time (4th random variable listed in Table 12).

Recall from Section H.2.1 that hB represents the current health (i.e., remaining cannons) of

Blue. For larger values of hB the overall fire rate should be greater because there are more

functional cannons; consequently why Blue’s interfire time depends inversely on hB. Because

75

Description Distribution

Time for Blue to travel to new location after move U [TravL, T ravU]

Time until Blue fires risk-free shot after arriving U [RiskFreeBlueL, RiskFreeBlueU]

to a new location

Time between Blue shots during risky-fire U
[
RiskyBlueL

hB
, RiskyBlueU

hB

]
Time between Red shots during risky-fire U [RiskyRedL, RiskyRedU]

Time until Blue processes last Blue shot and U [BlueProcL, BlueProcU]

improves firing accuracy

Time until Red processes last Blue or Red shot and U [RedProcL, RedProcU]

improves firing accuracy

Table 12: Random Variables Generated during One Scenario

Red artillery is not subject to attrition, Red’s interfire time distribution does not vary over

the course of the battle. When the processing times complete (5th and 6th random variables

listed in Table 12) then the appropriate value of s
(B)
B , s

(R)
B , s

(R)
R increments (these variables

are defined in Section H.2.1)

I Deterministic Window of Opportunity

We now derive the optimal policy when Blue faces a deterministic time-window. As the proof

is extremely long and the result is a natural generalization of the main results in Section 4, we

place the analysis here in the Appendix. As we make limiting arguments in this Appendix,

we use n (rather than N) to represent the number of periods. If we denote the time-window

as Wn when we have n periods, then Wn ∼ Gamma(n, γ). To avoid having to consider

unrealistic edge cases in our analysis, we assume the input rate parameters are positive,

α, β, γ, δ > 0, and the risk-free probability p0 ∈ (0, 1). Furthermore in this Appendix we use

the variables s, t to represent continuous time and the integers i, j to denote discrete time

periods.

In this Appendix we define γ = n
T

and examine the limiting behavior of Wn and the

corresponding optimal move policy for n → ∞. In this situation, E[Wn] = T for all n and

76

Var[Wn] = T 2

n
. We prove that Wn → T almost surely and derive the following optimal policy

for the special case where the time-window is deterministic.

Proposition 6. If the length of the window of opportunity is almost surely the constant T ,

the optimal policy for Blue is as follows

1. If δp0 ≥ α, Blue should scoot for all 0 ≤ t ≤ T ,

2. If condition (I.1) holds, Blue should fight for all 0 ≤ t ≤ T

δp0 − (α + βp0)

δ − (α + β)
(1− exp(−δT)) ≤ α

α + β

δp0 − (α + β)

δ − (α + β)
(1− exp (−(α + β)T)) (I.1)

3. If the conditions in cases 1–2 do not hold, then Blue should scoot for 0 ≤ t ≤ x∗T and

fight for x∗T < t ≤ T for the unique x∗ ∈ (0, 1) that satisfies

δp0 − (α + βp0)

δp0 − (α + β)
(1− exp(−δT (1− x∗))) =

α

α + β
(1− exp (−(α + β)T (1− x∗)))

(I.2)

The proof appears below. We derive the expressions in equation (I.2) based on the limits

of ŜF[i] from (6) and F̂all[i] from (5).

Proof of Proposition 6: Threshold for Deterministic Time-window

Wn denotes the time-window, where Wn ∼ Gamma(n, n
T

). The proof is a fairly long and

tedious exercise in real analysis to ensure that the limiting arguments are rigorous. We

present several Lemmas in this section to highlight the key components of the proof. The

technical details appear in later subsections. Our first Lemma specifies that examining the

limiting behavior of Wn is equivalent to a deterministic time-window

Lemma 10. Wn → T almost surely.

77

The proof of Lemma 10 appears in Appendix I.1.

We use τn from (7) to denote the threshold’s dependence on the parameter n. We also

define the normalized threshold xn = τn
n

. Blue switches from scooting to fighting at the end

of period τn (equivalently the beginning of period τn+1), which is a deterministic integer. We

can view this decision point instead as a random time Vn ∼ Gamma(τn,
n
T

): Blue switches

from scooting to fighting at time Vn. In the special case where Blue always fights, we redefine

τn from −∞ (see (7)) to τn = 0. This allows us to treat τn + 1 as a threshold from either

perspective: Blue scoots for the last time in period τn or Blue fights for the first time in

period τn + 1. When τn = 0 then xn = 0; that is Blue starts fighting immediately.

The remainder of our steps focus on showing that xn → x∗, where x∗ is the optimal thresh-

old defined in Proposition 6. Once we have shown this convergence, then Blue’s switching

time Vn converges to the deterministic value in Proposition 6 by the next Lemma.

Lemma 11. If xn converges to some value x̃, then Vn → x̃T almost surely.

The proof of Lemma 11 appears in Appendix I.2.

We first prove case 1 of Proposition 6, which dictates when Blue should always scoot

Lemma 12. If δp0 ≥ α, xn → 1 and Blue scoots for all 0 ≤ t ≤ T .

The proof of Lemma 12 appears in Appendix I.3. For the remainder of this section we

assume δp0 < α

To show that xn → x∗, we first generalize F̂all[i] from (5) and ŜF[i] from (6) so that

they are functions of all real values x ∈ [0, 1], rather than integers 1 ≤ i ≤ n. We denote

these generalized functions as F̂all[x;n] and ŜF[x;n]. We introduce an intermediate term

i(x;n) = dxne, so that for any n, F̂all[x;n] and ŜF[x;n] are well defined for all x ∈ [0, 1]

F̂all[x;n] ≡ α

α+ β

(
1−

(n
T

α+ β + n
T

)n−i(x;n)+1
)

(I.3)

ŜF[x;n] ≡ δp0
n
T + δp0

+
n
T

n
T + δp0

δ

δ + n
T

n∑
j=i(x;n)+1

(n
T

δ + n
T

)j−i(x;n)−1(
p0 + (1− p0)F̂all[

j

n
;n]

)
(I.4)

78

The expressions in (I.2) are related to the limits of ŜF[x;n] of F̂all[x;n]. We present the

limits for ŜF[x;n] and F̂all[x;n], respectively, below.

w(x) ≡ δp0 − (α + βp0)

δ − (α + β)
(1− exp(−δT (1− x)))

+

(
1− δp0 − (α + β)

δ − (α + β)

)
α

α + β
(1− exp(−(α + β)T (1− x))) (I.5)

z(x) ≡ α

α + β
(1− exp (−(α + β)T (1− x))) (I.6)

The left-hand side of (I.2) corresponds to the first line of w(x) in (I.5) (up to a constant

factor). The right-hand side of (I.2) corresponds to the difference between z(x) in (I.6) and

the second line of w(x) in (I.5) (up to a constant factor). In the discrete setting, we determine

the last period where ŜF[i] exceeds F̂all[i]. We consider essentially the same relationship in

the limiting case in this Appendix: when does w(x) last exceed z(x)?

Our next Lemma formalizes the limiting relationship between ŜF[x;n] (F̂all[x;n]) and

w(x) (z(x)):

Lemma 13. ŜF[·;n] converges uniformly to w(·) on the interval [0, 1] and F̂all[·;n] converges

uniformly to z(·) on the interval [0, 1].

The proof of Lemma 13 appears in Appendix I.4. Lemma 13 is a crucial piece that allows

us to transform our arguments in the discrete setting to continuous time via limits.

The following two Lemmas present dominance relationships between ŜF[x;n] (w(x)) and

F̂all[x;n] (z(x))

Lemma 14. If ŜF[x;n] > F̂all[x;n], then ŜF[y;n] > F̂all[y;n] for all 0 ≤ y ≤ x

Lemma 15. If w(x) > z(x) for some x ∈ [0, 1), then w(y) > z(y) for all 0 ≤ y ≤ x

The proof of Lemma 14 appears in Appendix I.5, and the proof of Lemma 15 appears in

Appendix I.6. These two Lemmas allow us to consider at most one crossover point between

ŜF[x;n] (w(x)) and F̂all[x;n] (z(x)).

79

Combining uniform convergence in Lemma 13 with the ordering results in Lemma 14–15

produces the final two cases in Proposition 6:

Lemma 16. If condition (I.1) holds, Blue should fight for all 0 ≤ t ≤ T

Lemma 17. If δp0 ≤ α and condition (I.1) does not hold, then Blue should scoot for 0 ≤

t ≤ x∗T and fight for x∗T < t ≤ T for the unique x∗ ∈ (0, 1) that satisfies w(x∗) = z(x∗)

The proof for Lemma 16 appears in Appendix I.7, and the proof for Lemma 17 appears

in Appendix I.8.

I.1 Proof of Lemma 10 : Wn → T

We use Borel-Cantelli machinery to prove this Lemma . If we can show that

lim
n→∞

n∑
i=1

P[|Wi − T | > ε] <∞ ∀ε > 0, (I.7)

then by Borel-Cantelli , Wn converges to T almost surely. We use the generalized Chebyshev

inequality :

P[|Wi − T | > ε] ≤ E[(Wi − T)4]

ε4
(I.8)

Wi is an Gamma random variable with mean E[Wi] = T , variance Var[Wi] = T 2

i
and kurtosis

E[(Wi − T)4]

(Var[Wi])2
=

6

i
+ 3 (I.9)

Combining (I.8) and (I.9) produces

P[|Wi − T | > ε] ≤ E[(Wi − T)4]

ε4
=
T 4

ε4

(
6

i3
+

3

i2

)
(I.10)

Substituting (I.10) into the left-hand side of (I.7), we see the infinite sum is finite because

P[|Wi − T | > ε] scales ∼ i−2. This completes the proof.

80

I.2 Proof of Lemma 11 : Vn → x̃T

We only have to make one slight tweak from the proof in Appendix I.1. In Appendix I.1,

E[Wn] = T does not depend upon n, but here E[Vn] = xnT does. Therefore we modify the

Chebyshev inequality in (I.8)

P[|Vi − x̃T | > ε] ≤ P[|Vi − xiT |+ T |xi − x̃| > ε] = P[|Vi − xiT | > ε− T |xi − x̃|] (I.11)

Since xi → x̃, there exists some N such that for i > N , T |xi − x̃| < ε
2
. This relationship

implies that

P[|Vi − x̃T | > ε] ≤ P[|Vi − xiT | >
ε

2
], for i > N (I.12)

At this point, the same logic applies as in Appendix I.1: we combine Chebyshev with the

variance and kurtosis of Vi to show that the right-hand side of (I.12) scales ∼ i−2 for large i.

I.3 Proof of Lemma 12: Blue Always Scoots if δp0 ≥ α

We start with the strict inequality δp0 > α:

δp0
n

T
> α

n

T

→ δp0β + δp0
n

T
> α

n

T

→ δp0α + δp0β + δp0
n

T
> α

n

T
+ δp0α

→ δp0
n
T

+ δp0
>

α

α + β + n
T

(I.13)

Recall that we define γn = n
T

, so condition (I.13) implies that Blue should scoot for all periods

for any fixed n (see condition (C.1)). That is τn = n for all n and hence xn = 1 for all n.

Therefore by Lemma 11, Blue scoots for all 0 ≤ t ≤ T . The same logic applies if δp0 = α

and β > 0 as the second step above produces a strict inequality. By assumption β > 0, so

81

(I.13) holds for all δp0 ≥ α and the proof is complete.

I.4 Proof of Lemma 13: Uniform convergence of F̂all[x;n] ŜF[x;n]

We present the results in two separate subsections.

I.4.1 F̂all[x;n]

Recall the definition i(x;n) = dxne, where i(x;n) appears in (I.3)–(I.4). By construction

−1 ≤ nx− i(x;n) ≤ 0. Furthermore, we define

κ(x;n) =
nx− i(x;n) + 1

n
≤ 1

n
, (I.14)

and rewrite (I.3) as

F̂all[x;n] =
α

α + β

(
1−

(
1− α + β

α + β + n
T

)n(1−x+κ(x;n)))
. (I.15)

By construction κ(x;n) → 0 (see (I.14)). Comparing (I.15) to the desired limit in (I.6),

to complete the proof it suffices to show f(·;n)
unif→ r(·), where

f(x;n) =

(
1− α + β

α + β + n
T

)n(1−x+κ(x;n))
(I.16)

r(x) ≡ exp (−(α + β)T (1− x)) (I.17)

For notational convenience we define

h(n) =
α + β

α + β + n
T

(I.18)

g(x;n) = n(1− x+ κ(x;n)). (I.19)

Thus we want to uniformly bound f(x;n) = (1− h(n))g(x;n) against r(x).

82

The following steps are adapted from RRL (2015). To show uniform convergence we first

note the following inequalities for any y ∈ [0, 1]

(1 + y) ≤ ey (I.20)

(1− y) ≤ e−y (I.21)

Conditions (I.20)–(I.21) follow by inspection of the Taylor series expansion of the exponential.

From (I.18), h(n) < 1 and hence condition (I.21) implies

0 ≤ e−h(n)g(x;n) − f(x;n) = e−h(n)g(x;n) − (1− h(n))g(x;n)

= e−h(n)g(x;n)
(
1− (1− h(n))g(x;n)eh(n)g(x;n)

)
(I.22)

Combining (I.20) and (I.22) produces

0 ≤ e−h(n)g(x;n) − f(x;n) ≤ e−h(n)g(x;n)
(
1− (1− h(n))g(x;n)(1 + h(n))g(x;n)

)
= e−h(n)g(x;n)

(
1− (1− h2(n))g(x;n)

)
(I.23)

By Bernoulli’s inequality (Weisstein, 2018), (I.23) implies

0 ≤ e−h(n)g(x;n) − f(x;n) ≤ e−h(n)g(x;n)g(x;n)h2(n) ≤ g(0;n)h2(n) ≤ 2n

(
α + β

α + β + n
T

)2

(I.24)

Where we have used the fact that g(x;n) achieves its maximum value n at x = 0 (see I.19).

The bound in (I.24) goes to 0 uniformly in x ∈ [0, 1].

To complete the proof

|r(x)− f(x;n)| ≤ |r(x)− e−h(n)g(x;n)|+ |e−h(n)g(x;n) − f(x;n)| (I.25)

83

The second term on the right-hand side of (I.25) is uniformly bounded by (I.24). We next

turn to the first term. By the mean value theorem

|r(x)− e−h(n)g(x;n)| ≤ |(α + β)T (1− x)− h(n)g(x;n)|

≤ (α + β)T

∣∣∣∣∣1− 1

1 + T
n

(α + β)

∣∣∣∣∣+
α + β

α + β + n
T

(I.26)

Therefore |r(x)− e−h(n)g(x;n)| uniformly converges to 0 over x ∈ [0, 1] and and so does |r(x)−

f(x;n)| in (I.25), which completes the proof.

I.4.2 ŜF[x;n]

w(x) in (I.5) is equivalent to

w(x) ≡
∫ 1

x
δT exp(−δT (y − x))

(
p0 + (1− p0)

α

α+ β
(1− exp (−(α+ β)T (1− y)))

)
dy (I.27)

In this section we show that ŜF[·;n] uniformly converges to the w(·) representation in

(I.27).

Comparing w(x) in (I.27) to ŜF[x;n] (I.4), we see that to prove ŜF[·;n]
unif→ w(·) it is

sufficient to prove

1

n

n∑
j=i(x;n)+1

u

(
j

n
, ·;n

)
unif→

∫ 1

·
v(y, ·)dy (I.28)

where

u(y, x;n) ≡
(

1− δ

δ + n
T

)n(y−x+κ̃(x,y;n)) (
p0 + (1− p0)F̂all[y;n]

)
(I.29)

v(y, x) ≡ exp(−δT (y − x))

(
p0 + (1− p0)

α

α + β
(1− exp (−(α + β)T (1− y)))

)
, (I.30)

and in (I.29) we introduce notation j(y;n) and κ̃(x, y;n) similar to i(x;n) and κ(x;n) from

84

Appendix I.4.1

j(y;n) = dyne (I.31)

κ̃(x, y;n) =
nx− i(x;n)− (ny − j(y;n))− 1

n
, (I.32)

and by inspection − 2
n
≤ κ̃(x, y;n) ≤ 0.

We now argue u (·, ·;n)
unif→ v(·, ·) for x ∈ [0, 1] and y ∈ [x, 1]. Both u (y, x;n) and v(y, x)

are products of two exponential terms. Examining the second terms in each, we have

p0 + (1− p0)F̂all[y;n]
unif→

(
p0 + (1− p0)

α

α + β
(1− exp (−(α + β)T (1− y)))

)
, (I.33)

which follows immediately from Appendix I.4.1. Since the first terms of u (y, x;n) and v(y, x)

are exponential functions, we can use the same logic as in Appendix I.4.1 to show

(
1− δ

δ + n
T

)n(y−x+κ̃(x,y;n))
unif→ exp(−δT (y − x)), (I.34)

Unlike in (I.33), (I.34) depends upon both x and y. Consequently, we have to be careful

extending our arguments from Appendix I.4.1, where we only showed uniform convergence of

a one-dimensional function. The κ̃(x, y;n) term is uniformly bounded (see discussoin below

(I.32)), thus it will uniformly go to zero and we can ignore it for this analysis. The variables

x and y only appear as y − x, and that difference is bounded between 0 and 1 in our region

of interest: x ∈ [0, 1] and y ∈ [x, 1]. Therefore we can apply our one-dimensional result from

Appendix I.4.1 on y − x to get condition (I.34)

Because the exponential functions in (I.33) and (I.34) are bounded between 0 and 1, the

convergence conditions in (I.33) and (I.34) imply that the products also uniformly converge

for x ∈ [0, 1] and y ∈ [x, 1]: u (·, ·;n)
unif→ v(·, ·).

85

We next bound

∣∣∣∣∣u(y, x;n)

n
−
∫ y

y− 1
n

v(z, x)dz

∣∣∣∣∣ (I.35)

To start, for any ε > 0 we can find N1 such that

|u(y, x;n)− v(y, x)| < ε

2
∀n > N1, x ∈ [0, 1], y ∈ [x, 1] (I.36)

Such an N1 exists by uniform convergence of u(·, ·;n) to v(·, ·). We next can find an N2 such

that

|v(y, x)− v(y1, x)| < ε

2
if |y − y1| <

1

N2

∀x ∈ [0, 1], y ∈ [x, 1] (I.37)

This follows by the uniform continuity of v(y, x) over x ∈ [0, 1], y ∈ [x, 1]. v(y, x) is uniformly

continuous because it is the product of two exponential functions, each of which is bounded

between 0 and 1 in our region of interest. It is straightforward to show an exponential

function is uniformly continuous by a mean value theorem argument (see discussion around

(I.26)).

If we define N∗ = max(N1, N2), then

∣∣∣∣∣u(y, x;n)

n
−
∫ y

y− 1
n

v(z, x)dz

∣∣∣∣∣ ≤
∣∣∣∣u(y, x;n)

n
− v(y, x)

n

∣∣∣∣+

∣∣∣∣∣v(y, x)

n
−
∫ y

y− 1
n

v(z, x)dz

∣∣∣∣∣
≤ ε

2n
+

ε

2n
∀n > N∗, x ∈ [0, 1], y ∈ [x, 1] (I.38)

The first term in (I.38) follows from (I.36) and the second term follows from (I.37).

Condition (I.38) allows us to make a triangle inequality argument to show (I.28):

∣∣∣∣∣∣ 1n
n∑

j=i(x;n)+1

u

(
j

n
, x;n

)
−
∫ 1

x

v(y, x)dy

∣∣∣∣∣∣ ≤ ε ∀n > N∗, x ∈ [0, 1] (I.39)

86

I.5 Proof of Lemma 14: ŜF[x;n] > F̂all[x;n] implies ŜF[y;n] > F̂all[y;n]

for y ∈ [0, x]

By Lemma 12 we only need to consider the δp0 < α cases. If δp0 < α, then there exists an

N∗ such that

δp0
n
T

+ δp0
≤ α

α + β + n
T

∀n > N∗ (I.40)

Condition (I.40) implies τn < n for all n > N∗ (see (C.5)). For the remainder of this section

we assume n > N∗ and thus condition (I.40) holds and τn < n.

Because we focus on a specific fixed value of n, we drop the notational dependence on n

and use integers i and j instead of real values x and y. We also use γ as our time rate rather

than T/n. We now proceed to show

ŜF[i] > F̂all[i]→ ŜF[j] > F̂all[j] ∀1 ≤ j ≤ i (I.41)

We first consider τ = 0 or τ = 1 (that is Blue always fights, or only scoots in the first

period). In these two cases condition (I.41) holds trivially. For τ > 1, we rewrite F̂all[i] and

ŜF[i] from (5) and (6)

ŜF[i] =
δp0

γ + δp0
+

γ

γ + δp0

(
γ + δp0
γ + δ

ŜF[i+ 1] +
δ(1− p0)
γ + δ

F̂all[i+ 1]

)
(I.42)

F̂all[i] =
α

α + β + γ
+

γ

α + β + γ
F̂all[i+ 1] (I.43)

We next move to the general 1 < τ < n case; recall we do not need to consider the τ = n

case (Blue always scoots), as Lemma 12 accounts for this special case.

The steps to show (I.41) are similar to the step in Appendix C.2 to prove Lemma 2.

87

Based on definition of τ , we have

ŜF[τ] > F̂all[τ] (I.44)

ŜF[τ + 1] ≤ F̂all[τ + 1] (I.45)

Substituting i = τ into (I.42) and using condition (I.45) produces

ŜF[τ] ≤ δp0
γ + δp0

+
γ

γ + δp0
F̂all[τ + 1] (I.46)

Combining (I.46) and (I.44) yields

F̂all[τ] < ŜF[τ] ≤ δp0
γ + δp0

+
γ

γ + δp0
F̂all[τ + 1] (I.47)

→ α

α + β + γ
+

γ

α + β + γ
F̂all[τ + 1] <

δp0
γ + δp0

+
γ

γ + δp0
F̂all[τ + 1], (I.48)

where (I.48) follows by substituting (I.43) into (I.47). Condition (I.48) is just comparison of

two linear functions.

Because we assume τ < n condition (C.5) holds which implies the intercept on the left-

hand side of (I.48) is larger than the intercept on the right-hand side and the slope on the

left-hand side of (I.48) is smaller than the slope on the right-hand side. Consequently (I.48)

holds if we replace F̂all[τ + 1] with any value z ≥ F̂all[τ + 1], specifically for any F̂all[j] where

j ≤ τ + 1:

α

α + β + γ
+

γ

α + β + γ
F̂all[j] <

δp0
γ + δp0

+
γ

γ + δp0
F̂all[j], ∀j ≤ τ + 1 (I.49)

88

We now show ŜF[τ − 1] > F̂all[τ − 1]:

ŜF[τ − 1] =
δp0

γ + δp0
+

γ

γ + δp0

(
γ + δp0
γ + δ

ŜF[τ] +
δ(1− p0)
γ + δ

F̂all[τ]

)
(I.50)

≥ δp0
γ + δp0

+
γ

γ + δp0
F̂all[τ] (I.51)

>
α

α + β + γ
+

γ

α + β + γ
F̂all[τ] (I.52)

= F̂all[τ − 1] (I.53)

Where (I.51) follows by inequality (I.44), (I.52) follows from (I.49) and (I.53) follows from

(I.43). Using the same steps in (I.50)–(I.52), we can next show ŜF[τ − 2] > F̂all[τ − 2], and

continuing to iterate we have the desired result: ŜF[i] > F̂all[i] for all 1 ≤ i ≤ τ , which

implies (I.41) and the proof is complete.

I.6 Proof of Lemma 15: w(x) > z(x) implies w(y) > z(y) for y ∈ [0, x]

Let us rewrite w(x) from (I.5) in a slightly different form

w(x) ≡ (1− exp(−δT (1− x)))

(
p0 + (1− p0)

α

α + β

(
1− δ

δ − (α + β)

))
+ (1− p0)

α

α + β

δ

δ − (α + β)
(1− exp(−(α + β)T (1− x))) (I.54)

Note that w(1) = z(1) = 0 (z(x) is defined in (I.6)) and

lim
x→−∞

w(x) = p0 + (1− p0)
α

α + β
(I.55)

lim
x→−∞

z(x) =
α

α + β
(I.56)

We next define v(x) as the difference between w(x) and z(x)

v(x) = w(x)− z(x). (I.57)

89

We have v(1) = 0. We next examine the derivative of v(x) to show that v(x) can have at

most one local maximum or minimum on (−∞, 1):

v′(x) = δTA exp(−δT (1− x)) + (α + β)TB exp(−(α + β)T (1− x)) (I.58)

for some constants A and B. The only possibility for v′(x) = 0 for all x is if both constants

A = B = 0. This can only occur if β = 0. Because we assume β > 0, we can ignore this

case. Attempting to solve v′(x) = 0 in (I.58), we see there is at most one real solution to

v′(x) = 0, and therefore v(x) has at most one local extreme point for x ∈ (−∞,∞).

The condition in the Lemma follows immediately from the above argument. If v(x) > 0,

than v(y) > 0 for all y < x < 1. Otherwise if there exists some y < x such that v(y) ≤ 0, then

there exists a local maximum in (y, 1] because v(y) < v(x) and v(x) > v(1). Furthermore

since

lim
x→−∞

v(x) = lim
x→−∞

w(x)− z(x) = p0
β

α + β
> 0 (I.59)

there must also be a local minimum on (−∞, y]. This implies v(y) has at least two extreme

points, which is a contradiction. Replacing v(x) = w(x)− z(x), we have the condition of the

Lemma.

I.7 Proof of Lemma 16: Case 2 of Proposition 6

We use the same notation as in Appendix I.6. Namely v(x) = w(x) − z(x) according to

(I.57). We know that v(1) = 0. Condition (I.1) in case 2 of Proposition 6 is equivalent to

v(0) ≤ 0. Similar logic to the proof of Lemma 15 in Appendix I.6 produces

v(0) ≤ 0→ v(x) < 0 ∀x ∈ (0, 1) (I.60)

90

Condition (I.60) follows by the one-local-extreme-point argument from Appendix I.6. If

v(0) ≤ 0 then by (I.59) and the Intermediate Value Theorem there exists a x̃ ≤ 0 such that

v(x̃) = 0. We assume (I.60) does not hold and generate a contradiction. If there exists an

x ∈ (0, 1) such that v(x) ≥ 0, then this implies again by the Intermediate Value Theorem

that there is an x̂ ∈ (0, 1) such that v(x̂) = 0. However, this yields three roots for v(·),

v(x̃) = v(x̂) = v(1) = 0, which implies at least two local extreme points and a contradiction.

Therefore (I.60) holds and w(x) ≤ z(x) for all x ∈ [0, 1)

If v(x) < 0 for x ∈ [0, 1) and v(1) = 0, then v′(1) > 0. Before proceeding we eliminate

the possibility that v′(1) = 0. If v′(1) = 0 then, we have one local extreme point at x = 1.

The local extreme point cannot be a maximum, because this would imply a local minimum

on (−∞, 1) by (I.59), which contradicts our one-local-extreme-point condition. However, if

we have a local minimum at x = 1, then v(x) > 0 for all x ∈ (−∞, 1) by Lemma 15, which

contradicts the condition of case 2 of Proposition 6: v(0) ≤ 0. Therefore v′(1) > 0. Taking

the derivative of v(·) and evaluating at 1 yields

v′(1) = −δp0T + αT (I.61)

By inspection of (I.61) v′(1) > 0 if and only if α > δp0, which implies cases 1 and 2 of

Proposition 6 are mutually exclusive.

We next use uniform convergence to show that xn → 0, which completes the proof. For

any 0 < θ < 1, v(θ) < 0 by (I.60). Define

ε ≡ −v(θ) (I.62)

By uniform convergence in Lemma 13, we next argue that there exists some N∗ such that

ŜF[θ;n] < F̂all[θ;n] ∀n > N∗ (I.63)

91

By Lemma 14, condition (I.63) implies that xn < θ. As discussed in the outline of Appendix

I, we associate xn = 0 with τn = −∞: both represent Blue firing immediately at the start of

the battle. Consequently |xn| < θ for all n > N∗, which proves convergence xn → 0.

To derive (I.63), we note that uniform convergence implies there exists N1 and N2 such

that

|w(x)− ŜF[x;n]| < ε

3
∀x ∈ [0, 1],∀n > N1 (I.64)

|z(x)− F̂all[x;n]| < ε

3
∀x ∈ [0, 1],∀n > N2 (I.65)

Conditions (I.64)–(I.65) imply that for n > N∗ = max(N1, N2)

F̂all[θ;n]− ŜF[θ;n] ≥ (z(θ)− ε

3
)− (w(θ) +

ε

3
)

= −v(θ)− 2ε

3
=
ε

3
> 0, (I.66)

where the last step in (I.66) follows by (I.62). Condition (I.66) yields (I.63). Therefore

under condition (I.1) in case 2 of Proposition 6, the limiting policy is fight for all 0 ≤ t ≤ T

I.8 Proof of Lemma 17: Case 3 of Proposition 6

We first prove that for this case there is a unique solution x∗ ∈ (0, 1) such that w(x∗) = z(x∗).

We use the same notation as in Appendix I.6 and I.7. Namely v(x) = w(x) − z(x)

according to (I.57). We know that v(1) = 0. If condition (I.1) in case 2 of Proposition 6

does not hold, then by construction v(0) > 0 (i.e., w(0) > z(0)). If the condition in case 1 of

Proposition 6 does not hold, δp0 < α, then v′(1) < 0 (see (I.61).

The previous paragraph provides three conditions: v(0) > 0, v(1) = 0, v′(1) < 0. These

three conditions imply by the Intermediate Value Theorem that there exist an x∗ ∈ (0, 1)

such that v(x∗) = 0. These three conditions also imply that v(·) has a local minimum on

(x∗, 1). To prove that x∗ is the unique root, we use a contradiction argument. Assume there

92

exists another x̃ ∈ (0, 1) such that x̃ 6= x∗ and v(x̃) = 0. Without loss of generality we assume

x̃ < x∗ (otherwise we flip the labeling of x∗ and x̃). However if v(x̃) = v(x∗) = v(1) = 0,

with 0 < x̃ < x∗ < 1, then there must exist at least two local extreme points on (x̃, 1), which

is a contradiction of our one-local-extreme-point result from Appendix I.6. Therefore x∗ is

the unique solution in (0, 1) such that w(x∗) = z(x∗).

We next use uniform convergence to show that xn = τn
n
→ x∗, which completes the

proof. The steps are similar to the uniform convergence arguments in Appendix I.7. For any

0 < θ < min(x∗, 1 − x∗), v(x∗ − θ) > 0 and v(x∗ + θ) < 0 follow from the discussion in the

previous paragraph. Define

ε ≡ min(v(x∗ − θ),−v(x∗ + θ)) (I.67)

By uniform convergence in Lemma 13, we next argue that there exists some N∗ such that

ŜF[x∗ − θ;n] > F̂all[x
∗ − θ;n] ∀n > N∗ (I.68)

ŜF[x∗ + θ;n] < F̂all[x
∗ + θ;n] ∀n > N∗ (I.69)

By Lemma 14, conditions (I.68)–(I.69) imply that x∗−θ < xn < x∗+θ. That is |x∗−xn| < θ,

for all n > N∗, which proves convergence xn → x∗.

To derive (I.68)–(I.69), we note that uniform convergence implies there exists N1 and N2

such that

|w(x)− ŜF[x;n]| < ε

3
∀x ∈ [0, 1],∀n > N1 (I.70)

|z(x)− F̂all[x;n]| < ε

3
∀x ∈ [0, 1],∀n > N2 (I.71)

93

Conditions (I.70)–(I.71) imply that for n > N∗ = max(N1, N2)

ŜF[x∗ − θ;n]− F̂all[x
∗ − θ;n] ≥ (w(x∗ − θ)− ε

3
)− (z(x∗ − θ) +

ε

3
)

= v(x∗ − θ)− 2ε

3
≥ ε

3
> 0, (I.72)

where the last step in (I.72) follows by (I.67). Condition (I.72) yields (I.68). A similar

argument produces (I.69) and completes the proof

F̂all[x
∗ + θ;n]− ŜF[x∗ + θ;n] ≥ (z(x∗ + δ)− ε

3
)− (w(x∗ + θ) +

ε

3
)

= −v(x∗ + θ)− 2ε

3
≥ ε

3
> 0. (I.73)

I.9 Additional References

RRL. 2015. Uniform Convergence to the Exponential Function over a Compact Inter-

val. StackExchange. January 18, 2015. https://math.stackexchange.com/questions/

1108581/uniform-convergence-to-the-exponential-function-over-a-compact-interval

Accessed on April 18, 2018.

Weisstein, Eric W. 2018. Bernoulli Inequality. MathWorld. http://mathworld.wolfram.

com/BernoulliInequality.html Accessed on April 18, 2018.

94

https://math.stackexchange.com/questions/1108581/uniform-convergence-to-the-exponential-function-over-a-compact-interval
https://math.stackexchange.com/questions/1108581/uniform-convergence-to-the-exponential-function-over-a-compact-interval
http://mathworld.wolfram.com/BernoulliInequality.html
http://mathworld.wolfram.com/BernoulliInequality.html

	Introduction
	Setting
	Literature Review
	Time-window Model
	Optimal Move Policy
	Comparative Statics
	Additional Cost if Blue Destroyed

	Risk Model: Full Information
	Results
	Heuristic Performance

	Risk Model: Partial Information
	Results

	Simulation Model
	Conclusion
	Proof of Proposition 1: *t {0,}
	Proof of Proposition 2: Monotonicity of P[t]
	Proof of Proposition 3: Optimality of Threshold Policy
	Proof of Lemma 1: Scoot in All Time Periods
	Proof of Lemma 2: Two Consecutive Scoot Periods
	Proof of Lemma 4: Win-Probability if Next Period Optimally Scoots

	Proof of Lemma 3: Scoot in Period -1

	Proof of Proposition 4: Comparative Statics
	Blue firing rate
	Red firing rate
	Proof of Lemma 5 and Lemma 6
	Proof of Lemma 7

	Blue move-rate
	Proof of Lemma 8

	Time-rate
	Risk-free hit probability p0

	Proof of Corollary 1: Cost if Blue Destroyed
	Proof of Proposition 5 : *t,r {0,} for Full-Information Risk Model
	Proof
	Notation
	Optimizing P[t,1]
	Optimizing P[t,1] for r>1

	Algorithm to Compute t,r*

	Optimal Solution for Partial-Information Setting
	Optimization Framework
	Numerical Illustrations
	One Period Optimization
	Two Period Optimization

	Algorithm to Compute t(j)*

	Description of Simulation Model
	Overview
	Risk-free Firing
	Risky Firing
	Move Decision

	Simulation Parameters
	Scenario Input Parameters
	Random Variables within a Scenario

	Deterministic Window of Opportunity
	Proof of Lemma 10 : Wn T
	Proof of Lemma 11 : Vn T
	Proof of Lemma 12: Blue Always Scoots if p0
	Proof of Lemma 13: Uniform convergence of all[x;n] F[x;n]
	all[x;n]
	F[x;n]

	Proof of Lemma 14: F[x;n] > all[x;n] implies F[y;n] > all[y;n] for y[0,x]
	Proof of Lemma 15: w(x) > z(x) implies w(y) > z(y) for y[0,x]
	Proof of Lemma 16: Case 2 of Proposition 6
	Proof of Lemma 17: Case 3 of Proposition 6
	Additional References

